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Dendritic cells (DCs) control innate and adaptive immunity by patrolling tissues to gather

antigens and danger signals derived from microbes and tissue. Subsequently, DCs

integrate those environmental cues, orchestrate immunity or tolerance, and regulate

tissue homeostasis. Recent advances in the field of immunometabolism highlight the

notion that immune cells markedly alter cellular metabolic pathways during differentiation

or upon activation, which has important implications on their functionality. Previous

studies showed that active oxidative phosphorylation in mitochondria is associated with

immature or tolerogenic DCs, while increased glycolysis upon pathogen sensing can

promote immunogenic DC functions. However, new results in the last years suggest that

regulation of DC metabolism in steady state, after immunogenic activation and during

tolerance in different pathophysiological settings, may be more complex. Moreover,

ontogenically distinct DC subsets show different functional specializations to control T

cell responses. It is, thus, relevant how metabolism influences DC differentiation and

plasticity, and what potential metabolic differences exist among DC subsets. Better

understanding of the emerging connection between metabolic adaptions and functional

DC specification will likely allow the development of therapeutic strategies to manipulate

immune responses.

Keywords: dendritic cell, metabolism, mitochondria, glycolysis, mammalian target of rapamycin, hypoxia-

inducible factor, AMP-activated protein kinase, DC subsets

METABOLIC CONTROL OF DENDRITIC CELL DEVELOPMENT

Natural dendritic cells (DCs) present in steady state comprise type 1 conventional DCs (cDC1s),
type 2 cDCs (cDC2s), double negative (CD8/CD103– CD11b–) DCs (DN-DCs), and plasmacytoid
DCs (pDCs; Table 1). Natural DCs derive from myeloid progenitors in the bone marrow and
require FMS-like tyrosine kinase 3 ligand (FLT3L) to differentiate via the common DC progenitor
(CDP) and DC precursors (pre-DCs). In addition, other cells that are functionally similar to
DCs, such as Langerhans cells (LCs), can derive from embryonic precursors. Moreover, during
inflammatory settings, DCs can develop from blood monocytes (moDCs; Table 1).
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Energy Metabolism During Dendritic Cell
Generation
Differentiation of Dendritic Cells From Monocytes

With GM-CSF
The importance of energy metabolism was first established in
the development of human moDCs in vitro. Granulocyte–
macrophage colony-stimulating factor (GM-CSF) and
interleukin (IL)-4-induced differentiation and survival of
DCs from human monocytes rely on the mammalian target
of rapamycin (mTOR) complex 1 (mTORC1) activation
via phosphoinositide 3-kinase (PI3K; Figure 1) and are
abrogated by rapamycin, an mTOR/mTORC1 inhibitor [Table 2
and (1, 2)]. The mTORC1 downstream target peroxisomal
proliferator-activated receptor γ (PPARγ) is upregulated
early in moDC differentiation, affecting cell maturation and
function largely through control of lipid metabolism (3–6).
Indeed, inhibition of cytosolic fatty acid synthesis (FAS) via
blocking acetyl-CoA carboxylase (ACC) 1 reduces moDC
differentiation (7). Moreover, PPARγ co-activator-1α (PGC1α)
and mitochondrial transcription factor A (TFAM), fundamental
inducers of mitochondrial biogenesis and also indirect mTORC1
targets (8, 9), are also elevated during moDC differentiation
(10). In line, differentiated moDCs show a higher oxygen
consumption rate (OCR), contain more mitochondria, and
produce more adenosine triphosphate (ATP) compared
to monocytes (10, 11). Importantly, blocking the electron
transport chain (ETC) with the complex I (CI) inhibitor
rotenone (Figure 2) partially prevents moDC differentiation,
despite causing a notable increase in glycolysis/lactate
production (10, 11). Hence, moDC differentiation depends
on oxidative phosphorylation (OXPHOS) and a balanced fatty
acid metabolism.

Likewise, the DC-like cells differentiated from mouse bone
marrow cultured with GM-CSF in vitro, a culture system
composed of a mixed population of DCs and macrophages
[Table 2, GM-DCs and (12)], also show glucose uptake together
with high mitochondrial membrane potential (19m) and
oxygen consumption (13). Indeed, GM-DC differentiation under
hypoxic conditions yields fewer total cells, and hypoxia-inducible
factor (HIF)-1α deficiency further reduces the frequency
of CD11c+ GM-DCs, linked to decreased ATP (14). As
HIF1α is a key metabolic regulator and many of its target
genes drive glycolysis (see the section Sustained Glycolysis:
The Role of HIF1α), these observations point toward the
importance of an active glucose metabolism involving oxidative
and glycolytic pathways in GM-DCs. However, CD11c-Cre
HIF1αflox/− mice display unaltered DC homeostasis in the
steady state (15). Moreover, impairment of cytosolic FAS by
blocking ACC1 with the inhibitor 5-(tetradecyloxy)-2-furoic
acid (TOFA) in GM-DC cultures or by the administration of
the fatty acid synthase (FASN) inhibitor methylene-2-octyl-5-
oxotetrahydrofuran-3-carboxylic acid (C75; Figure 2) in vivo

reduces the generation of DCs (7), further suggesting that
balanced FA metabolism contributes to DC development.
However, it is noteworthy that the inhibitor C75 can also cause
mitochondrial dysfunction (16).

