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The complement system represents a pillar of the innate immune response. This system,

critical for host defense against pathogens, encompasses more than 50 soluble, and

membrane-bound proteins. Emerging evidence underscores its clinical relevance in

tumor progression and its role in metastasis, one of the hallmarks of cancer. Themultistep

process of metastasis entails the acquisition of advantageous functions required for

the formation of secondary tumors. Thus, targeting components of the complement

system could impact not only on tumor initiation but also on several crucial steps

along tumor dissemination. This novel vulnerability could be concomitantly exploited

with current strategies overcoming tumor-mediated immunosuppression to provide a

substantial clinical benefit in the treatment of metastatic disease. In this review, we

offer a tour d’horizon on recent advances in this area and their prospective potential

for cancer treatment.
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INTRODUCTION

The complement system represents a master component effector of innate immunity. Complement
activation and regulation encompasses more than 50 soluble and membrane-bound proteins.

The function of complement, which entails the recognition and removal of pathogens and
harmful entities, is accomplished by a multistep and sequential serine proteases-mediated cascade.
The release of proteolytic fragments mediates key homeostatic and effector functions including:
opsonization, inflammation, adaptive immune regulation, coagulation, tissue repair, neural
development, bone homeostasis, angiogenesis, and host–microbiota symbiosis (1). Owing to the
potentially deleterious effects of the complement system, its activity is tightly regulated at different
levels by a number of soluble and membrane-bound proteins (2). Inappropriate complement
activation underlies a variety of physiopathological conditions including inflammatory diseases and
cancer (3).

Becausemany of the complement functionsmodulate tumor progression, their preeminent roles
in promoting tumor cell dissemination are not surprising. This review focuses on recent findings on
the major role of the complement system in tumor progression and highlights its key contribution
to the different steps of the metastatic cascade.

COMPLEMENT ACTIVATION

Complement is mainly activated via three different recognition pathways: the classical, the lectin,
and the alternative pathways. These three modes of complement activation converge into the
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generation of C3 convertases, which cleave C3 into C3a and C3b.
C3a is an anaphylatoxin displaying an inflammatory regulation
role. C3b can act in the opsonization process and as a component
of the C5 convertase (4).

The classical pathway is triggered by the binding of C1q
to antigen-antibody complexes, dying cells, extracellular matrix
proteins, pentraxins, amyloid deposits, prions, or DNA (5).

The lectin pathway starts through binding of proteins
homologous to C1q (mannose-binding lectin and H-, L-, or M-
ficolins) to carbohydrate structures on pathogens (6). Both the
classical and the lectin pathways then sequentially cleave C4
and C2 for the generation of the classical/lectin C3 convertase
(C4bC2b) (4).

Finally, the alternative pathway is initiated by the spontaneous
hydrolysis of C3, also known as the “tickover” of C3, which after
the formation of C3(H2O) can bind to factor B. Cleavage of factor
B by factor D forms the initial alternative pathway C3 convertase,
C3(H2O)Bb (7).

Although these three routes of activation differ in their
mechanisms of target recognition and initiation, they converge
at C3 cleavage, yielding the active fragments C3a and C3b. C3b
binding to C3 convertases assembles the C5 convertase that
cleaves C5 into the anaphylatoxin C5a, and C5b. The latter
fragment is indispensable to assemble the membrane attack
complex which mediates targeted lysis (8).

Additional pathways of complement activation include C3
and C5 extrinsic protease cleavage (9–11), the C2-bypass pathway
(12), and the properdin-mediated direct convertase formation on
microbial surfaces (13).

Among the complement-derived downstream effectors, C3a
and C5a play diverse roles in both homeostasis and disease. These
molecules bind to their cognate seven-transmembrane domain
receptors C5a receptor 1 (C5aR1; CD88) and C3a receptor
(C3aR), respectively. C5a can also bind to C5aR2 (14). The role of
C5aR2 remains poorly understood. Recently, it has been reported
that the binding of C5a to C5aR2 in carcinoma-associated
fibroblasts promotes tumor formation and chemoresistance by
providing a survival niche for cancer stem cells (15).

Recent discoveries have also revealed that complement
activation is not only restricted to the extracellular space,
as originally thought, but also occurs in the cytoplasm.
The intracellular components of complement (the so-called
complosome) modulate metabolic processes during T cell
effector differentiation (16, 17) but so far, their intracellular
functions remain largely unexplored.

