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Cancer vaccines consist of a tumor-associated antigen (TAA) and adjuvant. These

vaccines induce and activate proliferation of TAA-specific cytotoxic T lymphocytes

(CTLs), suppressing tumor growth. The therapeutic efficacy of TAA-specific CTLs

depends on the properties of tumor microenvironment. The environments make

immunosuppressive by function of regulatory T cells and tumor-associated myeloid

cells; thus, regulation of these cells is important for successful cancer immunotherapy.

We report here that L-ergothioneine (EGT) with the adjuvant Toll-like receptor 2

(TLR2) ligand modulated suppressive microenvironments to be immune-enhancing.

EGT did not augment DC-mediated CTL priming or affect CTL activation in draining

lymph node and spleen. However, EGT decreased the immuno-suppressive function

of tumor-associated macrophages (TAMs). TLR2 stimulation accompanied with EGT

administration downregulated expression of PD-L1, CSF-1R, arginase-1, FAS ligand, and

TRAIL in TAMs, reflecting reduction of CTL suppression. An anti-oxidative thiol-thione

residue of EGT was essential to dampening CTL suppression. The effect was specific

to the thiol-thione residue of EGT because no effect was observed with another

anti-oxidant N-acetyl-L-cysteine (NAC). A CTL-suppressive environment made by TLR2

is relieved to be improved by the addition of EGT, which may ameliorate the efficacy of

vaccine immunotherapy.

Keywords: tumor microenvironment, tumor-associated macrophage, cytotoxic T lymphocyte, toll-like receptor,

L-ergothioneine

INTRODUCTION

Cancer immunotherapy has therapeutic merit as a treatment for progressive cancers. Cytotoxic T
lymphocytes (CTLs) are a key effector inducing tumor cell lysis. Tumor-specific antigen (TAA)
uptake and cross presentation by dendritic cells foster T-cell priming in lymph nodes. CTLs
proliferate and migrate to tumors, where they encounter tumor cells. Anti-PD-1 Ab treatment
showed that TAA-specific CTLs regress progressive tumors in some patients. However, CTL
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function is usually impaired in the tumor microenvironment
of progressive cancers (1, 2). This finding suggests that
improvement of the environment is indispensable for achieving
complete remission in immunotherapy.

Several myeloid subsets create immuno-suppressive
microenvironments in the tumor stroma. Tumor-associated
macrophages (TAMs) are representative subsets that suppress
CTLs in tumors. Suppression has been explained by several
mechanisms: (i) production of reactive oxygen and nitrogen
species (ROS/RNS): peroxynitrite, a complex of ROS and RNS,
inhibits CTL functions via nitration to cause dysfunction of
T cell receptors (TCRs) and IL-2 receptors; (ii) expression of
inhibitory signal mediators/stimulators such as IL-10, TGF-β,
and PD-L1; (iii) depletion of nutrition via arginase-1 expression;
and (iv) CTL apoptosis induced by FAS ligand and TRAIL on
TAMs (3, 4).

Myeloid cells including dendritic cells and macrophages
express Toll-like receptor 2 (TLR2) (5). TLR ligand acts on DCs
as an adjuvant of cancer vaccines because it induces maturation
and cross presentation of DCs (5). Cross presentation provokes
the priming of CTLs in concert with extracellular soluble antigens
and MHC class I (6) and induces tumor-responsive CTLs in
combination with TAA (5, 7). Human CD141+ DCs, a major
subset of DCs for cross presentation, abundantly express TLR2
heterodimers (TLR 2/1 and 2/6) (8), suggesting that TLR2 ligand
might be a promising adjuvant for cancer vaccines. Our study
and others showed that a number of TLR ligands facilitate
cancer immunotherapy (9–11) mainly to increase CTLs in
tumor environment.

Administration of TLR2 ligand also modulates the tumor
microenvironment to induce immune suppression (12, 13).
Upon TLR2 stimulation, macrophages in tumors activated, and
promote tumor progression and invasion (14, 15). In this context,
the intrinsic TLR2 ligand versican promotes tumor progression
(14) and the tumor-derived TLR2 ligand hyaluronan induces
formation of immunosuppressive macrophages (15). Hence,
TLR2 ligand acts on both DCs and TAMs to positively or
negatively modulate the microenvironment.