Natural Dendritic Cell Differentiation
Generally, the presence of CDPs, pre-DCs, cDCs, and pDCs is
reduced in energy-restricted mice, while myeloid progenitors,
blood monocytes, and spleen macrophages are increased. FLT3L
administration is unable to rescue the effect (17), highlighting
the intrinsic importance of uncompromised energy metabolism
for in vivo DC differentiation compared to monocytes. In
concert, natural mouse DC progenitors in the bone marrow
(Table 2; FLT3L-DC cultures) are dependent on nutrient
transporters and glucose uptake for proliferation upon FLT3L
stimulation in vitro (18). Those FLT3L-stimulated bone marrow
cultures allow for the separate evaluation of mouse CDP-
derived DC subsets [Table 2; FLT3L-DCs and (19)]. Notably,
the inhibition of fatty acid oxidation (FAO) with etomoxir
(Figure 2), promoting mitochondrial fusion with M1 or blocking
fission with Mdivi-1, does not affect pDCs but strongly
skews cDC differentiation toward cDC2s, while reactive oxygen
species (ROS) inhibition favors cDC1s (18). Of note, apart
from inhibition of carnitine palmitoyltransferase 1 (Cpt1a),
a crucial enzyme for long-chain FAO, etomoxir displays off-
target effects and can independently block mitochondrial
respiration or enhance the 19m in T cells (20). Indeed, cDC1s
generally display higher mitochondrial mass and 19m than
cDC2s in vitro and in vivo (18, 21, 22). The non-canonical
Hippo pathway kinases mammalian sterile twenty-like (Mst)
1 and 2 are crucial for mitochondrial homeostasis, energy
metabolism, and immunogenic function of cDC1s, but less for
cDC2s, and are activated by FLT3L in cDC1s (21). In line,
in vivo FLT3L administration to CD11c-Cre Mst1/2flox/flox mice
yields reduced splenic cDC1 numbers compared to controls.
Unexpectedly, CD11c-Cre Mst1/2flox/flox mice exhibit elevated
frequencies of splenic cDC1s, unaltered pDCs, and reduced
cDC2s in the steady state (21); hence, the precise role of
(non-canonical) Hippo signaling in DC development needs
further investigation.

Overall, these data highlight differential energy requirements
for DC subset generation, where moDCs and spleen cDC1s
appear more dependent on functional mitochondrial metabolism
and OXPHOS than cDC2s or pDCs (Tables 1, 2).

Nutrient-Sensing Pathways Affecting
Dendritic Cell Development
Adaption to extra- and intracellular nutrient sensing via the
mTOR network composed of mTORC1 and 2 complexes
(Figure 1) is central for the development of DCs (23). This
notion is supported by the fact that the DC differentiation-
inducing factors GM-CSF and FLT3L directly induce mTOR
activation (2, 24, 25).

Monocyte-Derived Dendritic Cells and

Embryo-Derived Langerhans Cells
The generation and survival of the non-CDP-derived human
moDCs and self-maintaining LCs depend on mTORC1
(Tables 1, 2). As mentioned in the previous section, mTOR is
constitutively active in cultured human moDCs, and the mTOR
inhibitor rapamycin, which affects mTORC1 stronger than
mTORC2, abrogates their differentiation, inducing apoptosis,
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TABLE 1 | Dendritic cell subsets in vivo.

DC subset Developmental

origin

Presence in vivo Main functional

specialization

Selected surface

markers

Metabolic requirements for

development in vivo and

involved signaling factors

Status iNOS

expression

cDC1s

HSC → CDP →

pre-cDC;

depend on

FLT3L

Lymphoid-resident,

peripheral tissues,

blood

Cross-presentation of

exogenous antigens on

MHCI. Th1 & CD8+ T cell

immunity against intracellullar

pathogens and tumors

M: CD11c+ MHCII+

CD8α+(resident)

CD103+(migratory) CD24+

XCR1+ DNGR1/Clec9A+

CD11b-/low

Reduced upon energy

restriction; higher ECAR, OCR,

mitochondrial mass & 1ψm than

cDC2; mTOR (mTORC1 &

mTORC2), TSC1, PI3Kγ, AKT,

PTEN, AMPK, L-Myc, Mst1/2

No (spleen)

H: CD11c+ HLA-DR+

BDCA-3/CD141+ XCR1+

DNGR1/Clec9A+

DEC205+ CD1c-

Mst1/2

? (Some blood

DCs can express

iNOS)

cDC2s

Direct presentation of

exogenous antigen on MHCII.

Immunogenic CD4+ Th and

regulatory T cell activation

M: CD11c+ MHCII+

CD11b+/hi SIRP1α+

CD8α- CD103-

Reduced upon energy

restriction; mTOR (mTORC1 &

mTORC2), TSC1
No (spleen)

H: CD11c+ HLA-DR+

CD1c+ SIRP1α+ CD11b+

CD141- inducible CD14+
Not reported

? (Some blood

DCs can express

iNOS)

DN-DCs Peripheral tissues,

blood, spleen

Not well defined. CD8+ and

CD4+ T cell priming upon

uptake of cell-associated

antigen suggested

M: CD11c+ MHCII+ XCR1-

CD103- CD11b- (variation

between tissues)
AMPK Not reported

H: CD11c+ HLA-DR+

CD141- sometimes CD1c+

CD206+
Not reported

pDCs

HSC → CDP;

depend on

FLT3L

Lymphoid-

resident, blood,

lung (mouse),

tonsil (human)

Type I interferon secretion

M: CD11c-low MHCII-low

Ly6C+ B220+
mTORC1, TSC1 Not reported

H: CD11c- HLA-DR-low

CD123+ CD303+ CD304+

mTORC1, PI3K, PKB, PTEN

(in vitro)
No (blood)

LCs

Yolk-sac macro-

phage, fetal liver

and adult blood

monocyte. Self-

renew.

