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Natural killer (NK) cells play a dual role in the defense against viral pathogens by directly

lysing infected cells as well as by regulating anti-viral T cell immunity. Infection by human

cytomegalovirus (HCMV) promotes a persistent expansion of NKG2C+ adaptive NK cells

which have been shown to display enhanced antibody-dependent responses against

infected targets and associated to viral control in transplanted patients. Based on gene

expression data showing increased transcription of CIITA and several genes related to the

MHC class II pathway in adaptive NK cells, we explored their putative capacity for antigen

presentation to CD4+ T cells. Phenotypic analysis confirmed a preferential steady-state

expression of HLA-DR by circulating NKG2C+ adaptive NK cells in healthy individuals.

Expression of HLA-DR in NKG2C+ adaptive NK cells was variable and unrelated to the

expression of activation (i.e., CD69 and CD25) or differentiation (i.e., FcRγ chain, CD57)

markers, remaining stable over time at the individual level. Incubation of purified NK

cells with HCMV complexed with serum specific antibodies induced an up-regulation

of surface HLA-DR concomitant to CD16 loss whereas no changes in CD80/CD86

co-stimulatory ligands were detected. In addition, surface CX3CR1 decreased upon

antigen-loading while HLA-DR+ NK cells maintained a CCR7-, CXCR3low homing

profile. Remarkably, HCMV-loaded purified NK cells activated autologous CD4+ T

cells in an HLA-DR dependent manner. The fraction of T lymphocytes activated by

antigen-loaded NK cells was smaller than that stimulated by monocyte-derived dendritic

cells, corresponding to CD28-negative effector-memory CD4+ T cells with cytotoxic

potential. Antigen presentation by NK cells activated a polyfunctional CD4+ T cell

response characterized by degranulation (CD107a) and the secretion of Th1 cytokines

(IFNγ and TNFα). Overall, our data discloses the capacity of NKG2C+ adaptive NK cells

to process and present HCMV antigens to memory CD4+ cytotoxic T cells, directly

regulating their response to the viral infection.
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INTRODUCTION

HCMV is a β-herpesvirus that establishes a highly prevalent
and generally asymptomatic life-long persistent infection

in immunocompetent individuals, alternating subclinical
reactivations and latency periods (1). HCMV infection is the

leading infectious etiology of congenital sensorineural disabilities
and an important co-morbidity in immunocompromised
individuals (2–4). HCMV infection control involves the
participation of specific T lymphocytes, antibodies, and NK
cells, being an environmental factor significantly influencing
the configuration of the immune system at individual level
(5). Relatively high proportions of HCMV-specific CD8+ and
CD4+ T cells are found in peripheral blood of healthy HCMV+
individuals and tend to increase in the elderly, presumably as
a result of a continuous virus-host interaction (6–9). HCMV
seropositivity is associated to phenotypic and functional changes
in specific CD4+ T cells with the variable expansion of an
effector-memory population showing a Th1 cytokine profile and
the loss of costimulatory molecules (CD28, CD27) concomitant
to the acquisition of cytotoxic capacity (10–14). On the other
hand, HCMV induces in some individuals a stable adaptive
expansion of an NK cell subset, characterized by high surface
levels of the activating receptor CD94/NKG2C in the absence of
its inhibitory counterpart CD94/NKG2A (15). Differentiation
of HCMV-adaptive NK cells is a progressive process which
shapes their phenotypic and functional profile, involving the
epigenetic regulation of transcription factors and signaling
molecules. Adaptive NK cells preferentially express inhibitory
killer Ig-like receptor (KIR) specific for self-HLA-C along
with reduced NKp30, NKp46, and CD161 surface levels, and
include high proportions of LILRB1+, CD57+, and FcεRIγ-
cells (15–19). Functionally, NKG2C+ adaptive NK cells are
proficient effectors, showing enhanced cytokine secretion
(i.e., TNFα and IFNγ), cytotoxic potential (granzyme B) and
antibody-dependent anti-viral responses (20–22). Expansions
of NKG2C+ adaptive NK cells in kidney transplant recipients
have been associated to a lower incidence of post-transplant
HCMV viremia, indirectly suggesting that they may be involved
in controlling viral reactivation (23).

A relative enrichment for distinct MHC class II-related
transcripts, including the master transactivator CIITA, were
detected in adaptive NK cells (24, 25). Generally, HLA class
II molecules are constitutively expressed by professional APC
(e.g., dendritic and B cells), yet can be induced upon activation
in a variety of other cell types, including T and NK cells
(26). Co-expression of HLA-DR and activation markers (i.e.,
CD69, CD11c) in circulating NK cells was described in patients
with HIV-caused immunodeficiency (27), multiple sclerosis (28),
or systemic lupus erythematosus (29). In healthy individuals,
HLA-DR expression has been described in CD56bright NK cells
(30, 31), albeit relatively high levels of HLA-DR were also
observed in CD56dim NK cells from some individuals. Few
studies have evaluated HLA class II function on NK cells in the
context of superantigen-dependent T cell activation (32), mixed
lymphocyte reactions (33), or using synthetic peptides derived
from immunodominant antigens (34). Recent studies reported a

regulatory role for non-conventional HLA class II expression in
steady-state type 2 and 3 innate lymphoid cell subsets (35, 36).