We have investigated applicability of L-ergothioneine (EGT)
to excluding the immune-suppressive activity of macrophages.
We previously reported that EGT has no immune stimulatory
function, but up-regulates TLR responses in bone marrow-
derived macrophages, which leads to strong innate immune
activation (16). EGT is an anti-oxidative thiol derivative of L-
histidine, and naturally synthesized by bacteria and fungi. EGT
exists as a thiol-thione tautomer in physiological conditions
(17). The tissue distribution of EGT depends on the expression
profile of transporter OCTN1 (18, 19). Myeloid cells but not
lymphocytes in peripheral blood abundantly express OCTN1
(20), and the biased expression of OCTN1 is involved in non-
uniformal EGT distribution (21). EGT has been reported from
in vitro studies to be an anti-oxidant, anti-inflammatory and
cytoprotective activities (17) in addition to the innate immune-
enhancing function (16). Yet, no in vivo studies have proved that
EGT actually participates in tumor regression. Thus, it has been
intriguing what happens in tumor-loading mice when they are
treated with EGT together with TAA+ TLR2 adjuvant.

Here, we show that EGT successfully improves in vivo
therapeutic efficacy of TLR2 ligand/TAA via controlling
TAM function.

MATERIALS AND METHODS

Reagents
L-ergothioneine and L-hercynine were purchased or kindly
provided by Tetrahedron (Paris, France). N-acetyl-L-cysteine
(NAC) was purchased from Sigma-Aldrich (St. Louis, MO, USA).
Ovalbumin (OVA)257−264 peptide (SIINFEKL,SL8 peptide) was
purchased from MBL (Nagoya, Japan). OVA protein used in
this study was high grade of immunochemistry: EndoGrade
Ovalubmin (Hyglos, Bernried, Germany) and Ovalbumin, Low
Endotoxin (Wako, Tokyo, Japan). 2,3-bis(palmitoyl) propyl Cys-
Ser-Lys-Lys-Lys-Lys (Pam2CSK4) was synthesized by Biologica
Co. Ltd (Nagoya, Japan). PBS used to substrate solution or
injection into mice was endotoxin-free grade (Merck, Darmstadt,
Germany). Antibodies (Abs) used for magnetic sorting were
CD8 MicroBeads and Streptavidin MicroBeads (Miltenyi Biotec,
Bergish Gladbach, Germany). The H2Kb-SL8 peptide tetramer
was utilized for measuring the levels of OVA-specific CTL (22,
23). We used the authentic beads purchased from MBL. Other
Abs used in this study are mostly commercially available and
listed in Supplementary Table 1.

Mice
Inbred female wild-type C57BL/6 mice were purchased from
Clea Japan. Mice were maintained under specific pathogen-
free conditions and used in the age of 7–11 weeks. All animal
experiments were approved by the Institutional Animal Care
and Use Committee of Hokkaido University (the number was
18-0032) and performed in compliance with their guidelines.

Cell Culture
Ovalbumin-expressing Lewis lung carcinoma (LLC-OVA) cells
(22) were kindly provided by Dr. T. Nishimura and Dr.
H. Kitamura (Hokkaido University). LLC-OVA cells were
cultured in Iscove’s Modified Dulbecco’s Medium (IMDM,
purchased from Thermo Fisher Scientific, Waltham, MA,
USA) supplemented with 10% heat-inactivated fetal bovine
serum (FBS, purchased from GE Healthcare Life Sciences,
Buckinghamshire, England), 2mM of L-glutamine (Thermo
Fisher Scientific), 25mM of HEPES buffer (Thermo Fisher
Scientific), 55µM of 2-ME (Thermo Fisher Scientific), 100
U/mL of penicillin-streptomycin (Thermo Fisher Scientific), and
100µg/mL of G418 (Roche, Basel, Switzerland, purchased from
Sigma-Aldrich). OVA-positive EG7 lymphoma cells (ATCC R©

CRL-2113
TM

) were purchased from ATCC (Manassas, VA, USA)
and cultured in RPMI 1640 supplemented with 10% heat-
inactivated FBS, 10mM of HEPES, 1mM of sodium pyruvate,
55µM of 2-mercaptoethanol, 100 IU of penicillin/100µg/mL of
streptomycin and 500µg/mL of G418. The properties of this
lymphoma line were mentioned in earlier papers (24). Immune
cells harvested from mice were cultured in RPMI1640 (Thermo
Fisher Scientific) supplemented with 10% heat-inactivated FBS,
100mMofHEPES buffer, 55µMof 2-ME, 100 U/mL of penicillin
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and 100µg/mL of streptomycin. All cell culture works were
performed in 37◦C and 5% CO2 conditions.