Epidermis and

stratified epithelia,

migrate to lymph

node

Apoptotic cell clearance,

antigen presentation to CD8+

T cells, Th17, regulatory and

follicular T helper cells

M: CD11c+ MHCII+

Langerin+ CD11b+/low

SIRP1α+ CD24+ EpCAM+

XCR1-

mTORC1/raptor,

p14/LAMPTOR2

Yes

H: CD11c+/low HLA-DR+

Langerin+ CD1a+

E-Cadherin+ EpCAM+

Not reported

moDCs

Blood

monocyte,

depend on GM-

CSF + M-CSF

Mainly induced

upon inflammation

in peripheral

tissues

Context dependent: CD8+

T cell, Th1, Th2 and

Th17-type immunity.

M: CD11c+ MHCII+

CD11b+ Ly6C+ CD64+

DC-SIGN+ F4/80+ CD14+

(depending on tissue)

Not reported

Tip-DCs, some i-

moDCs express

iNOS

H: CD11c+ HLA-DR+

CD14+ CD141- often

DC-SIGN+ CD16+ CD1c+

SIRP1α+ CD11b+

Not reported

Psoriatic Tip-

DC-like cells

express iNOS

Of note, iNOS is expressed by rat DCs in the thymus but not in the spleen or pseudo-afferent lymph. 1ψm, mitochondrial membrane potential; cDC1s, conventional DC type 1; cDC2s,

conventional DC type 2; CDP, common DC progenitor; DN-DCs, conventional double-negative DCs; FLT3L, FMS-like tyrosine kinase 3 ligand; GM-CSF, granulocyte–macrophage

colony-stimulating factor; H, human; HSC, hematopoietic stem cell; i-moDCs, inflammatory moDC-like cells; iNOS, inducible nitric oxide synthase; LCs, Langerhans cell; M, mouse;

M-CSF, macrophage colony-stimulating factor; MHC, major histocompatibility complex; moDCs, monocyte-derived DCs; pDCs, plasmacytoid DCs; Th, CD4+ T helper cell; Tip-DCs;

TNF/iNOS-producing-DC subset that depends on CCR2.

in line with GM-CSF/IL-4 activating mTOR to sustain survival
(1, 2). Mice deficient in the mTORC1 component Raptor in
CD11c-expressing cells, but not the mTORC2 component Rictor
(Figure 1), progressively lose epidermal LCs over time (26). In
concert, LCs deficient in the Ragulator complex component
p14 [a.k.a. lysosomal adaptor and mitogen-activated protein
kinase and mTOR activator/regulator 2 (LAMPTOR2)], which
display abrogated extracellular signaling-regulated kinase (ERK)
and mTOR signaling, are increasingly mature and unable to
self-renew due to reduced responsiveness to tumor growth factor

(TGF)-β1 (27, 28), which is crucial for LC differentiation and
maintenance (29).

Dendritic Cells Generated From Common Dendritic

Cell Progenitors
Despite the Ras/PI3K/AKT/mTOR signaling axis (Figure 1)
being activated by FLT3L (24, 25), the precise role of mTOR
signaling is more ambiguous in FLT3L-dependent, CDP-derived
DC subsets (Tables 1, 2). There are conflicting observations
depending on howmTOR signaling is targeted. A line of evidence
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FIGURE 1 | mTOR/AMPK signaling. Selected signaling circuits of the complex

mammalian target of rapamycin (mTOR) and AMP-activated protein kinase

(AMPK) signaling network are depicted. Frequently used metabolic inhibitors

are displayed in italics, and P indicates phosphorylation.

suggests that active mTOR signaling promotes generation of
proper natural DC numbers and subset distribution. In vitro,
generation of pDCs, cDC1s, and cDC2s in FLT3L-DCs is reduced
by rapamycin and enhanced by loss of phosphatase and tensin
homolog (PTEN), a negative regulator of PI3K/AKT/mTOR
signaling (24) (Figure 1). Similarly, rapamycin administration
to mice in the steady state decreases CDPs and pre-DCs in the
bone marrow as well as total CD11c+ DCs, pDCs, and cDC2s
in the spleen (25, 30). cDC1s and, to a lesser extent, cDC2s
are profoundly reduced in the spleens and lungs of CD11c-Cre
mTORflox/flox mice, CD11c-Cre Raptorflox/flox, Rictorflox/flox

double-knockout mice and mice lacking functional PI3Kγ or
AKT, upstream activators of mTOR (25, 31). In accordance,
cDC1s are strongly expanded in lymphoid and peripheral
organs in mice deficient for PTEN (CD11c-Cre PTENflox/flox

mice), a phenotype reversed by rapamycin administration
(24). While pDC development is largely unaffected in
PI3Kγ-deficient mice (25), human pDC differentiation
in vitro is blocked by rapamycin, PI3K, and AKT/PKB
inhibitors and facilitated by PTEN inhibition or enforced AKT
activation (32).