In the present study we have characterized the expression
of HLA class II molecules by circulating adaptive NK cells
in healthy individuals and their function as non-conventional
antigen presenting cells (APC). We showed that NKG2C+
adaptive NK cells can present HCMV-derived antigens through
HLA-DR to specific CD4+ T cells, a process that is enhanced
by the presence of specific antibodies. Our results reveal a
novel mechanism potentially involved in the crosstalk between
adaptive NK cells and specific memory CD4+ T cells along
persistent HCMV infection.

MATERIALS AND METHODS

Subjects and Ethics Statement
PBMC and serum samples used in this study were obtained
from volunteer healthy adults. HCMV seropositive individuals
showing ≥20% NKG2C+NKG2A- NK cells were considered to
display adaptive NK cell expansions in contrast to seropositive
donors with <5% NKG2C+NKG2A- cells in their NK cell
repertoire, considered to lack HCMV-adaptive expansions.
Written informed consent was obtained from every donor,
and the study protocol was approved by the local ethics
committee (Clinical Research Ethics Committee, Parc de Salut
Mar n◦2013/5470/I).

Antibodies and Immunophenotyping by
Flow-Cytometry
FACS analysis was performed using mAbs specific for the
following molecules: HLA-DR-fluorescein isothiocyanate
(FITC), CD86-FITC, CD45RA-FITC, Perforin-FITC, CD69-
Phycoerythrin (PE), CD80-PE, IFNγ-PE, CD4-allophycocyanin
(APC), CD3-peridinin-chlorophyll protein (PerCP), CCR7-
PE-Cy7, CD16-PE-Cy7, CD8-V500, CD28-PE-CF594 (BD
Biosciences, San Diego, CA), CD56-APC, CD25-PE, CX3CR1-
PE-Cy7, CXCR3-eFluor 660 (eBioscience, San Diego, CA),
NKG2C-PE (clone 134591), NKG2C-Alexa Fluor 700 (clone
134591) and unlabeled-NKG2C (clone MAB1381; R&D Systems,
Minneapolis, MN), anti-FcεRI Ab, γ subunit-FITC (Merck,
Millipore), CD4-FITC, CD4-PE-Cy7, Granzyme B-Pacific
Blue (PB; Biolegend, San Diego, CA), and NKG2D-APC
(Miltenyi Biotec, Bergisch Gladbach, Germany). Anti–TNF-α
(infliximab; REMICADE) was directly labeled with CF-Blue
by Immunostep (Salamanca, Spain). Anti-NKp46 (clone
Bab281) and anti-NKp30 (AZ20) mAbs were kindly provided
by Dr. A. Moretta (University of Genova, Genova, Italy);
anti-CD57 (clone HNK-1), anti-LILRB1 (clone HP-F1), and
anti-CD161 (clone HP-3G10) were produced in our laboratory
and employed as hybridoma culture supernatants. Cells were
pre-treated with human aggregated IgG (10µg/ml) to block
Fc receptors and subsequently labeled with specific Abs. For
indirect immunostaining, samples were incubated with primary
Abs followed by PE-Cy7-conjugated or APC-Cy7-conjugated

F(ab
′

)2 polyclonal goat antimouse IgG (Biolegend). Samples
were acquired in LSRII or LSRFortessa flow cytometers (BD
Biosciences), and data analyzed with FlowJo software (Tree
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Star). For blocking experiments, the anti-HLA-DR D1.12, kindly
provided by Dr. R. Accolla (Università of Insubria, Varese) or
an isotype control were used at saturating concentration. Mean
Fluorescence Index for HLA-DR was calculated as previously
described (37) using the following formula: mean fluorescence
positive–mean fluorescence negative control/(2 × Standard
Deviation mean fluorescence negative control).

HCMV Stock Preparation
The MRC5 fetal human lung fibroblast cell line was obtained
from the American Type Culture Collection (Manassas,
VA) and grown in DMEM supplemented with 10% fetal
bovine serum (FBS), penicillin, and streptomycin. Purified
stocks of HCMV AD169 strain were prepared by infecting
MRC5 cells at 0.25 multiplicity of infection (MOI) and
harvesting supernatants when maximum cytopathic effect was
reached. Cells and debris were removed from virus containing
supernatant by centrifugation 10min at 5000 x g and stored
at −80◦C. Viral stocks were titrated on MRC5 cells analyzed
by detection of IE-1/IE-2 viral antigens with specific mAb
(clone mab810; Millipore) by immunofluorescence as previously
described (38).

Primary NK Cell and CD4+ T
Cell Purification
Peripheral blood mononuclear cells (PBMC) were obtained from
heparinized blood samples by separation on Ficoll-Hypaque
gradient (Lymphoprep; Axis-Shield PoC AS, Oslo, Norway).
Serum samples were collected, heat-inactivated and aliquoted
before storage at −20◦C. Standard clinical diagnostic tests
were used to determine HCMV specific IgG titer (Roche
Diagnostics, Basel, Switzerland). PBMC were kept overnight
with complete RPMI 1640 medium supplemented with 200
U/ml of recombinant human interleukin-2 (rhIL-2; Proleukin,
Chiron, Emeryville, CA prior to proceeding with NK cell, or
CD4+ T cell purification. NK cells were purified by negative
selection using NK Cell Isolation kit (Miltenyi) according to the
manufacturer instructions. Of note, some of the commercially
available kits for NK cell isolation through negative selection
include anti-HLA-DR antibodies resulting in the depletion of
HLA-DR+ NK cells from the isolated pool, as also observed by
Kovalenko et al. (39).