Tumor Challenge
LLC-OVA cells or EG7 cells (2 × 106 cells/200 µL PBS)
were subcutaneously (s.c.) injected into shaved back of mice.
Tumor size was measured using calipers and determined by
following formula: tumor volume (cm3) = (long diameter) ×
(short diameter)2 × 0.4. Antioxidants were intraperitoneally
(i.p.) injected into mice: 500 µg of EGT (2.18 µmol) or 350
µg of NAC (2.14 µmol) was administrated. Cancer vaccination
(15 nmol of Pam2CSK4 and 100 µg of OVA protein) was s.c.
administrated into mice. For CD8+ T cell depletion, monoclonal
antibody (Ab) against CD8β (clone: H35.17-2) was used in the
form of ascites, which was i.p. injected into mice 1 day before
vaccination. Ascites contains 10–15mg/mL of IgG generally (25),
and administration of 15 µL/head ascites was enough to deplete
splenic CD8+ CD3+ cells according to the titration test.

Flow Cytometry
Single-cell suspensions isolated from tissues were stained with
fluorescence-labeled Abs after blockade with an anti-CD16/32
Ab. For T cell cytokine detection, samples were prepared by
culturing total tumor cells for 6 h in 96 well U-bottom plate in the
presence of 50 nM of SL8 peptide. To stop secretion, 10µg/mL of
Brefeldin A (Sigma-Aldrich) was added to the medium 1 h after
peptide stimulation. Then, cells were fixed and permeabilized
using BD Cytofix/Cytoperm Kit (BD Biosciences, CA, USA) and
reacted with fluorescence-labeled Abs in the presence of 2%
rat serum. Cells were fixed and permeabilized for detection of
induced nitric oxide synthase (iNOS) or nitrotyrosine. Analysis
was performed using FACS Aria II (BD Biosciences) and FlowJo
software (Tree Star, CA, USA). Unless otherwise noted, all cell
populations were explored on living cells, which was judged by
7-aminoactinomycin D (7AAD).

Determination of Cell Viability or
Proliferation
WST-1 assay reagent (Dojindo, Kumamoto, Japan) was used
according to manufacturer’s protocol. Cells were cultured in
clear 96-well plate and A450nm was determined after 2 h reaction
with WST-1 reagent. The background values of assay medium
were subtracted from determined values (EGT didn’t affect
the background value). LLC-OVA cells (5 × 103 cells/well) or
magnetically sorted F4/80+ cells (1× 104 cells/well) were applied
to this assay.

Cytometric Beads Assay (CBA)
Concentration of TNF-α, IFN-γ in tumor was determined by
CBA (BD Biosciences). To prepare tumor lysates, tumor pieces
about 15mg were homogenized with CelLytic MT Mammalian
Tissue Lysis/Extraction Reagent (Sigma-Aldrich) supplemented
with Complete Protease Inhibitor Mixture (Roche). The lysis
volume was unified as 10 µL reagent/1 mg tissue.

Quantitative Reverse Transcription
PCR (RT-qPCR)
Total RNA was isolated using TRIzol Reagent (Thermo Fisher
Scientific). For tumor tissue sampling, small pieces were cut
and collected into TRIzol reagent. RNA of culture cells was
collected from 5× 105 cells. After recombinant DNase I (RNase-
free, purchased from Takara, Tokyo, Japan) treatment, Reverse
transcription was performed using High-Capacity cDNAReverse
Transcription Kit (Thermo Fisher Scientific). Power SYBR Green
PCRMasterMixHigh-Capacity cDNAReverse Transcription Kit
(Thermo Fisher Scientific) was used for quantitative PCR assay
and detection was conducted by StepOne Real-Time PCR System
(Thermo Fisher Scientific). Gene expression levels normalized
to GAPDH expression were depicted in the figures. Data were
analyzed by the 11Ct method. Primer pairs are listed in
Supplementary Table 2.

