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Myeloid-derived suppressor cells (MDSCs) contribute to the induction of an immune

suppressive/anergic, tumor permissive environment. MDSCs act as immunosuppression

orchestrators also by interacting with several components of both innate and adaptive

immunity. Natural killer (NK) cells are innate lymphoid cells functioning as primary

effector of immunity, against tumors and virus-infected cells. Apart from the previously

described anergy and hypo-functionality of NK cells in different tumors, NK cells in cancer

patients show pro-angiogenic phenotype and functions, similar to decidual NK cells. We

termed the pro-angiogenic NK cells in the tumor microenvironment “tumor infiltrating

NK” (TINKs), and peripheral blood NK cells in cancer patients “tumor associated NK”

(TANKs). The contribution of MDSCs in regulating NK cell functions in tumor-bearing

host, still represent a poorly explored topic, and even less is known on NK cell regulation

of MDSCs. Here, we review whether the crosstalk between MDSCs and NK cells

can impact on tumor onset, angiogenesis and progression, focusing on key cellular

and molecular interactions. We also propose that the similarity of the properties of

tumor associated/tumor infiltrating NK and MDSC with those of decidual NK and

decidual MDSCs during pregnancy could hint to a possible onco-fetal origin of these

pro-angiogenic leukocytes.

Keywords: myeloid derived suppressor cell (MDSC), natural killer cells (NK cells), angiogenesis, cytokines, tumor

microenvironment, decidua

INTRODUCTION

The tumormicroenvironment (TME) shapes the fate of tumor onset and progression, by regulating
cell growth, invasiveness, immune escape, dissemination and clinical outcome (1, 2). It is now
clear that the contribution of tissue-resident immune cells in supporting or limiting tumor
growth, metastasis and resistance to therapies has a master role (2, 3). The immune cell effector’s
capabilities of reaching, recognizing, and eliminating the tumor targets is conditioned by other
microenvironment cells and determinants, turning the immune system from early strategic line
of defense, into a pro-tumor weapon (1–3). TME employs multiple mechanisms to switch off the
anti-tumor functions of immune cells: it can destabilize and polarize the innate cell compartment
(macrophages, neutrophils and dendritic cells as well as innate lymphoid cells), the adaptive
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immunity (T and B lymphocytes), stromal cells (cancer-
associated fibroblasts) or endothelial cells (tumor associated
capillary or lymphatic vessels) to favor growth and dissemination
(1–4). Plasticity of immune cells, referred as the ability of
immune cells to be differentially polarized (for example,
acquisition of different or opposite phenotypes and functions)
within different (micro/macro) environments (1, 2, 4–6) can
represent a friend or a foe. Among the most interesting players in
the TME regulation of cancer andmetastases aremyeloid-derived
suppressor cells (MDSCs). MDSCs can directly or indirectly (by
interacting with several components of both innate and adaptive
immunity) contribute to the induction of an immune suppressive
environment (7, 8), and angiogenesis (4, 9–11). We will discuss
their crosstalk with Natural killer (NK) cells.

NK cells are innate lymphoid cells (ILC) and act as primary
effectors of innate immunity, against tumors and virus-infected
cells (12). In cancer, NK cells show anergy and hypo-functionality
(13–15). NK cells in different tumors have been described by us
(4, 16, 17) and other groups (18, 19) to acquire pro-angiogenic
phenotype and pro-tumor functions.

MDSCs are recruited and expanded in the TME, in different
types of mouse and human cancers (20–24). MDSCs can restrain
the CD8+ cytotoxic T and NK cells, both of which are anti-
cancer, directly influencing the pro-tumor TME. In this review,
we will address MDSC-associated angiogenesis and the crosstalk
between MDSCs and NK cells, an under-investigated field,
and we will focus on relevant cellular and molecular events
orchestrating NK-MDSC interactions within the TME, which can
impact on tumor insurgence, progression, and angiogenesis.

NK CELL PHENOTYPE AND FUNCTIONS
IN CANCER

NK cells are cytolytic and cytokine-producing effector innate
lymphoid cells (ILC), representing a first line of defense against
virally-infected and transformed cells (12). Spits et al. assigned
NK cells as a prototypical ILC family member and classified
NK cells as ILC1 subtype, as a consequence of their ability to
produce IFNγ, following T-bet and EOMES expression from the
ID2+ ILC precursor (25). Recently, Vivier et al. put forward that
NK cells originate from a separate cell lineage from ILC1. NK
cells and ILC1 share the ability to produce IFNγ, following T-
bet expression (26). NK cells and ILC1, however, are functionally
different: while NK cells are strongly cytotoxic and release
perforin, ILC1s cannot release perforin (26).

The field of NK cell biology has expanded well beyond their
cytotoxic functions, underlying new roles related to the vast array
of cytokines produced by these cells. NK cells are now known to
act in immune responses against bacterial (27) and fungal (28, 29)
organisms. They have also been shown to play a role in both
bone marrow rejection and bone marrow cell engraftment (30).
Further NK cell immune regulatory (31) and tissue-regenerative
properties (32) have been discovered in viral resistance models.