In contrast, other reports suggest an inhibitory function of
mTOR signaling for natural DC development. FLT3L-DCs show
induction of AMP-activated protein kinase (AMPK) signaling,
which antagonizes mTORC1 (Figure 1) (18, 33). AMPKα1
deficiency does not affect pDC or overall cDC differentiation but
results in relative loss of cDC1s and DN-DCs (18, 33). Moreover,
mTOR inhibition by rapamycin increases spleen cDC1 and

cDC2 subsets and several DC subsets in peripheral organs upon
FLT3L-mediated DC expansion in vivo (25). Loss of mTORC1
in DCs in CD11c-Cre Raptorflox/flox mice also expands CD11c+
DCs in the bone marrow, cDC1s in the spleen, and cDC2s
in the small intestine (26, 34). Similarly, tuberous sclerosis 1
(TSC1) deficiency (Figure 1), using tamoxifen-inducible Rosa-
Cre TSC1flox/flox mice, enhances mTOR activation and reduces
pDCs, cDC1s, and cDC2s generated in FLT3L-DCs and in vivo,
which is rescued by rapamycin (35). Conversely, CD11c-Cre
TSC1flox/flox mice show no major alterations in DC development
(24, 36). In humans, rapamycin treatment of kidney transplant
patients does not affect cDC/pDC differentiation, while DCs
appear more immunogenic (2).

In conclusion, a delicate balance of the complex system of
nutrient sensing and mTOR (mTORC1) signaling is crucial to
ensure appropriate development of DCs (23). Strikingly, loss of
both mTOR complexes results in opposite effects on in vivo DC
development compared with loss of mTORC1 alone, probably
indicating differential inhibition of mTOR downstream targets
and collaboration of mTOR complexes. Indeed, DC loss upon
TSC1 deficiency is accompanied by increased DC apoptosis and
enhanced metabolic activity due to TSC1-dependent inhibition
of Myc, an effector downstream of mTOR (Figure 1), and
reversed upon Myc loss (35). Of note, Myc itself regulates
glucose and glutamine catabolism in activated T cells (37).
Moreover, apart from controlling mTORC1 activity, AMPK is an
important regulator of fatty acid metabolism limiting ACC1/2
activity (Figure 1), which is crucial for T cell activation (38).
AMPK loss generally favors cytosolic FAS over mitochondrial
FAO, which likely accounts for the decrease in differentiation
in AMPKα1-deficient cDC1s, as this process was shown to be
sensitive to FAO block (18) and, hence, could be independent
from mTOR signaling.

Moreover, the context dependence of balanced mTOR
signaling in DCs may be strongly influenced by FLT3L. First,
rapamycin andMst1/2 deficiency have different or even opposing
effects on DC generation in the steady state compared with
FLT3L-mediated DC expansion in vivo (21, 25, 30). Second,
while FLT3L-mediated differentiation of DC subsets from mouse
bone marrow in vitro clearly relies on appropriate mTOR
activity (18, 24, 33), GM-CSF-induced DC development in vitro
was not affected by mTOR deregulation. FLT3L and GM-
CSF have both been shown to activate mTOR (2, 24, 25);
however, this activation might serve different purposes. Third,
deregulated mTOR signaling appears to have stronger effects
on the generation of cDC1s than other natural DC subsets,
in line with spleen cDC1s being more metabolically active
and their reliance on functional mitochondrial respiration (18,
21). The notion that cDC1s appear to rely more on FLT3L
than other subsets, especially in peripheral tissues (39), might
provide a potential explanation. Indeed, cDC1s in the spleen
have higher basal phosphorylation levels of S6 protein, a readout
for mTORC1 activity (Figure 1), than other DC subsets and
upregulate mTOR activation to a greater extent upon FLT3L
administration in vivo. Moreover, the increase of cDC1s upon
PTEN deficiency is specific to the FLT3L-responsive CX3CR1-
negative subset (24).
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TABLE 2 | Culture systems of dendritic cells.

DC culture Origin Culture conditions Subset composition Metabolic requirements of development in vitro and

involved signaling factors

Status iNOS

expression

GM-DCs

Mouse bone marrow

(progenitors)

GM-CSF (+IL-4), 5-7

days

DC-like and

macrophage- like cells

Glucose uptake, oxygen availability, and cytosolic FAS;

HIF1α
Yes (inducible)

FLT3L-DCs
FLT3L (+GM-CSF),

ca. 9 days

cDC1-like cells

Glucose uptake, FAO and mitochondrial fusion/fission;

higher mitochondrial mass & 1ψm than cDC2; mTORC1,

TSC1, PTEN, AMPK
Not reported

cDC2-like cells Glucose uptake & ROS; mTORC1, TSC1, PTEN

pDC-like cells Glucose uptake; mTORC1, TSC1, PTEN

iCD103-DCs
FLT3L + GM-CSF,

ca. 16 days
cDC1-like cells Not reported No (NO measured)

moDCs
Human blood

monocytes

GM-CSF + IL-4, 6-7

days
moDCs

Cytosolic FAS, mitochondrial biogenesis, active OXPHOS;

mTORC1/(PI3K), PPARγ

No (depending on

differentiation)

Of note, iNOS is expressed by a mouse skin DC cell line. 1ψm, mitochondrial membrane potential; FLT3L-DCs, mouse FLT3L (+GM-CSF)-induced DCs; GM-DCs, mouse

GM-CSF-induced DCs; iCD103-DCs, mouse induced CD103+ DCs; iNOS, inducible nitric oxide synthase; moDCs, human GM-CSF+IL-4-induced monocyte-derived DCs.