In vitro CTL Activation and Co-culture
With TAMs
CD8+ splenocytes (5 × 104 cells) were isolated from tumor-free
mice using CD8-microbeads, and then, cultured with or without
5 × 104 intratumoral F4/80+ cells (magnetically sorted from
tumor) in 96 well U bottom plate. F4/80+ cell cells were sorted
after labeling with biotin-conjugated each Ab and streptavidin-
microbeads. All fractions after sorting were purified in magnetic
column again and used for studies. F4/80+ cells were incubated
with or without 10mM of EGT, 10mM of HER, or 10mM
of NAC for 24 h before coculture with CD8+ splenocytes. T
cell activation was achieved by stimulation with 0.25µg/mL of
anti-CD28 Ab and 0.1µg/mL of anti-CD3 Ab as previously
reported (26).

Statistical Analysis
P-values were calculated by student’s t-test or one-way analysis
of variance (ANOVA) with Bonferroni’s test in the case of two
groups- or multiple- comparison, respectively. Calculations were
performed using Microsoft excel (WA, USA) or GraphPad Prism
4 (CA, USA). Error bar represents the SEM between samples.
Dot plot shows the parameter of each mouse, and the bar means
average value.

RESULTS

EGT Enhances CTL-Dependent Cancer
Vaccine Therapeutic Efficacy Using the
TLR2/6 Ligand
Pam2CSK4, a ligand of the TLR2/6 heterodimer, was used as
an adjuvant for a cancer vaccine in combination with TAA
(OVA in this case). Figure 1A is a protocol for evaluation of
EGT function on vaccine therapy in mouse tumor models. In
the LLC-OVA model, vaccination with Pam2CSK4 and OVA
protein barely showed significant tumor growth retardation
(Figure 1B). However, in combination with EGT, Pam2CSK4 +

OVA significantly suppressed tumor growth (Figure 1B). EGT
per se neither had no tumor-suppressive function (Figure 1C)
nor enhanced tumor growth retardation with either OVA or
Pam2CSK4 alone (Figure 1D). EGT also augmented tumor
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suppression by Pam2CSK4 + OVA in another OVA-positive
EG7 tumor model, although EG7 tumor was more susceptible to
Pam2CSK4 + OVA than LLC-OVA tumor (even without EGT)
(Figure 1E). Thus, EGT greatly contributes to tumor regression
only in the presence of antigen and adjuvant.WST-1 proliferation
assays showed that EGT did not have direct cytotoxicity to
LLC-OVA cells even in the presence of Pam2CSK4 (Figure 1F).
CD8+ T cell depletion studies (Figure 1G) suggested that tumor
regression occurring with combination treatment of Pam2CSK4
+ OVA+ EGT was largely dependent on CD8β+ T cells.

EGT Increases Intratumoral CTL
Functionality
Pam2CSK4 + OVA but not EGT alone increased the number of
OVA-specific CD8+ T cells in tumor environment (Figure 2A).
However, CD8+ T cells was not elevated in the spleen or
draining lymph nodes (DLN) in the same mice (Figure 2A),
which was judged with authentic SL8 (OVA)-tetramer assay.
Pam2CSK4 + OVA administration increased tumor-infiltrating
CD8+ T cells but addition of EGT did not affect CD8+ T cell
infiltration (Figure 2B). Generally, cancer vaccine induces cross
presentation of DCs, resulting in expansion of antigen-specific
CTLs in lymphoid organs and tumors. Hence, Pam2CSK4 +

OVA worked as a cancer vaccine, but EGT did not increase
cross presentation or priming in vivo. EGT alone did not
enhance tumor infiltration of CTLs (Figure 2). Thus, EGT may
function in intratumoral activation of CTLs, the phase after
CTL infiltration.

CTL functionality can be assessed by cytokine production
(27).We determined the intratumor content of IFN-γ and TNF-α
which are representative cytokines released from activated CTLs.
Both IFN-γ and TNF-α subtly increased in the Pam2CSK4 +

OVA group and more clearly increased in the EGT+ Pam2CSK4
+ OVA group compared to the PBS group or EGT single-treated
group (Figure 3A). To examine if the cytokines were produced
by CTLs, we detected IFN-γ+ and TNF-α+ cells using flow
cytometry after stimulation with SL8 peptide. Consistent with
the cytokine results, Pam2CSK4 + OVA minimally increased
IFN-γ/TNF-α-positive CD8+ CD3+ cells compared to the PBS
group, and the combination of EGT led to significant increases of
IFN-γ/TNF-α in the CD8+ CD3+ cells (Figure 3B).