NK cell cytolytic functions are exerted by perforin and
granzyme production and cytokine release. These properties
are regulated by a balance between signals from inhibitory

receptors (killer Ig-like receptors [KIRs] and the heterodimeric
C-type lectin receptor [NKG2A]) as well as activating receptors
(the NCRs: NKp46, NKp30, NKp44, and the C-type lectin-
like activating immunoreceptor NKG2D), recognizing specific
ligands on their cellular targets (12). Peripheral NK cells are
predominantly (from 90 to 95%) CD56dimCD16+ cytotoxic NK
cells, that exert their effector functions by perforin/granzyme
release and antibody dependent cellular cytotoxicity (ADCC).
A minor NK subset, within total circulating NK cells (5–10%),
exhibits the CD56brightCD16− phenotype and is able to produce
high and constant levels of anti-tumor cytokines, such as IFNγ

and TNFα (12), CD56brightCD16− NK cells are abundant in
healthy and neoplastic solid tissues (33).

Pro-angiogenic NK cells have been found in wound healing
models (17), a pro-angiogenic NK subset has been also
characterized within the developing decidua: decidual (or
uterine) NK cells (dNK), that will be discussed later in this review.

Anergic NK cells have been characterized in several
tumors, where local immunosuppression resulted in NK cells
downregulating NKG2D surface antigen expression, impaired
degranulation capabilities, limited abilities to release perforin,
granzyme and anti-tumor cytokines (34–38).

We were the first in demonstrating that NK cells in
cancer patients (non-small cell lung cancer, NSCLC) (17, 39)
colorectal cancer (40) and in malignant pleural effusions (16),
show a pro-angiogenic phenotype and function, identified as
CD56brightCD16−VEGFhighCXCL8+IFNlow and share several
features with the highly pro-angiogenic dNK cells (17, 39, 40).
In cancer patients, NK cells mimic behavior of decidual NK, they
exhibit a dNK-like phenotype, release pro-angiogenic and pro-
metastatic factors and functionally support angiogenesis (4, 16–
19, 36, 39, 40). We termed the pro-angiogenic NK cells that are in
the TME: “tumor infiltrating NK” (TINKs) and peripheral blood
pro-angiogenic NK cells in cancer patients “tumor associated
NK” (TANKs) (17).

MYELOID-DERIVED SUPPRESSOR CELL
PHENOTYPE AND FUNCTIONS IN CANCER

MDSCs identify a heterogeneous immature and mature cell
population generated from common hematopoietic progenitor
cell. Two major MDSC subsets have been characterized based on
their ability a) to phenotypically resemble polymorphonuclear
(PMN) cells, termed PMN-MDSCs b) to resemble monocytes,
defined M-MDSCs, for their surface markers. Both cell subsets
are endowed with potent inhibitory functions against CD8+

cytotoxic T cells and NK cells, thus inducing a tolerogenic
state and acquiring pro-angiogenic properties (23). In mice,
PMN-MDSCs are characterized by CD11b+Ly6G+Ly6Clo

while M-MDSCs by CD11b+Ly6G−Ly6Chi surface
markers. In humans, PMN-MDSCs are identified as
CD11b+CD14−CD15+ or CD11b+CD14−CD66b+, and
M-MDSCs as CD11b+CD14+HLA-DR−/loCD15− (20, 41).
LOX 1 (Lectin type oxidized receptor-1) represents a more
recent marker that has been identified on human PMN-MDSCs,
however further confirmation is needed (42).
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The immature phenotype of MDSCs is related to the
constitutive activation of signal transducer and activator of
transcription (STAT)-3, that interferes with the completion of
functional cell maturation. The expansion of this subset in tumor
patients and tumor-bearing mice is driven also by different
factors, such as IRF8, C/EBPβ, Notch, adenosine receptors
A2b signaling, and NLRP3 (43). For their immunoregulatory
function, the MDSCs requires different pro-inflammatory
stimuli, like CSF3, IL-1β, IL-6, and prostaglandin E2 (PGE2),
through activation of the NF-κB pathway, as well as of STAT1,
STAT6, and cyclooxygenase 2 (COX2) signaling (43), as described
more in depth later. Immunosuppressive functions exerted by
MDSCs are also mediated through the inducible form of nitric
oxide synthase (NOS2) that produces nitric oxide (NO), arginase
1 (ARG1), TGFβ, IL-10, COX2, and indoleamine 2,3-dioxygenase
(IDO) (44). PGE2 and HMGB1 are also involved in immune
suppression (43). In cancer patients, MDSC expansion in the
peripheral blood is correlated with poor clinical outcome and
with advanced clinical stage (45–47). Tumors growing in mice
lead to the expansion and activation of myeloid cells (48, 49)
with similar activities than the human counterparts, resulting in
impairment of anti-tumor T cell responses (50).

It has been shown thatMDSCs are able to favor the conversion
of naive CD4+ T cells into Tregs. Retinoids and MDSC-derived
TGFβ can promote the trans-differentiation of Th17 cells into
Foxp3+ Tregs (51).