Autologous CD4+ T cells purified by negative selection using
the CD4+ T cell Isolation Kit (Miltenyi) or PBMC (5:2 E:T ratio)
were used as effector cells in functional assays.

Monocyte-derived dendritic cells (moDCs) were generated
as previously described (40); briefly, monocytes were positively
selected from fresh PBMCs using anti-CD14 microbeads
(StemCell Technologies, Grenoble, France), and cultured
for 6 days in RPMI 1650 medium supplemented with
10% FBS, interleukin-4 (IL-4; 25 ng/ml, R&D Systems), and
granulocyte-macrophage colony-stimulating factor (GM-CSF;
50 ng/ml, PeproTech).

CD4+ T Cell and NK Cell Expansions
HCMV-specific CD4+ T cells were expanded by incubating
PBMC with HCMV virion preparations (2 × 105 PFU/3 × 106

cells) in 24-well plates. Cell cultures were maintained at 37◦C
in a 5% CO2 humid atmosphere for 10–12 days. At day 3, cell
cultures were supplemented with 25 U/mL of rhIL2 and half
of the supernatant was replaced with fresh rhIL2-containing
medium every 3 days; proliferating cell cultures were eventually
split when required.

NK cells were expanded by incubating PBMC with irradiated
HLA-E+ 721.221-AEH lymphoblastoid cell line (41) in 24-well
plates (3:1 ratio) in complete RPMI 1640 medium. Cell cultures
were maintained at 37◦C in a 5% CO2 humid atmosphere for 10–
12 days; every 3 days half of the supernatant was replaced with
fresh medium; when high cell density was attained, cell cultures
were split. Expanded NK cells were further purified using the
corresponding enrichment kit.

Antigen-Presentation Assays
NK cells or moDCs were cultured overnight with titrated
HCMV preparations at MOI 2.5 in the presence or absence of
10% sera from HCMV+ donors. Subsequently, antigen-loaded
or control APCs were incubated with autologous CD4+ T
cells or PBMC (5:2 E:T ratio) for 18 h at 37◦C in the presence
of Brefeldin A (10µg/ml; Sigma-Aldrich). Next, cells were
stained with antibodies recognizing surface markers, fixed,
permeabilized (fixation/permeabilization kit; eBioscience),
stained with anti-TNFα and anti-IFNγ, and analyzed by flow
cytometry. In some experiments, CD4+ T cell degranulation
was monitored by measuring CD107a mobilization with the
additional presence of monensin (5µg/ml; Sigma-Aldrich)
and CD107a-FITC (BD Biosciences Pharmingen, San Diego,
CA). Boolean gating function was used to identify all possible
combinations of markers stained for on CD3+ CD4+ T cell
populations (Flowjo software). In antigen presentation assays,
122,400 ± 31,907 total CD3+ CD4+ T cells and 1,029 ±

293 of activated CD3+ CD4+ T cells were acquired (mean
± SEM). In some experiments, chloroquine (50µM) was
added along NK cell incubation with HCMV preparations. NK
cells were incubated with pp65 and IE1 overlapping peptide
mixtures as control in some antigen presentation experiments
(PepTivator CMV pp65 human, PepTivator CMV IE-1
human, Miltenyi).

Statistical Analysis
Statistical analysis was performed by the Mann Whitney U
test using GraphPad Prism 5 software. Results were considered
significant at the two-sided P level of 0.05.

RESULTS

HLA-DR Is Detected in Circulating
NKG2C+ Adaptive NK Cells Uncoupled
From Activation and Differentiation
Markers
The analysis of published transcriptional programs of adaptive
NK cells, defined as CD56dim NKG2C+ (CD57+/FcεRIγ-) (24,
25), identified transcripts for CIITA, HLA-DQ, HLA-DP, HLA-
DMA, and HLA-DRA to be enriched in this NK cell subset
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(Supplementary Figure 1). In order to ascertain the predicted
expression of MHC class II molecules on adaptive NK cells,
we analyzed by flow cytometry HLA-DR in circulating NK
cells from healthy individuals, stratified by the presence or
absence of NKG2C+ adaptive NK cell expansions, according
to the criteria described in Materials and Methods. As shown
in Figure 1, HLA-DR was expressed in approximately ∼50%
of circulating CD56bright NK cells in all analyzed donors. In
contrast, the proportions of HLA-DR+ CD56dim NK cells
varied in different individuals and were generally higher in
HCMV+ donors coinciding with the expansion of NKG2C+
adaptive NK cells, as compared to individuals lacking this
phenotype regardless of their HCMV serostatus (Figures 1A–B
and Supplementary Figure 2). Of note, proportions of HLA-
DR+ NKG2C+ NK cells remained stable over time (Figure 1C)
and were unrelated to the expression of activation markers (i.e.,
CD69 and CD25) (Figure 1D).