Last, caution has to be taken when interpreting the effect of
manipulating mTOR signaling in DCs. For instance, deletion
of the positive mTORC1 regulator p14/LAMPTOR2 in CD11c-
expressing cells increases pre-DCs in the bone marrow and
amplifies DC subsets in spleen and lymph nodes (LNs) due
to accumulation of FLT3 receptor on the DC surface, leading
to activation of mTOR (40). Also, while the requirement of
mTOR and its signaling components was assessed, the specific
mechanisms or the direct role of this nutrient sensor in
regulating metabolic pathways such as glycolysis, OXPHOS,
or fatty acid metabolism during DC development largely
remain to be defined and could account for some of the
observed controversies.

METABOLIC REARRANGEMENTS UPON
IMMUNOGENIC DENDRITIC
CELL STIMULATION

Increasing efforts have been made over the past years to
better understand metabolic changes that occur in DCs upon
stimulation and how those affect DC functionalities. Resting
DCs show a catabolic metabolism and continuously break down
nutrients for energy generation and cell maintenance. This
metabolic state manifests active OXPHOS, driven by
the tricarboxylic acid (TCA) cycle fueled via FAO and
glutaminolysis, and is largely regulated by AMPK (13, 41–
45), as discussed in the section Metabolic Control of Dendritic
Cell Development. Apart from glucose, steady-state DCs use
intracellular glycogen to support basal glycolytic demands, which
provides metabolic substrates for mitochondrial respiration (46).
Upon immunogenic activation, DCs often adopt an anabolic
metabolism for the generation of substrates for biosynthesis
and cell growth. Activated DCs switch to glycolysis and lactic
fermentation that provide energy and additionally reroute
glycolytic intermediates into the pentose phosphate pathway
(PPP). Moreover, production of nitric oxide (NO), which inhibits
the ETC, is induced by some activated DC subsets (Tables 1,
2). The TCA cycle is rewired, leading to accumulation of TCA
intermediates that can serve as immunomodulatory signals

and support FAS and production of ROS and NO upon DC
activation (41–45) (Figure 3). Of note, most of the current
knowledge on DC metabolism was obtained using DC-like
cells differentiated with GM-CSF from mouse bone marrow
in vitro (Table 2; GM-DCs), which also contain a significant
proportion of macrophage-like cells (12). This DC culture model
provides important insights on the basis of metabolic adaptions
of DCs after activation but does not allow investigation
of different DC subsets, which appear more and more
relevant in light of the differential metabolic requirements for
their development.

Increased Glycolytic Activity Determines
Inflammatory Dendritic Cell Functions—A
Consensus Among Activated DC Subsets?
An early elevation of glycolysis is a metabolic hallmark of
activated DCs and occurs in different mouse DC cultures,
human moDCs in vitro, and mouse/human DC subsets
in vivo/ex vivo (Figures 3, 4) shortly after pattern recognition
receptor (PRR) stimulation with a wide range of pure
pathogen-associated molecular patterns (PAMPs) or complex
stimuli, such as lipopolysaccharides (LPSs) (13, 47–51),
CpG oligodeoxynucleotides (13, 49), poly(I:C) (15, 49),
R848/Resiquimod (49, 52), protamine–RNA complexes (pRNA)
(53), zymosan (50), Pam3CSK4/Pam2CSK4 (49), Aspergillus
fumigatus (54), Chlamydia (55), heat-killed Propionibacterium
acnes (13), and influenza A virus or rhinovirus infection (52).
Interestingly, stimulants such as LPS and zymosan strongly
induce upregulation of costimulatory molecules and cytokines,
whereas weak activators such as house dust mite (HDM) or
zymosan lacking TLR ligands (ZymD) provoke a milder GM-DC
maturation profile (56). Importantly, the potency of stimulants
inducing GM-DC activation is directly correlated with enhanced
degree and maintenance of glycolysis induction (56).

Requirement of Glycolysis for Functions of Activated

Dendritic Cells
Interrupting the glucose-to-pyruvate pathway significantly
impairs DC maturation, upregulation of co-stimulatory
molecules, cytokine secretion, and T cell stimulatory capacity in
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FIGURE 2 | Cellular metabolism networks. Glucose is imported from the extracellular environment and can generate glycogen stores, be used in the pentose

phosphate pathway to generate reducing power, or be oxidized during glycolysis to obtain adenosine triphosphate (ATP). Pyruvate generated from glycolysis can

either be partially oxidized to lactate to quickly regenerate the consumed nicotinamide adenine dinucleotide (NADH) or translocate into the mitochondria to be

completely oxidized thought the tricarboxylic acid (TCA) cycle. The TCA cycle can also be fueled by fatty acids via fatty acid oxidation or glutamine via glutaminolysis.