MDSC AND NK CELL CROSSTALK

Immunosuppressive activities by MDSCs have been largely
described to be directed toward T cells. Emerging evidence
suggests that MDSCs can also interact and regulate the function
of other immune cells, including macrophages, DCs and NK
cells (7, 8, 52–54). The contribution of MDSCs in regulating
NK cell function in tumor-bearing host, still represent a poorly
explored topic. MDSCs produce TGFβ which we and others
have shown to be a master regulator of NK cell functions in
tumors (4, 13, 17, 39, 55–58) (Figure 1). Studies in the literature
showed that co-culture of MDSCs with NK cells resulted in
impaired tumor cell cytotoxic activity by NK cells and induction
of immunotolerance (59, 60). These alterations derived both
by MDSC/NK direct interaction (e.g., PDL-1 checkpoint ligand
expression and reactive oxygen species production) and via
soluble factors (described later in the manuscript). MDSCs have
been observed to reduce NK cells tumor suppressive activity
(52), and chronic inflammation increases these effects. Several
pro-inflammatory cytokines have been reported to orchestrate
MDSC/NK crosstalk. Large number of CD11b+Gr-1+ cells
have been found to accumulate in the spleen of tumor-bearing
mice and, when adoptively transferred both into tumor-bearing
and naïve mice, were able to inhibit NK cell cytotoxicity, by
limiting the NK ability to produce perforin in vivo and in vitro
(53). MDSC-mediated NK cell anergy has been associated with
the ability of MDSCs to downregulate CD247 expression on
the NK cell surface (61). CD247 is a key subunit of natural
cytotoxicity receptors (NCRs) NKp46, NKp30, and Fcγ RIII

(CD16) (61). MDSCs can inhibit NK cell function by interacting
with the NKp30 receptor (62). MDSC/NK cells co-culture
results in down-regulation of NKG2D, impaired degranulation
capabilities and decreased secretion of IFNγ by NK cells (63).
The interaction between MDSCs CD11b+Ly6CmedLy6G+ and
NK cells (CD3−NK1.1+) in the murine pre-metastatic niche has
been reported to be critical formetastases establishment (64). The
cytotoxicity of NK cells in breast cancer is significantly decreased
in the presence of MDSCs, resulting in increased metastatic
potential (64). MDSCs inhibit the anti-tumor reactivity of NK
cells, promote angiogenesis (65), establish pre-metastatic niches
(66), and recruit other immunosuppressive cells (67). MDSC
accumulation has been demonstrated to occur, following surgery
both in human and mice, which results in dysfunctional NK
cells (68–70).

The immune suppressive TME leads to phenotype and
functional alterations of several players, including NK cells and
MDSCs. Most of soluble molecules within the TME include
factors able in shaping NK cell and MDSC response and
several of them are shared interactors regulating MDSC/NK
crosstalk. Here, we discussed selected soluble factors modulating
MDSC/NK cell crosstalk within the TME, as potential candidates
to target aberrant phenotype/function endowed with pro-tumor
and pro-angiogenic activities.

CYTOKINES AND OTHER MEDIATORS IN
NK AND MDSC REGULATION

The STAT family are transcription factors that are activated
in response to growth factors and cytokines and mediate
downstream signaling (71–74). STATs are dysregulated in a broad
range of cancer types. STATs have been shown to play diverse
roles in innate and adaptive immune cells in the TME (75–
77). While STAT2 and STAT4 promote the anti-tumor immune
response, STAT3 and STAT6 mediate immunosuppression in
the TME, and STAT1 and STAT5 have been implicated in
both activation and suppression of the anti-tumor immune
response (78). STAT3 activation in an immature MDSC subset,
has been found to be crucial for NF-κB activation, resulting
in enhanced release of IDO, that limit NK cell proliferation,
activation and effector functions (79) (Figure 2). Several studies
demonstrated a link between STAT3 blockade, TGFβ inhibition
and increased tumor surveillance by NK cells (80, 81). Peripheral
and tumor-associated NK cells from STAT3-targeted tumor-
bearing mice expressed elevated levels of NK activation markers
NKG2D, CD69, Fas ligand (FasL) granzyme B, perforin,
and IFNγ, resulting in reduced tumor growth and enhanced
survival (80, 81).

IL-2 induced activation of STAT5 leads to NK cell production
of perforin, granzyme and IFNγ (82). JAK3-mediated activation
of the transcription factor STAT5 is critical in IL-2–stimulated
NK cells in vitro and Jak3 inhibition has been found in NK
cells co-cultured with MDSC isolated from the spleen of tumor-
bearing mice associated with reduced STAT5 in NK cells (62).
STAT3/STAT5 activation was observed by us in TANKs from
colon cancer patients (40). We have shown that treatment with
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FIGURE 1 | MDSC and NK crosstalk within the tumor microenvironment (TME). Immunosuppressive activities of MDSCs on NK cells act by diverse molecular and

cellular mediators. MDSC affect NK cell functionality by several major released factors, among which TGFβ. TGFβ is produced by MDSC or by MDSC-like cells,

originated from PGE2 exposed monocytes. Another mediator is IDO produced directly from MDSCs or from a CD33+CD13+CD14−CD15− subset, derived from

CD33+ precursors. Adenosine from CD39highCD73high MDSCs is a further major NK suppressive factor. MDSC effectors decrease NKG2D, NCRs, IFNγ , TNFα,

perforin, granzyme levels and ADCC in NK cells.

pimozide, a STAT5 inhibitor, reduced endothelial cell capability
to form capillary-like networks, inhibiting VEGF and angiogenin
production without affecting the levels of TIMP1, TIMP2,
and MMP9, indicating that STAT5 is involved in cytokine
modulation but not invasion-associated molecules in colon
cancer TANKs (40).