HCMV-adaptive NKG2C+ NK cells have been proposed
to undergo a sequential differentiation associated to the
down-regulation of FcεRIγ, NKp30, NKp46, and CD161
expression and the acquisition of CD57 and LILRB1
(16, 20, 42). Since proportions of HLA-DR+ NKG2C+
adaptive NK cells varied between different individuals, we
analyzed whether expression of HLA-DR coincided with the
acquisition of a specific differentiation molecular signature.
Expression of KIR, CD57, LILRB1, NKp30, NKp46, CD161,
and FcεRIγ and HLA-DR was analyzed in NK cells from
five HCMV+ individuals displaying NKG2C+ adaptive NK
cell expansions. The distribution of all assessed markers
was comparable in HLA-DR+ and HLA-DR– NKG2C+
adaptive NK cells (Figure 2A). NKG2C-negative adaptive
NK cell expansions have also been previously characterized
for their oligoclonal KIR expression profile (17) and/or the
loss of signaling adaptors such as FcεRIγ chain (20, 24, 43).
Detailed analysis of HLA-DR expression in two individuals
concomitantly displaying NKG2C+ and NKG2C– FcεRIγ-
NK cell subpopulations confirmed the preferential expression
of HLA-DR in adaptive NKG2C+ NK cells independently
of FcεRIγ levels in these cases (Figure 2B). Altogether,
these results indicate that HLA-DR expression in NKG2C+
adaptive NK cells occurs dissociated from other differentiation/
adaptive features.

Sensing of HCMV-antibody Immune
Complexes Upregulates HLA-DR in
NKG2C+ Adaptive NK Cells in the Absence
of CD80/CD86 Expression
We have previously shown that NK cells can directly sense
the presence of HCMV virions and HCMV-antibody immune
complexes (IC) (21, 44).We next addressed whether co-culture of
primary NK cells with these stimuli could lead to HCMV antigen
presentation by HLA class II molecules. To address this question
purified NK cells were cultured overnight with HCMV (AD169
strain at MOI 2.5), including or not serum from seropositive
donors. For comparison, autologous moDC were cultured in
parallel in the same conditions. Incubation with HCMV did

not result in NK cell or moDC infection, assessed by IE-1/IE-2
expression (not shown).

Up-regulation of surface HLA-DR, CD80, and CD86 in
moDC was detectable following overnight co-culture with
HCMV preparations, yet no significant changes were noticed
in NK cells. In contrast, stimulation with HCMV in the
presence of HCMV+ serum promoted an up-regulation of
surface HLA-DR in both NK and moDC, enhancing CD80/86
expression in the latter (Figures 3A,B and not shown).
Among CD56dim NK cells, enhancement of surface HLA-DR
expression was more evident in the NKG2C+ adaptive subset in
concordance with their higher baseline expression (Figure 3C).
Of note, a reduction of surface CD16 (Figure 3D) and the
production of TNFα (not shown) (21) was detected upon
overnight culture indicating NK cell sensing of HCMV-antibody
immune complexes. Overnight incubation with HCMV immune
complexes did not alter CCR7 expression, though surface CXCR3
and CX3CR1 was reduced in CD56dim NK cells after antigen
loading (Figures 3E–H).

HCMV Antigen-Loaded NK Cells Activate
HCMV-Specific CD4+ T Cells in
an HLA-DR-Dependent Manner
Purified primary NK cells from individuals with NKG2C+
adaptive NK cell expansions and moDCs were pre-incubated
overnight with HCMV in the presence or absence of HCMV+
sera and subsequently used as APCs in co-cultures with
autologous primary CD4+ T lymphocytes. CD4+ T cell
activation was monitored through the production of intracellular
TNFα and IFNγ at 20 h by flow cytometry (Figure 4). Co-
culture with autologous CD4+ T lymphocytes did not promote
cytokine production by NK cells (not shown). However,
NK cells pre-incubated with HCMV viral particles triggered
the activation of a small fraction of CD4+ T lymphocytes,
as detected by the simultaneous production of TNFα and
IFNγ; higher proportions of CD4+ T cells were activated by
NK cells antigen-loaded in the presence of HCMV+ donor
serum (Figures 4A,B). The average proportion of CD4+ T
cells activated by virus-loaded moDC was 10-fold higher
than that induced by antigen-presenting NK cells, and was
not enhanced by HCMV+ sera (Figures 4A,B). Of note, in
functional assays including autologous PBMC as effectors, only
CD4+ but not CD8+ T cell activation could be detected
upon co-culture with HCMV-loaded NK cells (Figure 4C). In
fact, NK cell-induced CD4+ T cell activation was partially
blocked by an α-HLA-DR antibody (Figure 4D) and could
not be detected in experiments with cells from HCMV-
seronegative donors, emphasizing the importance of HLA-
DR in antigen presentation and supporting the requirement
of an expanded pool of antigen-experienced CD4+ T cells
(Figure 4E). The addition of chloroquine, an inhibitor of
endosomal and lysosomal acidification, along NK cell-loading
with HCMV, partially prevented CD4+T cell activation. In
contrast, presentation of peptide mixtures spanning pp65
and IE-1 immunodominant HCMV antigens to CD4+T cells
was unaffected by the drug (Figure 4F). Of note, analysis
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FIGURE 1 | Surface expression of HLA-DR is stably detected in variable proportions of circulating NKG2C+ adaptive NK cells in the absence of activation markers.