The activation state of CTLs was further evaluated by cell
surface markers. We quantified the fraction of CD44+ CD62L−

cells (to test an effector/memory state) (27), CD107a+ cells (to
test a secretion state of cytotoxic molecules) (28) and CD11c+

cells (a highly tumoricidal subset) (29) per CD8+ CD3+ cells.
Flow cytometric analysis demonstrated that these activation
fractions were greatly increased in the EGT+ Pam2CSK4+OVA
group compared to the Pam2CSK4 + OVA group (Figure 3C).
In this context, we evaluated the levels of molecules possibly
involved in CTLs exhaustion (27). PD-1, LAG-3, and Tim-3 are
representative molecules reflecting CTL exhaustion (27). Yet, no
decrease in PD-1, LAG-3, and Tim-3 was observed in the EGT+

Pam2CSK4 + OVA group compared to the Pam2CSK4 + OVA
group (Supplementary Figure 1).

EGT had no function on αCD3/CD28 Ab-induced direct
activation of CTLs (Supplementary Figure 2). Thus, EGT acts
on tumor microenvironment surrounding CTLs. Because EGT
can modulate macrophage TLR responses (16), we next analyzed
whether TAMs suppress CTL function.

EGT Decreases TAM Proliferation Induced
by TLR2/6 Vaccination
We elucidated the amount of Gr-1−/low F4/80+ TAMs in tumor
by flow cytometry. Pam2CSK4 + OVA increased F4/80+ TAMs,
and EGT reversed this population shift (Figure 4A). Pam2CSK4
without OVA also induced a similar response (Figure 4B).
To evaluate the mechanism of this change, we determined
intratumoral expression of growth factors and chemokines (Ccl2,
Cxcl12, Csf1, and Il34) related to proliferation and infiltration of
TAMs (30, 31). No change was observed in TAM-related factors
(Supplementary Figure 3). TAMs were harvested from tumors
and cultured with or without Pam2CSK4 and/or EGT. TAM
proliferation induced by Pam2CSK4 was suppressed by EGT
(Figure 4C). Thus, EGT interferes with TAM growth/survival
signaling in response to TLR2/6 stimulation.

EGT Reduces TAM Suppressive Phenotype
Under TLR2/6 Stimulation Dependent on
Thiol/Thione Structure
EGT altered molecular expression of TAMs under Pam2CSK4
+ OVA treatment. CD206, a marker of immunosuppressive
macrophages, and PD-L1, a representative molecule that induces
CTL exhaustion, were downregulated in the EGT + Pam2CSK4
+ OVA group (Figures 5A,B). CD115 (CSF-1R) expression was
lowest in the EGT + Pam2CSK4 + OVA group (Figures 5A,B).
CD115 gives TAMs growth stimulation and immunosuppressive
properties (32). Thus, combining EGT with TLR2-containing
cancer vaccine will relieve CTLs from dysfunction induced
by TAMs.

Induced nitric oxide synthase (iNOS), a marker of
inflammatory macrophages, was upregulated in the EGT +

Pam2CSK4 + OVA group (Figures 5A,B). Expression of iNOS
is a prognosis marker for long survival of cancer patients (33),
but some reports indicate that NO, the product of an iNOS
reaction, suppresses CTLs by nitration of T cell molecules
(13, 34). To investigate whether nitration occurs in T cells in
response to EGT and Pam2CSK4, we measured nitrotyrosine
levels of CTLs (34). CTL nitration was not enhanced in the EGT
+ Pam2CSK4 + OVA group (Supplementary Figure 4), which
suggests that increased iNOS expression was not harmful in T
cells in this model.