MDSCs release TGFβ in the TME (23, 48, 83) (Figure 1).
TGFβ exerts anti-tumorigenic effects at early stages, while during
tumor progression it acts as crucial orchestrator of angiogenesis,
induction of immunosuppression and metastases (84–86). In
a murine model of liver cancer, tumor derived MDSCs have
been reported to induce NK cell anergy, exhibited as reduced
NKG2D expression, degranulation capability, cytotoxicity and
IFNγ release in vitro and in vivo, through membrane-bound
TGFβ1 (59). Blocking of membrane-bound TGFβ onMDSCs was
able to subvert the inhibitory effects on NK cells, demonstrating
that MDSC/NK cell-cell contact is necessary to induce MDSC-
mediated NK cell anergy.

Elkabets et al. have identified a novel subset of MDSC induced
by IL-1β, which lack Ly6C expression (52) (Figure 1). This
subset was present at low frequency in tumor-bearing mice
in the absence of IL-1β-induced inflammation; while under
inflammatory conditions Ly6Cneg MDSC were predominant.
Ly6Cneg MDSC impaired NK cell development and functions
in vitro and in vivo (52) by reduction of NKG2D activating
receptor (Figure 1). Another recently identified NK check-point

is the IL-1R8 receptor (also known as SIGIRR, or TIR8), which
is expressed on human and murine NK cells (87). IL-33, an
“alarmin” molecule released upon tissue stress or damage by
endothelial and epithelial cells (88, 89), is an IL-1 family member
which binds to the ST2 receptor, expressed on immune cells.
In murine models, IL-33, depending on the TME, can recruit
immune cells with pro-tumor effects, including MDSCs, TAMs,
and Tregs, or it can prevent tumor development by stimulating
activation and migration of NK and CD8+ T cells (88, 89).
In humans, IL-33 is associated with poor prognosis in glioma,
breast and ovarian cancers, clear-cell renal and hepatocellular
carcinoma, while it is correlated with good prognosis in colorectal
cancer and lung adenocarcinoma (88, 89).

Nitric Oxide (NO) molecule is a multifunctional gaseous
transmitter, playing a key role in inflammation. Paradoxical
effects of NO have been documented in cancer, since its
anti- or pro-tumor activities are finely tuned by timing,
location, and concentration (90, 91). NO production has been
largely demonstrated as a key mechanism in MDSC-mediated
immunosuppression (90, 92) (Figure 1). Some studies showed
that autocrine production of NO by NK cells results in positive
effect on NK cell function, and that human NK cells can express
endothelial nitric oxide synthase (eNOS) but not inducible nitric
oxide synthase (iNOS) (93, 94). In contrast, Stiff et al. recently
demonstrated that NO production by MDSCs limits NK cell
cytotoxicity by impairing Fc receptor-mediated NK cell function,
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FIGURE 2 | MDSC contribution to tumor angiogenesis. MDSCs can support angiogenesis by different mechanisms. Hypoxia within the TME induce VEGF release

directly from MDSCs or indirectly following exposure of MDSCs to TGFβ and adenosine. STAT3 activation in MDSCs also support angiogenesis, via IL1-β, CXCL2, and

CCL2 secretion. MDSCs contribute to tumor angiogenesis by ECM remodeling via MMP-2/8/9/13/14 release. Finally, given their cell plasticity, MDSCs can

transdifferentiate into endothelial-like cells.

resulting in altered ADCC (92). They also showed that co-culture
of MDSCs with NK cells results in inhibited secretion of IFNγ

and TNFα by NK cells (Figure 2).
Prostaglandin E2 (PGE2) is a prostanoid molecule generated

by the COX2 inflammatory cascade that have been largely
reported to be associated with pro-tumor activities, ranging
from induction of tumor cell growth, enhancement of tumor
cell migration, invasion, induction of immunosuppression and
angiogenesis (95–97). Exposure of monocytes to PGE2 results
in the generation of a MDSC-like phenotype, together with
induction of intracellular signaling pattern, which enables them
to suppress NK cell anti-tumor activity in a TGFβ dependent
manner (98) (Figure 1). The same effects were observed in NK
cells co-culture with freshly isolated CD14+HLA-DRlow/− M-
MDSC from patients with melanoma (98). Selective inhibition of
COX limited the accumulation of CD11b+Gr1+ MDSCs in the
spleen, providing improved in vivo clearance of NK-cell sensitive
YAC-1 cells in murine 4T-1 tumor cells (98). In a mouse model
of acute inflammation obtained using zymosan, infiltration of
NK cells was an early event with production of IFNγ, which
upregulated microsomal PGE synthase-1 (mPGES-1) and COX-
1, resulting in sustained PGE2 biosynthesis (99). PGE2 inhibited
lymphocyte function and generated myeloid-derived suppressor
cells (99).

Indoleamine 2,3-dioxygenase (IDO) is an intracellular
monomeric, heme-containing enzyme able to regulate the
tryptophan catabolism into kynurenine (100, 101). Kynurenine
production will result in inhibition of proliferation and effector
functions in NK and T cells (78, 102–105). MDSCs have been
reported as an IDO producer cells within the TME, in both
humans and mice. An immature subset of MDSCs, characterized
as CD33+CD13+CD14−CD15−, has been identified (79, 106).
This subset has been found to be induced from CD33+

precursor cells that, following co-culture with the human breast
cancer cell line MDA-MB-23, result in elevated production
of IDO (Figure 1). IDO synthesized by MDSCs blocked NK
cell development, proliferation, and activation, resulting in
dramatically decreased expression of NCR, NKG2D, and
DNAM-1 and by reducing IFNγ release (107, 108) (Figure 1).