The electrons released by glycolysis and the TCA cycle enter into the electron transport chain composed of complex I–V (CI–CV) where ATP is generated by oxidative

phosphorylation (OXPHOS). Frequently used metabolic inhibitors are indicated in red. 2-DG, 2-deoxy-D-glucose; ACC, acetyl-CoA carboxylase; αKGDH,

α-ketoglutarate dehydrogenase; CoA, coenzyme A; CPT1, carnitine palmitoyltransferase 1, CTP, citrate transport protein; DHAP, dihydroxyacetone phosphate; DON,

6-Diazo-5-oxo-L-norleucine; ENO1, enolase 1; F1,6biP, fructose 1,6 biphosphate; F5P, fructose 5 phosphate; F6P, fructose 6 phosphate; FASN, fatty acid synthase;

G1P, glucose 1 phosphate, G6P, glucose 6 phosphate; G6PDH, glucose 6 phosphate dehydrogenase; GA3P, glyceraldehyde 3 phosphate, GLUT1, glucose

transporter 1; HK-II, hexokinase 2; IDH, isocitrate dehydrogenase; LDHA, lactate dehydrogenase A; MPC1, mitochondrial pyruvate carrier 1; NADPH, nicotinamide

adenine dinucleotide phosphate; PDH, pyruvate dehydrogenase PDK1-4, pyruvate dehydrogenase kinase 1-4, PEP, phosphoenolpyruvate; PFK1,

phosphofructokinase-1; PKM2, pyruvate kinase isozyme M2; PYG, glycogen phosphorylase; R5P, ribose 5-phosphate; SDH, succinate dehydrogenase; TOFA,

5-(Tetradecyloxy)-2-furoic acid.

the long term (Figure 3). For example, pharmacological blockade
of glycolysis using 2-deoxyglucose (2-DG), genetic deficiency of
glycolytic enzymes such as α-enolase (ENO1), or overexpression
of lactate dehydrogenase A (LDHA) or pyruvate dehydrogenase

kinase 1 (PDK1) (Figure 2) prevents GM-DC maturation and
immunogenicity upon stimulation with LPS or Chlamydia
(13, 47, 49, 57) and can skew GM-DCs toward inducing Th17
and regulatory T cells (Treg) rather than Th1 and Th2 responses
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metabolism with active AMPK (AMP-activated protein kinase) and fatty acids,

glutamine, glycogen, and glucose being fully oxidized to generate energy by

oxidative phosphorylation (OXPHOS). Upon early stimulation after 6–9 h,
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FIGURE 3 | GM-DCs are activated and exhibit transiently enhanced

OXPHOS/mitochondrial membrane potential and an increased glycolytic

metabolism mainly using glucose from intracellular glycogen stores. The

induction of glycolysis is predominantly driven by a TBK1-IKKε/AKT/HK-II axis

and largely devoted to fatty acid synthesis (FAS). Moreover, enhanced early

glycolytic activity of GM-DCs is vital for their migration and upregulation of

co-stimulatory/inhibitory molecules as well as cytokines. At later time points

about 18–48 h after robust stimulation, a mTOR/HIF1α/iNOS axis is activated

in GM-DCs, leading to enforced glycolysis via upregulation of glucose

importers such as GLUT1 and inhibition of OXPHOS via nitric oxide (NO). This

fostered glycolytic activity appears crucial for the interaction of GM-DCs with T

cells. Nevertheless, the sustained inhibition of OXPHOS by NO and reliance on

glycolysis for energy generation can reduce the ability of GM-DCs to stimulate

T cells in the long term. Glucose deprivation or mTOR inhibition can preserve

metabolic flexibility and functional OXPHOS in GM-DCs, sustaining their

activity at least during 72–96 h and extending their life span. AKT, protein

kinase B; CCR7, C-C chemokine receptor type 7; CD, cluster of differentiation;

GLUT1, glucose transporter 1; GM-DC, GM-CSF, mouse GM-CSF-induced

DCs; HIF1α, hypoxia-inducible factor 1-alpha; HK-II, hexokinase II; IKKε, IkB

kinase; IL, interleukin; iNOS, inducible nitric oxide synthase; MHC, major

histocompatibility complex; mTOR, mammalian target of rapamycin; NADPH,

nicotinamide adenine dinucleotide phosphate; PD-L1, programmed

death-ligand 1, Pyr, pyruvate; PPP, pentose phosphate pathway; TBK1,

TANK-binding kinase 1; TCA, Tricarboxcylic acid cycle; TNFα, tumor necrosis

factor α.

(49). In line, natural mouse cDC1s and cDC2s isolated from the
spleen decrease expression of co-stimulatory molecules, IL-12
production, and activation of CD4+ and CD8+ T cells when
activated by LPS in the presence of 2-DG (49). pRNA-stimulated
human blood cDC2s require glycolytic activity for activation,
evidenced by TNFα production, CD86, and programmed death
ligand 1 (PD-L1) expression (53). Treatment of primary human
pDCs with 2-DG upon influenza A virus stimulation also
reduces co-stimulatory molecule and type I interferon (IFN-I)
expression (52), while another study rather suggests induction of
glutamine-fueled OXPHOS upon pRNA stimulation of human
blood pDCs (53). However, the effects of inhibition of glycolysis
by 2-DG in DCs have to be taken with caution, as 2-DG itself
deregulates cytokine expression of human moDCs in vitro by
activation of the endoplasmic reticulum (ER) stress response
via the sensor inositol-requiring protein 1α (IRE1α) (50). In
addition, 2-DG can impair the TCA cycle, OXPHOS, and ATP
levels, as recently described in macrophages (58).