NKG2C and HLA-DR expression was analyzed by flow cytometry in circulating NK cells from seronegative (n = 5; HCMV–) and seropositive (HCMV+) individuals with

(n = 8; NKG2Cbright) or without (n = 7; NKG2Cdim) NKG2C+ adaptive NK cells. (A) Representative dot plots of NKG2C and HLA-DR expression in CD56dim NK cells

from HCMV- and HCMV+ individuals. Inset numbers indicate proportions of HLA-DR+ in CD56bright and CD56dim gates. (B) Percentage of NKG2C+ and HLA-DR+

cells in CD56dim and CD56bright NK cell subsets in individuals categorized according to their HCMV serology and the presence (NKG2Cbright) or absence

(NKG2Cdim) of NKG2C+ adaptive NK cells. (C) Dot plots showing NKG2C and HLA-DR phenotype along time in two out of five HCMV+ individuals analyzed. Inset

numbers indicate frequencies of HLA-DR+ cells in NKG2C+ and NKG2C- NK cells. (D) HLA-DR, CD25, and CD69 expression on circulating CD56dim NK cells from

HCMV+ individuals with NKG2C+ adaptive NK cells (mean ± SEM, n = 6) (*p < 0.05, **p < 0.01, ***p < 0.001).

of the HLA class II genotype evidenced that several of the
individuals showing expansions of HLA-DR+ NKG2C+ NK
cells expressed HLA class II alleles previously shown to
present HCMV immunodominant peptides (i.e., HLA-DR7)
(Supplementary Table I) (45).

Overall, these data indicate that circulating NK cells can
process HCMV particles and present peptides by MHC class II to
antigen-primed CD4+ T cells in a process that may be enhanced
by stimulation with HCMV-antibody complexes.

HCMV-Specific CD4+ T Cells Activated by
Antigen-Loaded NK Cells Display an
Effector Memory Phenotype, Lack CD28
Expression and Have Cytotoxic Potential
We analyzed the differentiation profile of CD4+ T cells
activated in response to antigen presenting NK cells by
monitoring the expression of CCR7, CD45RA, and of CD28

as previously defined (14, 46). CCR7 and CD45RA expression
define four T cell populations: naïve (CD45RA+ CCR7+),
central memory (CD45RA– CCR7+), effector memory
(CD45RA– CCR7–) and terminally differentiated effector
memory (TEMRA) (CD45RA+, CCR7–) T cells, whereas CD28
negative circulating CD4+ T cells have been identified in
individuals with chronic/persistent viral infections (e.g., HCMV)
(11, 14). The majority of CD4+ T cells activated in response
to HCMV-loaded NK cells displayed an effector memory
(EM) or TEMRA phenotype, lacking CD28 (Figures 5A,B).
In contrast, both CD28+ and CD28– effector memory CD4+
T cells were activated upon co-culture with HCMV-loaded
moDC (Figures 5A,B). Thus, activation of CD28– memory
CD4+ T cells by antigen presenting NK cells likely reflects their
capacity for responding to lower HLA class II-peptide levels in
the absence of CD28 co-stimulatory signaling. In agreement
with previous reports (11, 14), CD28– CD4+ T cells in HCMV
seropositive donors were perforin+ and granzyme B+, with
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FIGURE 2 | HLA-DR expression in NKG2C+ adaptive NK cells is uncoupled from phenotypic features associated to their differentiation profile. The expression of

FcεRIγ, NKp30 and NKp46 NCRs, CD161, CD57, and ILT2 (LILRB1) was analyzed in NKG2C+ HLA-DR+ and NKG2C+ HLA-DR– circulating NK cells from

seropositive individuals with NKG2C+ adaptive NK cell expansions. (A) Percentage of CD57, ILT2, NKp30, NKp46, CD161 positive, and FcεRIγ negative cells in

CD56dim NKG2C+ NK cells according to HLA-DR co-expression (mean ± SEM, n = 5). (B) Expression of HLA-DR and FcεRIγ in NKG2C+ and NKG2C– adaptive

NK cells from two representative donors out of five studied. Inset numbers in lower panels indicate the proportions of HLA-DR in FcεRIγ + and FcεRIγ-NK cells.

variable co-expression of the activating NK cell receptor NKG2D
(Figure 5C) (47).

An assay employing autologous expanded HCMV-specific
CD4+ T cells and HLA-DR+ NKG2C+ NK cells was set up
to enhance the sensitivity of the experimental system. HCMV-
specific CD4+ T cells were enriched by culturing PBMC from
HCMV seropositive individuals with HCMV viral particles in
the presence of IL-2 as previously described (47). Under these
conditions, expanded CD4+ T cells presented an effector-
memory phenotype, high levels of perforin and granzyme B
and were mostly CD28 positive yet with variable expression of
NKG2D (Supplementary Figure 3). NKG2C+ HLA-DR+ NK
cells were expanded in parallel by co-culturing PBMC with the
.221-AEH cell line. After 9 days, the majority of expanded NK
cells were CD16+, NKG2C+, HLA-DR+, and expressed CD86
(Supplementary Figure 4). NK cell lines were pre-loaded with
HCMV particles in the presence or absence of HCMV+ serum
and co-cultured with expanded CD4+ T cells. As compared
to results with primary lymphocytes, average proportions of
CD4+ T cells activated by antigen-loaded NK cells in the

absence or presence of HCMV+ serum was 12 to 52-fold higher
respectively, reaching up to 10% of total CD4+ T lymphocytes
(Figures 6A,B). NK cell-dependent CD4+ T cell activation could
be blocked by an anti-HLA-DR antibody (Figure 6C) and, in
accordance with the primary setting, no cytokine production was
detected in NK cells, ruling out their response against autologous
CD4+ T cells (not shown).