COMPLEMENT IN CANCER PATIENTS

Neoplastic transformation involves complex genomic and
epigenomic alterations perturbing normal cell homeostasis. Local
or distant dissemination of tumor cells, one of the hallmarks
of cancer, represents a multistep process that entails the gain
of novel cellular functions which include invasion, increased
cell locomotion, intravasation, survival in the circulation,
overcoming immune attack, and colonization in foreign cellular
niches to form secondary tumors (18).

Overcoming immune attack is a key step in tumor
progression. Altered immune recognition is achieved by a
variety of mechanisms (19), including the modulation of the
complement system. Complement activation has been described
in cancer patients with hematological malignancies such as
lymphomas (20), and in a plethora of solid tumors (21–23).
Furthermore, intact complement proteins were found increased
in blood of patients with lung cancer (24, 25), neuroblastoma
(26), and digestive tract tumors (27). However, complement-
mediated cytotoxicity is circumvented by different mechanisms,
most of which include the upregulation of complement
regulatory proteins (28–30). These regulators normally protect
tumor cells from complement-mediated destruction, and can
be grouped into two categories: membrane-bound complement
regulatory proteins (mCRPs) and soluble regulators. High
expression of the mCRPs membrane cofactor protein (CD46),
decay-accelerating factor (CD55), and CD59 (protectin) on
tumor cells is associated with increased metastatic potential, and
poor prognosis in a range of tumors (31–34). Similarly, the
soluble regulators factor H and FHL-1 have been found elevated
in biological fluids from ovarian (35), bladder (36) and lung
cancer patients (37), and are also associated with poor prognosis
(38). Other soluble regulators as clusterin (39), C1 inhibitor (40),
factor I and C4b-binding protein (C4BP) (41) are secreted by
tumor cells into the tumor milieu and could also be detected in
the circulation.

Activation of the complement system by tumor cells was
long believed to only benefit the patient. Preclinical data
suggest that complement can evoke potent complement-
dependent cytotoxicity against tumor cells, and a range
of therapeutic strategies have been designed to potentiate
complement activation and overcome the protection mediated
by complement inhibitors. This approach has been specially
tailored to enhance the therapeutic efficacy of monoclonal
antibodies (42). However, recent findings have challenged this
view, providing evidence of the cancer-promoting potential of
complement activation and the utility of complement inhibition
as an anticancer therapy (43). Complement components coopted
by tumor cells can lead to the acquisition of self-advantageous
functions tilting the balance toward tumor progression. For
instance, lung cancer cells are recognized by the complement
system more efficiently than their normal counterparts. This
effect is mediated by the direct binding of C1q and leads to
the subsequent activation of the classical complement pathway
(44). This activation is compensated by the expression of factor
H/FHL-1 and CD59 (45, 46). This equilibrium in complement
activity would explain the elevated levels of complement
fragments found in biological fluids from these patients. Thus,
C4d, a split product of the classical complement pathway, is
increased in biological fluids of lung cancer patients. Detection
of C4d is associated with poor prognosis, and has been proposed
as a potential biomarker of clinical value in the management of
lung cancer patients (44, 47, 48). Similar results were obtained in
oropharyngeal tumors by detecting C4d in saliva (49). Moreover,
other complement factors have been associated with cancer.
Anaphylatoxin C5a is increased in plasma from lung cancer
patients (50, 51), and is associated with metastatic potential in
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lung and gastric cancer patients (52, 53). Similarly, C1QB is
one of the top-scoring genes associated with lung metastases in
osteosarcoma patients (54).

Taken together, these studies indicate an association between
complement activation and malignant progression.

COMPLEMENT IN THE
TUMOR MICROENVIRONMENT

Of all complement proteolytic fragments derived from
complement activation, anaphylatoxins are by far, the best
described in cancer. Anaphylatoxins C5a and C3a trigger
spurious tumor intracellular signaling pathways by binding
to their cognate receptors expressed in tumor and immune
cells. These signaling events deeply perturb the tumor milieu
by inducing the recruitment and/or tumor-promoting abilities
of myeloid-derived suppressor cells (MDSC), macrophages,
neutrophils, and mast cells, preventing efficient T cell-mediated
responses (55).

Elevation of C5a or C5aR1 levels has been observed in solid
tumors including lung (50, 53), gastric (56), ovarian (57), breast
(58), urothelial (59), and clear cell renal cancers (60).