Other DC functions such as phagocytosis do not seem to be
affected by inhibition of glycolysis during stimulation of human
moDCs (50). However, reduced endocytic/phagocytic activity in
aging mouse spleen cDC1s and DN-DCs [termed merocytic DCs
(mcDCs)] and a resulting decline in antigen cross-presentation
are linked to mitochondrial dysfunction with decreased basal
OCR and 19m as well as enhanced proton leakage and ROS.
Importantly, inhibition of ATP synthase by oligomycin or the
uncoupling agent carbonyl cyanide 4-(trifluromethoxy)phenyl-
hydrazone (FCCP) corroborates the diminished phagocytosis
of cDC1s and DN-DCs/mcDCs (22). Moreover, antigen uptake
seems to decrease in GM-DCs in hypoxia, when glycolytic
activity is increased by HIF1α stabilization, which is also
observed in human moDCs after stimulation (47, 50).

In contrast, glucose and enhanced glycolytic activity
are required for the ability of DCs to migrate (Figure 3).

Frontiers in Immunology | www.frontiersin.org 7 April 2019 | Volume 10 | Article 775

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Wculek et al. Metabolic Control of Dendritic Cell Functions

FIGURE 4 | Differential metabolic rearrangement in mouse and human DC subsets upon activation. Depicted here are key adaptions of the main metabolic pathways

[glycolysis, OXPHOS (oxidative phosphorylation), and fatty acid metabolism] of DCs upon TLR stimulation. The glycolytic and OXPHOS state of the cells over time (t) is

indicated as a schematic representation. In GM-DCs (A), TLR stimulation leads first to induction of glycolysis, and later, mitochondrial OXPHOS is reduced (see also

Figure 3). Whereas, this increase in glycolysis is consistently observed after stimulation, differences in the basal glycolytic state, promptness of the glycolytic

induction, increased rate, and signaling factors driving these changes in distinct DC subsets are illustrated for naturally occurring mouse and human (h-) cDC1s (B),

cDC2s (C), pDCs (D), and human in vitro-generated moDCs (h-moDCs; E). The impact of TLR stimulation on OXPHOS metabolism among DC subsets likely differs

due to the lack of iNOS expression in naturally occurring DCs and h-moDCs. In addition, OXPHOS rearrangements of activated cDCs are context dependent and

appear to be down-modulated in splenic cDCs in an IFN-I-dependent manner but remain high in cultured FLT3L-cDCs (B,C). An increase in fatty acid synthesis is

generally ascribed to most DC subsets upon stimulation; however, differences in fatty acid use emerge, such as fuel of fatty acid oxidation to drive OXPHOS in

h-moDCs and pDCs (D,E) or for organelle biosynthesis in GM-DCs, cDC1s, and cDC2s (A–C). In line, fatty acids can accumulate within DCs and form lipid bodies

that associate with enhanced cross-presentation potential of cDC1s. Lastly, the thus far reported role of TBK1/IKKε and mTOR/HIF1α regulating cDC, pDC, and

h-moDC metabolism and function upon activation is displayed.

Independently of stimulation, glucose-deprived GM-DCs
show reduced mobility, increased rounded morphology
losing dendrites, and impaired oligomerization of CCR7,
the chemokine receptor driving DC migration toward
LNs. Subsequently, glucose limitation or 2-DG presence
prevents migration of GM-DCs as well as splenic
CD11c+ cDCs both in vitro and in vivo (49, 56). In line,
HIF1α-deficient GM-DCs, which largely fail to induce
glycolysis (see the section Sustained Glycolysis: The
Role of HIF1α), display reduced CCR7 levels, and GM-
DCs differentiated in hypoxic conditions exhibit elevated
migratory potential in vitro and in vivo that is dependent on
HIF1α (14).

Overall, early induction of glycolysis emerges as a general
feature of immunogenic activation of most cultured DCs and
primary DC subsets and appears necessary for several aspects
of their maturation such as upregulation of co-stimulatory
surface molecules and cytokine production, despite having no
major effects on phagocytosis or antigen uptake. However,
DC activation leads to cytoskeletal changes that support
increased migratory capacity to migrate toward LNs and T
cell zones, which is also affected by early induced glycolysis.
Ultimately, in light of those findings, glycolytic increase in
DCs upon stimulation is vital for adequate induction of
adaptive T cell responses (59) and, hence, regulates immune
homeostasis (Figure 3).