Antigen-Presentation by NK Cells Triggers
a Polyfunctional CD4+ T Cell Response
We next assessed whether CD4+ T cell activation by HCMV-
loaded NK cells was qualitatively comparable to that induced
by professional APCs. For that purpose, CD4+ T cell
degranulation as well as IFNγ and TNFα production were
simultaneously analyzed by flow cytometry in co-culture
experiments with autologous NK cells or moDC, previously
incubated with HCMV-antibody immune complexes. As shown
in Figure 7, ∼65% of primary CD4+ T cells activated
by antigen presenting NK cells secreted TNFα and IFNγ

whereas concomitant degranulation was detected in ∼35%
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FIGURE 3 | NKG2Cbright NK cells up-regulate HLA-DR upon HCMV antigen uptake in the presence of specific antibodies. NK cells and moDC were cultured 20 h

with HCMV viral particles in the presence or absence of serum from HCMV+ donors. Expression of HLA-DR, CD86, CD80, CD16, CCR7, CXCR3, and CX3CR1 was

analyzed by flow cytometry. (A) Dot plots of HLA-DR and NKG2C expression in NK cells in the indicated conditions. Inset numbers indicate the frequency of

HLA-DR+ cells in NKG2C+ and NKG2C- NK cells. Data from a representative donor out of four studied. (B) Bar graph showing the average expression of HLA-DR in

NKG2C+ and NKG2C– NK cells in the different conditions (mean ± SEM, n = 4) (*p < 0.05, **p < 0.01). (C) Histograms displaying HLA-DR, CD86, and CD80

expression in moDC in the indicated conditions. (D) Dot plot showing CD16 and NKG2C expression in NK cells incubated or not with HCMV virions and specific

serum. Inset numbers indicate percentages of CD16+ cells in NKG2C+ and NKG2C- NK cells. (E–H) Dot plot showing CCR7, CXCR3, and CX3CR1 in HLA-DR+

and HLA-DR- NK cells incubated or not with HCMV virions and specific serum. Data from one donor out of three analyzed are shown. Inset numbers indicate

percentages of cells positive for each chemokine receptor in NKG2C+ and NKG2C- NK cells.

of them. Antigen presentation by moDC triggered a more
heterogeneous CD4+ T cell response including ∼15% of cells
degranulating in the absence of cytokine production, ∼60%
of cells producing pro-inflammatory cytokines and ∼40% of
cells showing a polyfunctional response with concomitant
degranulation and cytokine production. In co-cultures using
expanded NK and CD4+ T cells up to ∼75% of the
responding CD4+T cells degranulated and produced TNFα and
IFNγ (Figures 7B–E).

DISCUSSION

HCMV promotes in some individuals an adaptive
reconfiguration of the NK cell compartment characterized
by the persistent expansion of a subset of NKG2C+ NK cells
(15). These adaptive NK cells display a particular phenotypic and
functional profile, efficiently mediating antibody-dependent NK
cell responses against virus-infected cells (20–22). Pre-transplant
expansions of NKG2C+ adaptive NK cells have been associated
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FIGURE 4 | CD4+ T cell activation in response to HCMV antigen presentation by NK or moDC. NK cells or moDCs previously loaded with HCMV-antibody immune

complexes were cultured overnight with autologous CD4+ T cells. TNFα and IFNγ production was analyzed by flow cytometry. (A) TNFα and IFNγ production by

CD4+ T cells in the indicated conditions. Data from a representative donor out of five tested. (B) Mean frequency of IFNγ+ and TNFα+ CD4+ T cells upon activation

with different APCs (mean ± SEM, n = 5) (*p < 0.05, **p < 0.01). (C–E) Autologous PBMC were used as effectors in co-culture experiments with NK cells

(Continued)
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FIGURE 4 | pre-incubated with HCMV-antibody immune complexes. CD4+ and CD8+ T cell activation was analyzed by flow cytometry. An agonist anti-CD3

antibody was used as a positive control. (C) Dot plots display intracellular TNFα and IFNγ in CD4+ and CD8+ T cells in the indicated conditions. Data from a

representative donor out of four analyzed. (D) Frequency of TNFα+ and IFNγ+ CD4+ T cells in response to HCMV-loaded NK cells in the presence of blocking

antibodies specific for HLA-DR and HLA class I molecules (mean ± SEM, n = 3). (E) TNFα and IFNγ intracellular staining of CD4+ T cells in co-cultures including

antigen-presenting NK cells and autologous PBMC from HCMV seropositive and seronegative individuals. (F) Frequency of TNFα+ and IFNγ+ CD4+ T cells in

response to HCMV-loaded NK cells. NK cells were loaded in the presence or absence of chloroquine (50µM). Dot plots of one out of two donors tested.