We further analyzed RNA expression levels of TAM
molecules, which impedes CTL function. EGT decreased
expression of the Fasl, Tnfsf10, and Arg1 genes under Pam2CSK4
stimulation (Figure 5C). FAS ligand and TRAIL expressed by
TAMs are involved in death of CTLs. Arginase-1 causes CTL
dysfunction by nutritious depletion (3, 4). Our results indicate
that EGT improves the tumor immune environment formed in
response to TLR2/6 ligand by modulating cellular signaling and
functions in TAM.
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FIGURE 1 | EGT augments tumor-growth retardation induced by cancer vaccine using TLR2/6 ligand. (A) Protocol for this study. (B) WT B6 mice were challenged

with LLC-OVA cells (Day 0). Daily i.p. administration of 500 µg EGT was started on day 9 and vaccination (s.c. injection of 15 nmol Pam2CSK4 and 100 µg OVA

protein) was performed on day 10 and 14. At day 18, tumors were harvested, and the weight was measured in addition to tumor volume. Data were pooled from two

independent experiments with similar results. n = 9–10 mice per group. (C) Tumor growth in sole treatment of EGT. Schedule of EGT administration is shown in (A)

(Continued)
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FIGURE 1 | Mice were challenged with LLC-OVA cells and i.p. treated with EGT alone or PBS control. At timed intervals, tumor growth was measured. n = 4 mice per

group. (D) Mice were challenged with LLC-OVA cells and s.c. treated with OVA, EGT + OVA, Pam2CSK4 or EGT + Pam2CSK4. PBS was used as a control. Tumor

growth was chased every other day. n = 4 mice per group. (E) Mice were challenged with EG7 tumor cells and treated with PBS, EGT, Pam2CSK4 + OVA, EGT +

Pam2CSK4 + OVA as in (A). Tumor growth were measured. n = 4–5 mice per group. (F) LLC-OVA cells were cultured with 1 or 10mM EGT for 24 h, and then treated

with 50 nM Pam2CSK4. Cell viability was assessed by WST-1 reagent 48 h after Pam2CSK4 treatment. n = 3–4. (G) Anti-CD8β antibody was i.p. injected into

LLC-OVA-bearing mice on day 9 and 13 and the treatment described in (A) was performed. n = 4–5 mice per group. *P < 0.05, **P < 0.01. n.s., not significant.

FIGURE 2 | EGT does not increase priming and tumor-infiltration of CTLs. LLC-OVA-implanted WT B6 mice were treated as per Figure 1A. At day 18, tumor, spleen

and draining lymph nodes (DLN: inguinal LN) were harvested. Then, population of OVA-tetramer positive cells (A) and total CD8+ CD3+ cells in tumor (B) were

counted by flowcytometry. n = 4–5 mice per group. *P < 0.05. n.s., not significant.

EGT Reverses TAM-Induced CTL
Inactivation Under TLR2/6 Stimulation
To ensure that EGT combined with TLR2/6 ligand eliminated
CTL suppression by TAMs, we constructed a co-culture assay
system of tumor-infiltrating F4/80+ macrophages and CD8+

splenocytes to test the reversal of CTL suppression by EGT
treatment and TLR2/6 ligand. The importance of the anti-
oxidative thiol-thione residue of EGT was also evaluated by
comparison to responses to L-hercynine (HER) which is a thiol-
thione-free form of EGT. Another anti-oxidant, N-acetyl-L-
cysteine, was also compared with EGT. The compound structures
are in Figure 6A.

F4/80+ cells were treated with EGT, HER, or NAC for 24 h
before co-culture. CD8+ splenocytes were added to wells and
stimulated with αCD3 Ab + αCD28 Ab. To determine if CTL
functions were suppressed by co-culture with TAMs, we detected
7AAD+ dead cells and CD44+ CD62L− effector/memory cells.

Co-culture of CD8+ splenocytes with intratumoral F4/80+

cells increased 7AAD+ dead CTLs and decreased CD44+

CD62L− effector/memory CTLs (Figure 6B). In alignment
with the in vivo experiments, EGT increased effector/memory
phenotypes of CTLs, accompanied by a decreased 7AAD+

fraction. This result occurred with or without TLR2/6
stimulation, which might be the response to mediators from
activated CTLs that stimulate macrophages. HER (with no SH
residue) did not improve the viability or activity of CTLs in
co-culture with TAMs (Figure 6B). Hence, the thiol-thione

of EGT is essential to overcome the immune suppression of
TAMs. Moreover, the anti-oxidant NAC failed to recover CTL
functionality with co-culture with TAMs. NAC also failed to
improve the therapeutic efficacy of vaccination by Pam2CSK4
+ OVA in vivo (Figure 6C). This result highlights mechanistic
differences between EGT and NAC on oxidation-reduction
(redox) signaling to control suppressive function of TAMs.