C5a induces the recruitment of MDSCs into the tumor
microenvironment, and markedly dampens anti-tumor T-cell
responses. C5aR1 mediates these effects on two subpopulations
of MDSCs. On one side, C5a is a potent chemoattractant for
granulocytic MDSCs (a neutrophil-like subpopulation) and on
the other, C5a stimulates the monocytic MDSC subpopulation
with the concomitant production of reactive oxygen and nitrogen
species (61).

C5aR1 expressed on MDSCs is also able to bind ribosomal
protein S19 (RPS19), which is released from apoptotic tumor
cells into the tumor microenvironment, leading to a shift toward
Th2 cell responses with increased levels of immunosuppressive
TGF-β (62). Accordingly, pharmacological blockade of C5aR1
in a syngeneic model of lung cancer impaired tumor growth,
decreased the percentage of splenic MDSCs, and downregulated
immunosuppression-related genes including ARG1, IL6, IL10,
CTLA4, LAG3, and PDL1 within the tumor milieu (50).

Besides MDSCs, C5a affects the biology of other leukocytes
present in the tumor microenvironment. C5a elicits a strong
pro-inflammatory infiltration with secretion of MCP-1,
responsible for the recruitment of immunosuppressive
macrophages, and increase of arginase-1 and IL-10 (63).
Similarly, fibrinolytic enzyme-mediated generation of C5a
regulates the protumorogenic properties of C5aR1+ mast cells
and macrophages, leading to hampered antitumor CD8 T-cell
responses in a model of squamous carcinogenesis. Interestingly,
the combined treatment based on cytotoxic chemotherapy and
the blockade of C5aR1 synergistically increased the recruitment
and the cytotoxic properties of CXCR3+ effector memory CD8T
cells by IFNγ-dependent mechanisms (64). Ablation of PTX3, an
important negative regulator of inflammation and complement
activation, resulted in amplification of complement activation,
MCP-1 production, and tumor-promoting macrophage
recruitment. Consistently, pharmacological blockade of C5aR1
reversed these pro-tumorogenic effects (65).

Although far less studied than C5a, the anaphylatoxin
C3a also preconditions a tumor-promoting microenvironment.
Signaling mediated by C3a binding to C3aR contributes to
melanoma tumorigenesis by inhibiting neutrophil and CD4
T-cell responses (66). Autocrine complement C3 inhibits IL-
10-mediated cytotoxic properties of tumor-infiltrating CD8T
lymphocytes through complement receptors C3aR and C5aR1,
and enhances melanoma and breast cancer growth (67).

Moreover, complement activation may underlie the ability
of tumors to evolve and adapt to different cues of the
microenvironment increasing tumor progression. Thus, under
hypoxic conditions, lung cancer cells downregulate complement
inhibitors, factor H and factor I, to increase their susceptibility
to complement activation (68). This phenomenon may fuel the
generation of C5a which in turns may contribute to hypoxic
stress in the tumor milieu to promote tumor progression through
the inhibition of cell-mediated immunity. Indeed, in a syngeneic
lymphomamodel the impact of C5a in tumor microenvironment
is dose-dependent (69).

Complement effectors can also affect tumor progression
independently of complement activation. Factor B and factor I
promote squamous cell tumor growth upon the activation of
ERK1/2 (70, 71). C1q promote angiogenesis and lung metastasis
in a syngeneic model of murine melanoma (72). In malignant
pleural mesothelioma, C1q binds to hyaluronic acid in the tumor
microenvironment and enhances tumor proliferation (73). C1q
secreted by mesenchymal stromal cells mediates the activation
of β-catenin in chronic lymphocytic leukemia and enhances
malignant progression (74). On the other hand, properdin, a
positive regulator of complement activity, induces endoplasmic
reticulum-stress response and exerts a tumor suppressive role in
breast cancer (75).

In summary, tumors are able to perturb complement-
related immune effectors favoring tumor progression.
Distorted complement homeostasis remodels the tumor
microenvironment by inhibiting the anti-tumor immune
responses and contributes to the metastatic dissemination of
cancer cells (Figure 1).