FIGURE 5 | Differentiation and functional profile of HCMV-specific CD4+ T cells activated by antigen-presenting NK cells. NK cells or moDC previously loaded with

HCMV in the presence of specific antibodies were cultured with autologous CD4+ T cells and the production of TNFα and IFNγ in combination with CD45RA, CCR7,

and CD28 differentiation markers was analyzed by multiparametric flow cytometry. (A) Dot plots showing CD45RA, CCR7, and CD28 expression in total and activated

(IFNγ+ TNFα+) CD4+ T cells from a representative donor out of four in the indicated conditions. (B) Pie chart showing the distribution of CD4+ T cell subpopulations

based on CCR7 and CD45RA at baseline and of those T cells activated by antigen-presenting NK cells and DC (n = 4). (C) Perforin, granzyme B, and NKG2D

expression in CD28+ and CD28– CD4+ T cells from two representative HCMV+ individuals out of three analyzed.

to a reduced incidence of HCMV viremia in kidney transplant
recipients (23). In the current study, we have analyzed a novel
functional feature of NKG2C+ adaptive NK cells related to their
expression of HLA class II molecules. Our data demonstrates the
preferential and persistent expression of HLA-DR in circulating
NKG2C+ adaptive NK cells among the CD56dim subset, as well
as their capacity for processing and presenting HCMV antigens
to effector memory CD4+ T cells, triggering a polyfunctional

Th1/cytotoxic response. HCMV immune complexes enhanced
antigen presentation. Whether this process may regulate in
vivo the development of HCMV-specific memory CD4+ T
cell responses, contributing to the control of viral reactivation,
deserves attention.

HLA class II expression on a variable fraction of peripheral
blood NK cells, mainly coinciding with CD56bright NK cells,
had been previously described in healthy individuals (30, 31).
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FIGURE 6 | Antigen presentation by expanded HLA-DR+ NKG2C+ NK cells to HCMV-specific autologous CD4+ T cell lines. Expanded NKG2C+ NK cells

pre-loaded with HCMV in the presence of immune serum were cultured overnight with HCMV-expanded CD4+ T cells. Intracellular TNFα and IFNγ was analyzed by

flow cytometry. (A) TNFα and IFNγ in CD4+ T cells cultured in the indicated conditions. Data from a representative donor. (B) Comparison of the frequency of TNFα+

IFNγ+ CD4+ T cells in co-culture experiments using primary or expanded antigen presenting and effector cells (mean ± SEM, n=5) (*p < 0.05, **p < 0.01). (C)

Frequency of TNFα+ IFNγ+ HCMV-expanded CD4+ T cells upon co-culture with antigen-loaded NK cells in the presence of an α-HLA-DR (clone D1.12) or an

isotype control (mean ± SEM, n = 5).

The analysis of transcriptional programs in adaptive NKG2C+
NK cells identified MHC class II antigen presentation as an
enriched functional pathway in this NK cell subset (24, 25)
(Supplementary Figure 1). Our phenotypic studies including
selected healthy blood donors with known NK cell receptor
repertoires confirmed that HLA-DR+ CD56dim NK cells were
more frequently detected in HCMV+ individuals coinciding,
though not exclusively, with a variable fraction of NKG2C+
adaptive NK cells. Whether HLA-DR expression on NKG2C+
adaptive NK cells reflected a reversible activation state or was
associated with their differentiation was addressed. The fact
that surface HLA-DR was uncoupled from the expression of
activation markers and co-stimulatory molecules, remaining
stable along the follow-up, rather supported its association with
a differentiation status of adaptive NK cells. However, HLA-
DR expression appeared unrelated to the levels of FcεRIγ and
other adaptive NK cell differentiation markers (i.e., CD57 and
LILRB1). It is conceivable that epigenetic remodeling associated
with adaptive NK cell differentiation (24, 48) might facilitate
transcription of CIITA (49) and other HLA class II related
genes in a fraction of adaptive NK cells contributing to their
functional specialization.

Previous studies addressing HLA class II function on NK
cells have tested soluble peptides (33, 34) and Staphylococcal
Enterotoxin B crosslinking (32) for triggering HLA-class
II-dependent CD4+ T cell activation, hence bypassing
the requirement for whole antigen uptake, processing and
presentation by the NK cell. Expanded NK cell clones were
shown to process and present HLA class II-dependent peptides
derived from soluble proteins though failed to present whole
Mycobacterium leprae (50). The herein presented results showed
that NK cells can, indeed, perform these processes upon direct or
antibody-aided interaction with viral preparations. It is plausible