As a consequence of hypoxia and inflammation, high levels of
adenosine, an immunosuppressive molecule, are released within
the TME, (109). Adenosine acts by engaging four subtypes of P1
purinergic or adenosine receptors, A1, A2A, A2B, A3, A2AR,
and A2BR, that have been found to be expressed in immune
cells (109, 110). A1, A2A, A2B, A3, A2AR, and A2BR mRNA
levels dramatically increase in inflammatory cells within the
TME (110). Adenosine/adenosine receptor interactions result in
subverted immune cell activities, leading to immunosuppression
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and angiogenesis driven by inflammatory cells (109). The enzyme
CD39 converts extracellular ATP to AMP, and CD73 converts
AMP to adenosine. MDSCs are able to express high levels of
CD39/CD73 in tumor lesions, resulting in higher secretion of
adenosine (111, 112) (Figure 2). Adenosine inhibits NK cell
anti-tumor activities by blocking granzyme exocytosis, impairing
perforin and Fas ligand-mediated cytotoxic activity and limiting
IFNγ/TNFα release (113) (Figure 1). CD56brightCD16− NK cells
produce adenosine through a CD38-mediated pathway, another
mechanism to generate extracellular AMP (114). Finally, it
has been demonstrated that adenosine signaling is involved
in limiting NK cell maturation and that engagement of A2A
adenosine receptor (A2AR) acts as a checkpoint in this
process (115).

DECIDUAL NK AND MDSCs DURING
PREGNANCY: A POSSIBLE ONCO-FETAL
ORIGIN OF PRO-ANGIOGENIC
LEUKOCYTES

During pregnancy, profound and complex changes occur in the
female organism in order to regulate and control the immune
response to the fetus, thus conferring tolerance from rejection.
This level of regulation in maternal immune system is achieved
through coordination and crosstalk of different immune cells,
including NK cells, MDSCs, DCs, and Tregs. The dNK cells
represent an NK cell subset that has been characterized within
the developing decidua and constitutes approximately 70% of
the lymphoid cells in the decidua (116, 117). dNK cells have
a CD56superbrightCD16−VEGFhighPlGFhigh phenotype (58, 116,
117) and are endowed with pro-angiogenic activities, necessary
for spiral artery formation. dNK are associated with induction
of a tolerogenic environment to host the fetus and permit the
correct embryo implantation, both in humans and mice (116,
117). Low levels of dNK cells is associated with miscarriage
(17, 116). We have described the expression of angiogenin, in NK
from patients with colon cancer (40). Angiogenin was previously
reported to be secreted by dNK (118, 119). The TANKs in patients
with colon cancer also express MMP2, MMP9, and TIMP, as
shared features with dNK cells (116, 120, 121) which could be
relevant to the invasive capabilities and proangiogenic functions
of colorectal cancer-NK cells (40). Maternal dNK KIR and HLA-
C interaction has an effect on birth weight (122), particularly
the paternal HLA-C, and correlates with pre-eclampsia and fetal
growth restriction (123, 124).

In healthy pregnant women, significant increase in numbers
of PMN-MDSCs are detected as compared to non-pregnant
controls (125). The raise of PMN-MDSCs mainly occurs in the
first trimester (126). Accordingly, reduced PMN-MDSCs are
associated with miscarriage (126). The mechanisms involved in
this regulation could be related to the release of ARG1, NO,
IDO, and indirectly by recruitment and activation of dNK cells
and Tregs (127, 128). Serum levels of ARG1, an important
effector molecule for PMN-MDSC are significantly reduced in
pre-eclampsia patients as compared to healthy pregnant women

(129). Behavior of immune cells in tumors might resemble the
one in the decidua (4).

MDSC AND TUMOR ANGIOGENESIS

MDSCs promote tumor progression also through non-immune
activities, by stimulating pre-metastatic niche formation,
invasion (130, 131) and inducing pro-tumor angiogenesis (132)
(Figure 2). In the TME, MDSCs, by production of VEGF,
FGF2, Bv8, and matrix metalloprotease (MMP) 9 (MMP9), can
trigger and sustain tumor angiogenesis (44, 133) (Figure 3).
Co-injection of murine tumors with CD11b+Gr1+ MDSCs
increased intra-tumor vascular density, reduced necrosis, and
augmented tumor growth (133, 134). CD11b+Gr1+ MDSCs cells
directly contribute to tumor angiogenesis by producing MMP9
or acquiring endothelial cell properties in TME (133). MDSCs
may directly take part in the formation of tumor vasculature by
being incorporated into the vessel wall (133, 135) (Figure 3).
Several studies have linkedMDSC accumulation with an increase
in intra-tumor VEGF concentration during disease progression
(136). Approaches aiming at reducing levels of circulating
MDSCs or in the tumor milieu were associated with decreased
angiogenesis and delayed tumor growth (132, 137).