DISCUSSION

We demonstrated that EGT was an anti-oxidant that improved
cancer immunotherapy using TLR2/6 ligand in vivo (Figure 7).
EGT ameliorated the functionality of intratumor CTLs and
had little effect on DC potential or CTL activation in TLR2-
mediated priming.We showed that stromal macrophages around
CTLs in tumors were major targets for EGT. EGT combined
with TLR2 ligand decreased the number of TAMs and caused
iNOS upregulation and CD206 downregulation, indicating the
conversion of TAMs into an inflammatory phenotype. This
TAM polarization triggered microenvironmental alterations that
made intratumoral CTLs effective in concordance with previous
reports (33, 35, 36). As a result, EGT/adjuvant vaccine therapy
efficiently controls tumor growth in murine models.

CD115 (CSF-1R) and PD-L1 are involved in the
immunosuppressive function of TAMs (32, 37), and are
downregulated by a combination of TLR2 vaccine and EGT.
Ex vivo analysis showed that TAMs decreased the expression of
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FIGURE 3 | EGT improves CTL functionality in tumor in combination with TLR2/6 ligand. (A–C) LLC-OVA-implanted WT B6 mice were treated as per Figure 1A and

tumors were harvested at day 18. (A) Concentration of IFN-γ and TNF-α in tumor was determined by cytometric beads assay (CBA). Data were pooled from two

independent experiments resulted in similar profiles. n = 4–10 mice per group. (B) Total tumor cells were re-stimulated with 50 nM of SL8 peptide for 6 h. Brefeldin A

was supplied during last 5 h of culture. Then, intracellular expression levels of IFN-γ and TNF-α in CD8+ CD3+ cells were detected by flowcytometry. Representative

data are shown as FACS plot. n = 4–5 mice per group. (C) Cell surface expression of indicated proteins on CD8+ CD3+ cells were analyzed by flowcytometry. n =

4–5 mice per group. *P < 0.05, **P < 0.01. n.s., not significant.

FASL and TRAIL in response to EGT and TLR2 stimulation,
which are related to CTL apoptosis and nutritional depletion
(due to arginase-1) (3), and sustained the survival and activity
of CTLs. EGT improved the viability and effector/memory
activities of CTLs in co-culture assays with TAMs. Hence,
EGT reorganized the microenvironment by phenotypic
alteration of TAMs to switch from an immune-suppressive to an
immune-reactive environment.

While thiol/thione-compound EGT attenuates TAM
suppressive function, HER, a non-thiol/thione EGT, does not
rescue CTLs in co-culture assay with TAMs (Figure 6B). HER
had enough modulatory function on cytokine production as

same as EGT (Supplementary Figure 5). The results imply that
anti-oxidative activity was critical to TAM modulation by EGT
except for cytokine regulation.

NAC, another antioxidant, also failed to reverse CTL
dysfunction in co-culture assays. In vivo experiments
also demonstrated that NAC did not improve adjuvant
immunotherapy using TLR2 ligand. This result demonstrates
the presence of EGT-specific redox signal regulation. The
physiological difference between EGT and NAC may explain
EGT-specific redox control. The strength of anti-oxidants,
especially those containing thiol, is represented by the redox
potential of the thiol-disulfide couple. Generally, the standard
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FIGURE 4 | EGT cancels TAM proliferation induced by TLR2/6 ligand. (A,B) LLC-OVA-implanted WT B6 mice were treated with PBS, EGT, and/or Pam2CSK4 +

OVA, as per Figure 1A and tumors were harvested at day 18. In (B), mice were injected with Pam2CSK4 without OVA. Tumor-infiltrating cells were analyzed by flow

cytometry to count the number of CD11b+ Gr-1−/low F4/80+ cells. Representative data are shown as FACS plot. n = 4–5 mice per group. (C) Sorted

tumor-infiltrating F4/80+ cells were cultured with or without EGT for 24 h, and then, cells were stimulated with 50 nM of Pam2CSK4. WST-1 assay was performed 72 h

after Pam2CSK4 treatment. n = 3. *P < 0.05. n.s., not significant.