EARLY METASTASIS STEPS:
COMPLEMENT EFFECTS ON
TUMOR CELLS

Epithelial–mesenchymal transition (EMT), loss of cell-
cell adhesion, and increase of motility, invasiveness, and
intravasation of tumor cells are at the core of the early metastatic
events (18). Tumor-associated complement-activation modifies
the tumor cell behavior endowing early metastatic traits.
Perturbed complement activation leads to the generation of
growth factors, proangiogenic factors, and other mediators
that promote tumor growth and dissemination. These acquired
pro-metastatic functions are mediated by the C3a and C5a
stimulation of C3aR and C5aR1 in tumor cells, respectively,
which triggers spurious intracellular signaling pathways. For
instance, C5aR1 in lung tumor cells activates the p44/42 MAPK
and NF-κB signaling pathways leading to the secretion of IL-8,
VEGF, and MCP-1 to the tumor milieu (53). Complement
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FIGURE 1 | The role of complement in metastasis. Tumor-associated complement activation generates anaphylatoxins C5a and C3a in the tumor microenvironment.

Binding of these molecules to their cognate receptors promote a range of tumor-promoting functions. C5a, through its receptor C5aR1, facilitates the recruitment and

the activity of suppressive leukocyte subsets such as MDSCs, neutrophils, and Tregs in the tumor microenvironment. C3a also contributes to a suppressive tumor

microenvironment by recruiting neutrophils. C5aR1 signaling affects endothelial function and tumor-associated angiogenesis, and the binding of C5a to C5aR2 in

carcinoma-associated fibroblasts promotes tumor formation by providing a survival niche for cancer stem cells. In tumor cells, C5a/C5aR1 axis modulates

tumor-induced MMP expression, increases tumor cell migration and invasiveness, enhances the release of pro-angiogenic factors, and induces EMT. Binding of C1q

to tumor cells enhances tumor cell proliferation and favors angiogenesis in a complement activation-independent manner. Complement anaphylatoxins also facilitate

tumor dissemination by stimulating a hyper-coagulation state and NETs, and adapt specific organ environments to the metastatic spread. This includes the disruption

of the CSF barrier, the induction of CXCL16-mediated osteoclastogenesis, and the generation of an immunosuppressive microenvironment.

components facilitate tumor dissemination by inducing an
EMT in tumor cells which leads to the acquisition of a motile
and less adherent phenotype. C5a/C5aR1 axis mediates the
upregulation of transcription factor Snail and a concomitant
decrease in E-cadherin and claudin-1 gene expression levels
with increased invasiveness in hepatocellular carcinoma (76).
In ovarian cells, TWIST1 enhances C3 expression and mediates
EMT (77). According to these findings C5aR1-tumor expression
was associated with tumor invasiveness, vascular and lymphatic
invasion, liver metastasis, and poor outcome in patients with
gastric tumors (78). Furthermore, C5aR1 inhibition hampers
lung cancer cell migration, and up-regulates the expression of
E-cadherin, suppressing EMT and invasiveness. Consistently,
a negative correlation between the expression of C5aR1 and
E-cadherin was found in lung primary tumors (79).

Initial steps for the acquisition of a metastatic phenotype
also involves the secretion of stromelysins and other
matrix metalloproteinases (MMPs) able to degrade different
extracellular matrix components, especially the basal membrane,
allowing for tumor cell intravasation and dissemination to
local or distant sites (33). C5a markedly enhances cancer-
mediated MMP activities and migratory and invasive tumor cell
activities (80). C5a stimulation also decreases tumor adhesion
to extracellular matrix proteins including collagens I and IV
(53). Aberrantly expressed C5aR1 increases cell locomotion,
cytoskeletal rearrangements with the formation of lamellipodia
and membrane ruffling in liver bile duct malignant cells (80).

C5aR1 signaling promotes motility and invasiveness through the
activation of RhoA, and leads to enhanced invasion and vascular
invasion in gastric cancer cells (56). ERK and PI3K, downstream
C5aR1 activation, mediate an increase in cell invasiveness in
renal cancer cells (81).

C3a-mediated stimulation elicits an increase in p42/44, p38
MAPK, and PKB/AKT activation and downregulates inducible
hemeoxygenase-1 (HO-1) in leukemic cells (82). Autocrine
stimulation of C5aR1 and C3aR upon C5a and C3a binding
leads to PI3K/AKT signaling and regulates the proliferation and
invasiveness of ovarian tumor cells (57).