MDSCs can boost angiogenesis and stimulate tumor
neovasculature by producing high levels of MMPs (Figure 2),
including MMP2, MMP8, MMP9, MMP13, and MMP14
(130, 133, 138). MDSCs from MMP9-knockout mice have a
significant reduction in their tumor promoting activity (133).
Previous research has indicated that MDSCs with high levels
of MMP9, trigger VEGF function by raising its bioavailability
(139). In a mouse melanoma model, MDSCs contributed to A2B
adenosine receptor-induced VEGF production, increased vessel
density and angiogenesis (140, 141).

VEGF in turn stimulates MDSC recruitment, creating a
positive feedforward loop. Promoting immunosuppression and
angiogenesis (142, 143). MDSCs stimulated by VEGF had
stronger immunosuppressive properties than non-stimulated
MDSCs (143). VEGF-induced MDSCs stimulate the expansion
of other immunosuppressive cells, including FOXP3+ Tregs,
through a TGFβ-dependent and/or independent pathway (143–
145). The relationship between development of resistance to anti-
angiogenic therapy with significant MDSC infiltration have been
widely demonstrated in several studies (146–148). In agreement
with these findings, MDSCs ablation has been reported to
have synergistic effects with anti-VEGF/VEGFR treatment in
refractory tumors (130, 143). It is now widely accepted that
MDSCs interfere with the efficacy of VEGF-targeted therapy,
either by secreting large quantities of VEGF that overcome VEGF
inhibition, or by activating VEGF-independent pro-angiogenic
signaling pathways (149).

The expression of VEGF, MDSCs can modify the TME in
a pro-angiogenic manner through the production of several
other angiogenic factors and also chemokines which can further
enhance MDSCs accumulation within tumors, creating a vicious
circle. CCL2, CXCL8, CXCL2, IL-1β, angiopoietin 1 and 2, and
GM-CSF have been shown to contribute to MDSC-mediated
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FIGURE 3 | Strategies for targeting MDSC and cross-talk with NK. The presented strategies act simultaneously on MDSC and MDSC-released factors dampening

NK cell immunosuppression and induction of angiogenesis. (A) MDSC depletion can be induced using low doses of chemotherapy, tyrosine kinase inhibitors, the

anti-DR5 monoclonal antibody DS-8273a. (B) Strategies blocking MDSC recruitments by CCL2 inhibitors and CCR5 antagonists. (C) Differentiation of MDSC into

non-immunosuppressive cells induced by all-trans-retinoic acid (ATRA), Vitamin D3, and Vitamin E. (D) Inhibition of MDSC immunosuppression can be induced by

STAT3 inhibitors, reduction of immunosuppressive agents such as Arginase and ROS, along with attenuation of the inflammatory state.

angiogenesis and require STAT3 for their expression (4, 150–
152) (Figure 2). Anti-CCL2 treatment decrease PMN-MDSC
and M-MDSC and reduce endothelial cell migration (150,
153, 154). MDSCs promote angiogenesis also via expression
of a prokineticin 2, known as Bv8, which plays an important
role in myeloid cell-mediated tumor angiogenesis (155). A
refractory behavior to anti-VEGF therapy was associated with
high number of CD11b+Gr1+ cells expressing Bv8 in peripheral
blood and tumor (156). Thus, it has been suggested that
combination of anti-Bv8 antibodies and anti-VEGF may better
inhibit angiogenesis and control the tumor growth in anti-
VEGF refractory tumors (156, 157). A close expression among
molecules associated with angiogenesis: p-STAT3, VEGFA, CK2,
and the MDSCs marker CD11b was found in head and neck
squamous cell carcinoma (HNSCC) patients (158). Inhibition
of JAK2/STAT3 in HNSCC transgenic mouse model reduced
MDSC number and suppressed angiogenesis by decreasing
VEGFA and hypoxia inducible factor (HIF-1α) both in vitro and
vivo (158) (Figure 2).

Hypoxia, which is a feature of tumor bearing TME, has
a crucial role in stimulating HIF-1α mediated signaling. HIF-
1 and/or HIF-2 create a proangiogenic TME by inducing the
expression of proangiogenic factors (VEGF, ANG-2, PlGF, bFGF,
and semaphorin 4D). It was shown that in myeloid cells, HIF-
1 activation promotes angiogenesis through VEGF and S100A8
(159) and lead to accumulation of MDSCs positive for the

expression of CX3CR1, a CCL26 receptor, in hypoxic tumor
regions (111, 160) (Figure 2).

ROS (radical oxygen species) also play an important role in the
expansion of MDSCs and augmented levels of these molecules
have been shown to stimulate the expression of VEGF receptors
on MDSCs and their recruitment in the TME (142, 161).

STRATEGIES TO TARGET MDSCs AND
INTERFERE WITH NK CROSSTALK

The main strategies to target MDSC and consequently their
crosstalk with NK cells include: (i) regulation of myelopoiesis and
MDSC depletion (tyrosine kinase inhibitors, cytotoxic agents),
(ii) enhancement of MDSC differentiation (ATRA, Vitamin A,
D3), (iii) inhibition of MDSC recruitment at the site of tumor
(CCR5 antagonist, CCL2 inhibitor) (132, 162), (iv) inhibition
of MDSC-mediated immunosuppression (STAT3 inhibitors,
PDE5, histone deacetylase, NO inhibitors, Arginase inhibitors,
ROS inhibitors, COX-2 inhibitors, phenformin, metformin,
Polyinosinic-polycytidylic acid) (Figure 3). Here, we will briefly
discuss strategies to target MDSC immunosuppression and the
effects on angiogenesis and NK cell.