FIGURE 5 | EGT converts TAMs into less-suppressive phenotype under TLR2/6 stimulation. (A,B) LLC-OVA-implanted WT B6 mice were treated as shown in

Figure 1A and tumors were harvested at day 18. n = 4–5 mice per group. (A) Expression of indicated proteins of CD11b+ Gr-1−/low F4/80+ cells were analyzed by

flowcytometry. (B) Representative FACS plots of the data in Figure 6A. (B) Sorted tumor-infiltrating F4/80+ cells were treated with or without 10mM of EGT for 24 h,

and then, stimulated with 50 nM of Pam2CSK4. Total RNA was collected 4 h after Pam2CSK4 stimulation. n = 3. *P < 0.05, **P < 0.01. n.s., not significant.
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FIGURE 6 | EGT relieves TAM-induced decrease of CTL viability/activity depending upon thiol-thione residue. (A) The compound structure of HER, EGT or NAC. (B)

F4/80+ cells were cultured with/without 10mM of EGT, HER or NAC for 24 h. Then, CD8+ splenocytes were mixed in 1:1 ratio. Promptly, the cells were stimulated

with 0.1µg/mL of αCD3 Ab and 0.25µg/mL of αCD28 Ab. After 60 h co-culture and Ab stimulation, non-adherent cells were collected. The ratios of the 7AAD+ cell

and CD44+ CD62L− cell populations in CD8+ CD3+ T cells were determined using flow cytometry. Cells in all conditions were obtained and analyzed at the same

time. n = 3. (C) WT B6 mice were challenged with LLC-OVA cells (Day 0). Daily i.p. administration of 350 µg NAC (an equimolecular amount of 500 µg EGT) was

started on day 9 and vaccination (s.c. injection of 15 nmol Pam2CSK4 and 100 µg OVA protein) was performed on day 10 and 14. n = 4–5 mice per group. **P <

0.01,***P < 0.001. n.s., not significant.

redox potential of naturally occurring thiols is between −230
and −320mV. More negative values indicate more potent
anti-oxidative properties (17). Glutathione, an active metabolite
of NAC, has a redox potential of about −250mV (38). However,
the thiol-thione of EGT has a redox potential of −60mV (17). If
strong reduction of redox signaling by NAC is a disadvantage for
modulating the tumor environment, mild anti-oxidation by EGT
may achieve the unique responses to improve the environment.

EGT and NAC are different in the cell types they enter.
In vivo NAC treatment suppressed ROS production in both
TAMs and CD45− tumor cells, but EGT failed to decrease
ROS in CD45− tumor cells despite the scavenging action of
TAMs (Supplementary Figure 6). This response is helpful for
cancer treatment. Because the therapeutic effect of radiotherapy
and some chemotherapies depend on ROS production and
subsequent cell death (39), EGT might not disturb pre-existing

cancer therapy. The established safety of EGT (40–42) further
endorses the utility of EGT for cancer patients.

In contrast to the tumor-suppressive functions, TLR2 ligands
enhance tumor progression by modulating macrophage function
(12–15). Tumor-progressive responses are limiting factors of
cancer vaccines using TLR2 ligands. In TAM-rich tumor such
as LLC-OVA, the percentage of F4/80+ macrophages is higher
than in TAM-poor tumor as in EG7 (23). This may be a reason
why LLC-OVA tumor was less susceptible to Pam2CSK4 +

OVA than EG7 tumor (Figures 1B,E). TAM expansion occurs in
response to TLR2 ligand in tumor through subcutaneous local
injection (Figure 4A). Because Pam2CSK4 is a small molecule
(molecular weight: 1271.83), it is possibly delivered to whole
body via the circulation. EGT is also a small molecule and
delivered to macrophages in tumor (Supplementary Figure 6).
Thus, EGT modulates the function of TLR2 ligand in tumor
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FIGURE 7 | Summary of this study. (A) Pam2CSK4 and TAA induce DC maturation and CTL priming, which induces tumor cell death. (B) However, TLR2 stimulation

increases immunosuppressive TAM proliferation. (C) EGT cancels the proliferation and further renders TAM less immuno-suppressive in combination with TLR2/6

ligand. (D) The EGT function in tumor leads to improved functionality of intratumoral CTLs and enhances therapeutic efficacy of the vaccination.

macrophages, which verifies TLR2’s beneficial response for
cancer vaccine therapy.

Our data demonstrate that EGT targets tumormacrophages to
potentiate TLR2 ligand action against tumor progression. EGT
may enable TLR2 ligand to contribute to the development of
cancer immunotherapy.
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