that our viral preparations contained non-infectious particles
or viral antigens facilitating the uptake by a non-professional
antigen presenting cell such as NK cells, nonetheless, their
decreased antigen presenting function in experiments including
chloroquine, indirectly supported their capability for processing
and presenting exogenously-added HCMV-derived antigens
through HLA class II. Direct viral antigen uptake could be
mediated by TLR2 binding with gB and gH HCMV envelope
proteins (51), an interaction previously involved in type I
IFN production leading to NK cell priming (44). Our data
indicate that incubation with HCMV–antibody immune
complexes promoted a partial NK cell activation evidenced by
low degranulation and the production of TNFα in the absence
of IFNγ (21) as well as a partial down-regulation of CD16,
concomitant to increased surface HLA-DR levels (Figure 3). The
formation of viral antigen-antibody immune complexes could
facilitate their uptake prior to CD16 shedding resulting from
NK cell activation (52, 53). On the other hand, the increase in
HLA-DR surface levels on NK cells in these conditions might
also enhance antigen presentation to CD4+T cells. The capacity
of FcγR for enhancing antigen uptake has been extensively
described in APCs such as DCs and macrophages (54, 55). In
professional APCs antigen uptake through immune complexes
enhances antigen presentation and cross-presentation through
HLA class II and I respectively, allowing the simultaneous
activation of specific CD4+ and CD8+ T cells (56). Our data
showed that presence of HCMV-antibody immune complexes
enhanced HLA class II-dependent antigen presentation
by NK cells though did not appear to detectably enable
simultaneous HLA class I-mediated cross-presentation of
viral-derived antigens activating CD8+ T cells. Observations in
functional assays supported that the absence of co-stimulatory
molecules together with their relatively low levels of surface
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FIGURE 7 | Primary and expanded HCMV-specific CD4+ T cells degranulate in response to antigen loaded NK and moDC. TNFα and IFNγ production concomitant

to CD107a mobilization was monitored by flow cytometry in co-culture experiments combining HCMV-loaded primary NK cells or moDC with primary autologous

CD4+ T cells (A,C,E) or, alternatively, antigen loaded expanded NK cells and HCMV-expanded CD4+ T cells (B,D,E). (A,B) Dot plots displaying the proportions of

IFNγ+ CD107a+ CD4+ T cells in the primary (A) and expanded (B) experimental systems. Data from a representative experiment. (C,D) Proportions of TNFα+,

IFNγ+, and CD107+ CD4+ T cells in the different experimental systems assayed (mean+SEM; n = 4). (E) Pie charts showing the distribution of CD4+ T cells that

produce cytokines and degranulate against HCMV-loaded APC in the indicated experimental systems (mean; n = 4).

HLA-DR in steady state resulted in an antigen presenting
function of adaptive NK cells, yet less fitted in comparison to
professional APCs.

The fraction of HCMV-specific CD4+ T cells activated
by NK cells was confined into the atypical CD28- effector-
memory pool with cytotoxic potential, previously described in
association with HCMV infection (11, 12, 57). HCMV-loaded
moDCs activated both CD28- and CD28+ effector memory
CD4+ T cells likely as a result from presenting a broader virus-
derived peptide repertoire in the context of higher HLA class
II surface expression and CD80/CD86 co-stimulatory ligands. It
is likely that the expression of specific HLA class II molecules

capable of presenting immunodominant HCMV antigens such
as HLA-DR7 or HLA-DP10 (11, 45, 58) may also influence
on the antigen presenting capacity of NK cells, as previously
described for other non-professional APCs such as fibroblasts
(59). Actually, gB-specific CD4+ T cell responses were found
in 95% of healthy donors ranging from 0.002 to 2.8% of the
CD4+T cell pool and did not require de novo protein synthesis
(59). Studies analyzing the peptide repertoires associated to HLA
class II in NK as compared to DC would shed light on these
issues. Antigen presentation byNK cells induced a polyfunctional
CD4+ T cell activation, qualitatively resembling that detected
when using moDC as APCs, characterized by the production of

Frontiers in Immunology | www.frontiersin.org 11 April 2019 | Volume 10 | Article 687

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Costa-García et al. Antigen Presenting HLA-DR+ NK Cells

Th1 cytokines and the secretion of their cytotoxic granules, in
a fraction of activated cells. Since we only monitored IFNγ and
TNFα production, main anti-viral cytokines dominating HCMV-
specific CD4+ T cell responses, we cannot exclude the capacity
of NK cells for also activating the minority of IL-4, IL-17, or IL-
10-producing HCMV-specific CD4+ T cells reported in some
individuals (11, 12, 60).

Regarding the consequences of the cognate interaction
between autologous cytotoxic CD4+ T lymphocytes and
antigen-presenting NK cells, the latter did not degranulate
in co-culture experiments ruling out their activation. On the
other hand, whether cytotoxic CD4+ T cells may specifically
kill antigen-loaded HLA-DR+ NK cells is conceivable yet
the possibility that adaptive NK cells may be resistant to
the CD4+ T cell cytolytic machinery is not ruled out, as
reported for the interaction between memory CD8+T cells
and DC (61).

An additional open question is where antigen presentation
by NK cells to specific effector memory CD4+ T cells may
take place and to what extent this mechanism could contribute
to HCMV infection control. It is tempting to speculate that
antigen presentation by NKG2C+ adaptive NK cells may take
place at the site of viral reactivation since antigen availability and
the chemokine receptor profile expressed by adaptive NK and
effector memory CD4+ T cells (CCR7-, CXCR3low, CX3CR1+)
might preferentially direct them to non-lymphoid/inflamed
tissues. Even though performing less efficiently than professional
APCs, NK cell-mediated HLA class-II dependent antigen
presentation could promote CD4+ T cell responses to HCMV,
counteracting its ability to infect professional APC (i.e., dendritic
cells or macrophages) (62, 63).

In summary, we have described a novel facet of HCMV-
induced NKG2C+ adaptive NK cells residing in their capacity

to present antigens to HCMV-specific CD4+ T cells in an HLA-
DR-dependent manner, triggering a polyfunctional activation of
the cytotoxic effector memory T cell pool.
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