In summary, complement-mediated effects are crucial in
the early stages of metastasis, involving changes in tumor
cell adherence to surrounding stroma and neighboring cells,
increasing local invasiveness and promoting lymphatic and
hematogenous dissemination.

COMPLEMENT EFFECTS
ON DISSEMINATION

The host microenvironment at local or distant sites provides
signals permissive for tumor promotion. Critical pathways
triggered in the surrounding stroma and/or endothelial or
lymphatic cells are required for proper cell-cell and cell-matrix
engagement and for the secretion of a panoply of protumorogenic
factors (83, 84). In addition, vascular or lymphatic vessels provide
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a major route by which tumor cells exit the primary tumor site,
enter the circulation and establish metastasis (85). Furthermore,
tumor vascular density is a prognostic indicator of metastatic
dissemination. In cancer, complement may be involved in
the modulation of the angiogenic program in the tumor
microenvironment, although the specific role of complement in
angiogenesis is highly dependent on the tumor type. For instance,
C5aR1 blockade does not affect tumor angiogenesis in murine
models of lung or cervical cancer (50, 61). In contrast, genetic
inhibition of C3 and C5aR1 impairs endothelial cell function in
an ovarian cancer model (86). C5a also supports an angiogenic
program displayed by infiltrating macrophages in squamous cell
carcinoma (64). C1q deposition on melanoma cells increases
tumor vascular density and facilitates tumor progression (72).
The evidence that complement has a role in endothelial
homeostasis might have implications also at secondarymetastatic
sites, a possibility which remains largely unexplored.

Once in the circulation, tumor cells have to overcome the
mechanical constraints imposed by sheer-stress, anoikis induced
by cell anchorage-independency, and the immune attack. A
role of platelets, together with fibrin and thrombin, has been
invoked for the establishment of distant metastasis by protecting
circulating tumor cells from mechanical stress and facilitating
engraftment at target sites (87).

Complement components contribute to a hyper-coagulation
state allowing tumor cell survival in the circulation. C3a
induces platelet activation and aggregation favoring a pro-
thrombogenic state (88). Similarly, C5a stimulates neutrophils to
release Tissue Factor, inducing a prothrombotic phenotype (89).
C3aR in neutrophils stimulates neutrophils extracellular traps
(NETs) (90), extracellular structures composed of chromatin
and degrading enzymes (myeloperoxidase, cathepsin G, and
elastase) that contribute to form a three-dimensional scaffold
that supports fibrin deposition and thrombus stabilization
and entraps platelets, erythrocytes and tumor cells, driving a
protumorogenic state (91).

This pro-tumorogenic milieu also favors the subsequent
dissemination of tumor cells to neighboring or distant sites.
Homing of tumor cells to target sites could also be actively
mediated by factors released by target organs that act as potent
tumor cell chemoattractants (92). But tumors also precondition
target organs creating a hospitable niche by the mobilization
of bone marrow-derived myeloid cells, tumor secreted factors
such as VEGF, TGF, TNF (93–95), and tumor released-
exosomes which also modulate the tumor microenvironment
(96, 97). These nanometer-sized vesicles, which contain a
complex cargo of membrane receptors, nucleic acids, cytoskeletal
components, and intracellular proteins, act as unique vehicles
for transport to local or distant organs. Tumor derived
exosomes, which are more abundantly released in inflammation,
represent another mechanism of immunosuppression. As
observed for tumor cells, exosomes display CD55 and CD59,
conferring resistance against complement-mediated lysis (98),
and potentially regulating the exosome-mediated cross-talk
associated with the metastatic program.

These events largely studied in murine models collectively
contribute to prepare the “fertile soil” invoked by the Paget’s
hypothesis (99), and crystallize the concept of “premetastatic

niche” (100). The premetastatic niche consists in the
accumulation of aberrant immune cells and extracellular
matrix proteins in target organs (101). Emerging data
demonstrate that C5a contributes to the lung premetastatic
niche by regulating the expression of TGF-β and IL-10 by
immature myeloid cells and the subsequent accumulation
of regulatory T cells, the proliferation of resident alveolar
macrophages in the premetastatic lungs, and a decrease in the
number and the maturation status of lung dendritic cells. As a
consequence, effector CD4 T-cell responses skew toward Th1
responses (102, 103).