Recent work has provided evidence that relatively low doses of
chemotherapy induce MDSC exhaustion (22, 163). Gemcitabine
(164), Lurbinectedin (PM01183) (165) 5-azacytidine (166),
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docetaxel (167), paclitaxel (168), 5-Fluorouracil (169), and
doxorubicin (170) exert beneficial effects by reducing MDSC
frequencies, increasing responsiveness to immune therapy and
enhancing the antitumor activity of activated NK cells (171–174).
Similarly, tyrosine kinase inhibitors such as Axitinib, sunitinib,
and brutinib, directly target VEGF and/or c-KIT signaling,
interfering with tumor-driven expansion MDSC factors such
as M-CSF and STAT3 (175–181). In addition to angiogenesis
inhibition, sunitinib treatment upregulates NKG2DLs and
induces higher cytotoxic sensitivity of tumor cells to NK
cells (182–184).

Several studies reported that vitamins D3, A, and E decrease
levels of immature MDSC leading to improved anti-tumor
activity in the context of immunotherapeutic interventions
(185, 186). Vitamin D insufficient and deficient patients had
lower NK-mediated cytotoxicity (187), whereas vitamin D
receptor (VDR) agonist inhibited selectively ocular hyaloid
vasculature angiogenesis in zebrafish models (188). Vitamin
E enhance immune responses via reducing ROS levels and
inhibition of PGE2, COX2, activity mediated through decreasing
NO production (189). MDSCs impair NK cell function via
production of NO (92), thus, its inhibition offers a strategy for
targeting MDSC-NK crosstalk. Promising results on reducing
MDSC frequency or increasing their differentiation, were
obtained in clinical trials using vitamin A metabolite, all
-trans-retinoic acid (ATRA), tested alone (190–192) or in
combination with IL-2 administration (191) or with a DC
vaccine against p53 (193). In preclinical breast cancer models,
ATRA improved antiangiogenic therapies by reverting the
anti-VEGFR2-induced accumulation of intratumoral MDSCs,
decreased hypoxia, and interfered with the disorganization of
tumor microvessels (194). Similarly, it was shown that ATRA,
suppresses the angiopoietin-Tie2 pathway, inhibits angiogenesis
and progression of esophageal squamous xenograft tumors (195).
ATRA increased the expression of MICA and MICB in tumor
cells, promoting NK cell activation (175, 196), although other
studies reported contrasting effects (197, 198).

Blockade of MDSC recruitment at the tumor site inhibits
the establishment of an immunosuppressive pre-metastatic
niche, via MDSC suppression of NK cells (64). Blocking
CCR5/CCR5 ligand interaction by using fusion protein
mCCR5–Ig-neutralizing CCR5 ligands, reduced migration,
and immunosuppressive potential of MDSCs in the TME and
significantly improved survival of tumor-bearing mice (199).
In addition, blocking CCL2, which is produced by MDSCs,
using specific antibodies can reduce angiogenesis by blocking
endothelial cell migration (153).

STAT3 pharmacological inhibition (by peptidomimetics,
small molecule inhibitors, platinum agents, curcumin, JAK
inhibitors, AG490, Cucurbitacin B) simultaneously blocks
angiogenesis and accumulation/suppressive function of MDSC,
neutralizing the induction of a tolerogenic/tumor permissive
TME, without MDSC depletion (158, 200–202).

JAK/STAT3 inhibitors suppress angiogenesis and reduce
MDSCs in the TME through VEGFA and CK2 inhibition (158).
Several studies demonstrated a link between STAT3 blockade,
TGFβ inhibition and increased tumor surveillance by NK cells

(80, 81). Peripheral and tumor-associated NK cells in STAT3-
targeted tumor-bearingmice, exhibit higher expression of the NK
activation markers NKG2D, CD69, Fas ligand (FasL), granzyme
B, perforin, and IFNγ, resulting in reduced tumor growth
and enhanced survival (80, 81). Given the STAT3 inhibitors
side effects, a STAT3siRNA or decoy STAT3 oligonucleotide
inhibitors, such as AZD9150 have been recently developed and
combined with immune checkpoint inhibitors, in phase I/II
clinical trials (203–205). In similar approach, STAT3 siRNA
or decoy oligonucleotides, coupled to CpG oligonucleotides,
have been employed to ensure a selective delivery of the
drugs to TLR9-expressing myeloid cells (in particular, PMN-
MDSC), displaying a decreased immunosuppressive activity
(203). Therefore, STAT3 inhibitors provide a potential strategy
to reduce immunosuppression activate NK cells and reduce
angiogenesis (4).

Class I histone deacetylase inhibitor, entinostat, has been
reported to inhibit the immunosuppressive function of MDSC
by reducing ARG1, iNOS, and COX2 levels in both M- and
PMN-MDSC subsets (206, 207). Vorinostat and entinostat
significantly enhanced the expression of multiple NK ligands
and death receptors, resulting in enhanced NK cell-mediated
cytotoxicity (208).