LATE STEPS OF METASTASIS

A similar paradigm to which occurs in the primary tumor could
also influence metastatic behavior in the target organ. Tumor
cells need to overcome the constraints imposed by the “foreign
soil” and require compatibility with the hosting milieu. Each
organ provides unique opportunities which could be exploited in
the benefit of tumor cells by propelling the growth of micro to
macrometastases (104). An increasing body of evidence indicates
that complement is involved in this process, resulting in tumor
outgrowths at secondary sites.

Genetic abrogation of C5aR1 in the host dampens M2-
polarized tumor associated macrophages, leading to a decrease of
liver and lung metastases in a syngeneic colon cancer model (52).
Pharmacological inhibition of C5aR1 increases the infiltration of
CD8 cytotoxic T cells in metastatic nodules, and impairs lung
and liver metastatic processes with no effect detected in primary
tumors. Thus, genetic or pharmacological inhibition of C5aR1
results in impaired metastasis (103).

Moreover, activation of C5aR1 in tumor cells leads to
an increased prometastatic activity. For instance, in a lung
cancer model of bone metastasis, C5a/C5aR1 axis induced
the production of pro-osteoclastogenic factors favoring skeletal
metastases. Among these factors, CXCL16 released upon C5aR1
signaling led to osteoclastogenic activation and osteolytic lesions.
These effects were blocked by C5a inhibition or genetic silencing
of C5aR1 in tumor cells, suggesting its implication in skeletal
metastases (53). Indeed, complement is involved in bone
homeostasis and turnover (105). Bone-forming osteoblasts and
bone-resorbing osteoclasts are tightly regulated to ensure a
balanced bone mass. Receptor activator of nuclear factor k-
B ligand (RANKL), which is secreted by osteoblasts, binds
to its receptor on the membrane of committed monocytes
to differentiate into osteoclasts (106). Complement modulates
osteoclasts differentiation in vitro and in vivo through C5aR1,
but no effects were exerted in osteoblast differentiation (107).
However, C3aR and C5aR1 signaling by C3a and C5a in
osteoblasts modulates the release of pro-inflammatory pro-
osteoclastogenic cytokines IL-6 and IL-8, and C5a increases
RANKL in osteoblasts, overall favoring a pro-osteoclastogenic
milieu (108). Because of these bone-specific mechanisms, the
complement system might be specially relevant in skeletal
metastases (53). Indeed, lung primary tumors that metastasize
to bone show higher C5aR1 levels than those that metastasize
to other locations, suggesting its major role in the tumor-
induced skeletal lesions. Nevertheless, this axis alsomediates lung
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metastases, since lung tumor colonization was decreased when
lung cancer cells were devoid of C5aR1 (53).

In brain metastases, an elegant study by Massagué et al.
unveiled a different prometastatic mechanism. C3 was
upregulated in four leptomeningeal metastatic models and
proved necessary for tumor growth within the leptomeningeal
space. C3a, generated after C3 cleavage and bound to the C3aR
expressed on the choroid plexus, was able to disrupt the blood-
cerebrospinal fluid barrier. This effect was critical since blockade
of this step provided a survival benefit in these models. However,
C3 did not mediate cancer cell entry into the cerebrospinal
fluid but other determinants were required for full tumor cell
colonization (109).

Inhibition of complement-related proteins, and specially
anaphylatoxins (14), has been proposed as a therapeutic option
for maximizing the clinical efficacy of current immunotherapies.
Recent studies have provided support of this idea after
combined inhibition of anaphylatoxins and PD-1 signaling for
the treatment of metastatic cancer. Administration of PD-1/PD-
L1 blocking antibodies resulted in intratumoral complement
activation and the subsequent accumulation of C5a within
the tumor milieu (110). Importantly, the combination of
C5a and PD-1 blockade reversed CD8 T-cell exhaustion, and
markedly reduced lung cancer metastasis in two syngeneic
animal models (111).

CONCLUSIONS

The complement system represents an important player in
tumorigenesis and metastasis. Its relevance stems from its ability

to foster a protumorogenic milieu bymodulating tumor-immune
responses. It also endows tumor cells with cell functions required
for metastatic dissemination. Preclinical studies support the idea
that the therapeutic blockade of complement has potential in
combinatorial immunotherapy to effectively eradicate primary
tumors and distant metastases. A better understanding of the
mechanisms of interaction of the complement systemwith tumor
cells and their microenvironment is required for designing
combined novel immunotherapeutic regimens able to effectively
target established tumors.
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