Several clinical and preclinical mouse model studies,
employing PDE-5 inhibitors, such as sildenafil and tadalafil,
have demonstrated decreased MDSC accumulation and their
immunosuppressive pattern functions by inhibiting iNOS,
ARG1, IL4Ra, ROS levels and enabling NK cell anti-tumor
cytotoxicity together with activation of anti-tumor response
resulting in improved clinical outcome of advanced cancer
patients (60, 209–215).

Arginase inhibitors are promising pharmacological agents to
treat NK suppression (216) and blocking Arg1 activity in the
TME could shift the balance of L-argininemetabolism, favoring T
cell and NK cell proliferation (217). In murine studies, injection
of the arginase inhibitor hydroxy-nor-arginine (nor-NOHA) or
Nω-hydroxy-arginine (NOHA) or genetic disruption of Arg1 in
the myeloid compartment resulted in reduced tumor growth
(218–220). In murine syngeneic tumor model, CB-1158, a potent
and orally-bioavailable small-molecule inhibitor of arginase,
shifted the tumor immune landscape blunting myeloid cell-
mediated immune evasion, increasing tumor-infiltrating CD8+ T
cells and NK cells (182). In colorectal cancer patients undergoing
tumor resection, supplementation of arginine prior to surgery
resulted in an increase in CD16+ and CD56+ NK cells infiltrating
the tumors (221).

Cyclooxygenase (COX)-2 inhibitors, celecoxib, or nimesulide
have been successfully tested in preclinical models for preventing
local and systemic expansion of all MDSC subtypes resulting
in reduced tumor progression (222–225). On the hand, COX-
2 inhibitors induce the expression of NKG2D ligands in cancer
cells and increase their susceptibility to NK cell-mediated cell
death (226, 227) together with blocking multiple angiogenic and
lymphangiogenic such as VEGF-A, VEGF-C/D) (228).

ROS production is one the mechanisms employed by
MDSC for immunosuppression (226, 229). In this context,
phytochemicals, via their antioxidant property, can activate Nrf2

Frontiers in Immunology | www.frontiersin.org 8 April 2019 | Volume 10 | Article 771

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Bruno et al. MDSC/NK Interactions in Tumor Progression and Angiogenesis

pathway, that is considered tumor-protective, in particular in
the early stages of tumorigenesis. The synthetic triterpenoid
C-28 methyl ester of 2-cyano-3,12-dioxooleana-1,9,-dien-28-
oic acid (CDDO-Me, also referred to as bardoxolone methyl,
RTA402, TP-155, and NSC713200) is a potent Nrf2 activator
and has been found to reduce MDSC production of ROS
and tumor growth in mouse tumor models (230) and showed
a promising anticancer effect in a phase I trial (231). In
addition, Nrf2 upregulation, regulates early anti-cancer immune
responses and induces the cytokine interleukin-17D (IL-17D),
that is overexpressed in highly immunogenic tumor cells and
play an important role in immune rejection mediated by
NK cells (232, 233). Inducing IL-17D using Nrf2 agonists
boost innate immunity and NK recruitment leading to tumor-
regression (234, 235). An increasing number of recent reports
suggest the abilities of the antidiabetic drugs, phenformin,
and metformin to selectively reduce the number -MDSCs
and the immunosuppressive functions of MDSC in the TME,
through the activation of AMPK (236–240). Phenformin and
metformin were able to inhibit immune suppressive activities
MDSCs and potentiated the anti-tumor activity of PD-1 blockade
immunotherapy (236, 240, 241).

In addition, metformin and phenformin have been widely
investigated for their properties in inhibiting angiogenesis and
blocking tumor progression (242–244). Several scientific
evidences revealed that metformin exerts also strong
immunomodulatory effects and contributes to the enhancement
of cytotoxic T lymphocyte (245–247) Polyinosinic-polycytidylic
acid [Poly (I: C) an agonist for pattern-recognition receptors
(PRRs), toll-like receptor 3 (TLR3) has been reported to
decrease MDSC frequencies in BM, blood, and tumor and
abrogate their immunosuppressive, concomitant with an NK cell
activation (248–251).

CONCLUSIONS

MDSC are major players in the immunosuppressive scenario
in cancer, thanks to their phenotype heterogeneity and

critical interaction with several innate immune cells, thus
representing a crucial target in oncology. Here we reviewed the
interactions of MDSCs with NK cells. The contribution of key
cytokines, chemokines and mediators active in this process have
been discussed.

We also described the contribution of MDSC on angiogenesis
directly or indirectly through interactions with NK and
immunosuppressive activities. A parallel of the cancer associated
to the decidual counterpart of these cells is discussed, as to
propose an onco-fetal origin of the polarization.

In addition to the well-characterized role in
immunosuppression, MDSC possess potent pro-angiogenic
capabilities, and actively participate in the resistance to VEGF-
targeted therapy. Considering the crucial role of MDSC
in inducing and regulating a permissive immune TME, in
directly contributing to angiogenesis and tumor invasion,
several strategies to therapeutically target these cells are
currently being tested in clinic. Several pre-clinical studies
show that targeting MDSC through multiple approaches helps
to increases NK cells tumor activity augment the efficacy of
anti-angiogenic therapy.

A better understanding of the link between MDSC-
NK immunosuppressive network in TME and their
influence on angiogenesis can be translated to new
therapeutic targets.
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