Frontiers in Immunology | www.frontiersin.org 8 April 2019 | Volume 10 | Article 775

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Wculek et al. Metabolic Control of Dendritic Cell Functions

Mechanisms That Control Glycolytic
Reprogramming in Activated Dendritic
Cells
Fuels for Glycolytic Induction Upon Dendritic Cell

Stimulation
Extracellular glucose consumption by DCs is required for some
aspects of induction of glycolysis, functionality, and survival in
activated DCs (13, 56). However, glucose uptake and its effects
on DC activation emerge to be time and DC subset dependent.
Expression of glycolytic enzymes is not increased in GM-DCs
at 4 or 8 h after LPS, HDM, curdlan, or zymosan stimulation
(56, 60), when cells already display an enhanced glycolytic
activity (56), but is only detectable 18–24 h after stimulation.
Moreover, switching GM-DCs from a glucose-containing to
a galactose-containing medium, which only supports a low
glycolytic rate, 8 h after LPS stimulation actually enhances co-
stimulatory molecule expression, IL-12 production, and their
potential to activate CD8+ T cells, which is ascribed to
deregulation of the mTORC1/HIF1α network (60) (Figure 3).
Indeed, increased glycolysis may be preferentially supported by
glycogenolysis of intracellular glycogen reserves during the first
6 h post-stimulation of DCs, rather than extracellular glucose
(46). GM-DCs activated with LPS or IL-4 during differentiation
accumulate intracellular glycogen, which correlates with their
enhanced T cell stimulation potential (61). At later stages after
GM-DC stimulation, extracellular glucose uptake is enhanced
via the upregulation of glucose transporters such as the glucose
transporter 1 (GLUT1) (13, 46, 56), and GLUT1 inhibition 24 h
after LPS stimulation reduces CD40 and CD86 expression (46).
Of note, expression levels of GLUT1 might be a suboptimal
readout for its induction or activity. In fact, GLUT1 is
translocated from intracellular vesicles to the cell membrane for
glucose uptake upon LPS stimulation in macrophages, which
does not entirely correlate with mRNA expression levels (62).
Moreover, a significant amount of glucose imported from the
extracellular environment by activated DCs still appears to be
metabolized to glycogen first before entering glycolysis (glycogen
shunt; Figure 2) (46). Additionally, upon 6 h pRNA stimulation
of primary human blood cDC2s, glycolytic metabolism appears
to rely on BCL2 interacting protein 3 (BNIP3)-dependent
mitophagy, despite reported 2-DG-sensitive glucose uptake and
ENO2 upregulation (53).

Early Glycolytic Induction: The TBK1/IKKε/AKT/HK-II

Axis
Glycolytic reprogramming upon activation of DCs appears to be
largely driven by TANK-binding kinase-1 (TBK1)/IκB kinase-ε
(IKKε)/AKT/hexokinase (HK)-II activation in the short term and
regulated by AMPK loss and induction of mTOR and/or HIF1α
in the long term (Figure 3). TBK1 and IKKε, both non-canonical
IκB kinase homologs downstream of TLRs, are activated in GM-
DCs within minutes after LPS stimulation, leading to PI3K-
independent AKT phosphorylation and association of the rate-
limiting glycolytic enzyme HK-II with mitochondria. These
events promote glycolytic flux and support early induction of
glycolysis in LPS-stimulated GM-DCs as well as in primary

mouse spleen cDC2s ex vivo (49) (Figure 4). Indeed, early
induction of TBK1, AKT, and mTORC1 occurs upon stimulation
with potent and weak stimuli, correlating with early increase in
glycolytic activity (56). LPS-stimulated human moDCs in vitro
also enhance HK-II expression and activity in concert with
enhanced glycolysis and cytokine production in the long
term; however, HK-II induction and glycolysis in this setting
appear to rely on HIF1α activity mediated by p38/mitogen-
activated protein kinase (MAPK; Figure 4). Nevertheless, this
p38/MAPK/HIF1α axis does not seem to be involved in enhanced
glycolysis by human moDCs after TLR2/6-mediated activation
but relies on TBK1 (51). Notably, HK-II itself can act as a PRR
and cause inflammasome activation (63).

Glycolytic Reprogramming: AMPK vs. the

PI3K/AKT/mTOR Pathway
Loss of AMPK and induction of the PI3K/AKT/mTOR pathway
(Figure 1) at longer time points after LPS stimulation of GM-
DCs (18–24 h) ultimately lead to upregulation of glycolytic
enzymes such as LDHA, pyruvate kinase 2 (PKM2), or
phosphofructokinase (PFK), as well as glucose transporters
like GLUT1 (13, 56), which depend on glucose availability
(60) (Figure 3). Mechanistically, inactivation of AMPK occurs
upon LPS stimulation, alleviating mTORC1 inhibition (13,
60). In line, activation of AKT, mTORC1, and mTORC2
declines 18 h after weak stimulation of GM-DCs hand in
hand with loss of increased glycolysis activity (56). Enforced
AMPK activation or inhibition/loss can prevent or foster
GM-DC maturation, respectively (13, 33), associating active
AMPK with diminishing proinflammatory DC functions (59).
Human pRNA-activated cDC2s downregulate AMPKα1 levels,
which appears to be dependent on mitophagy in this system
(53). A reduction in glycolysis and activation of GM-DCs
upon early inhibition of glycogenolysis also associate with a
rapid drop in intracellular ATP and AMPK activation (46).
Inhibition of mTOR/mTORC1 blunts glucose consumption,
lactate production, upregulation of glycolytic enzymes/glucose
transporters, and increased extracellular acidification rate
(ECAR) in GM-DCs 20 h or longer after LPS stimulation
(60, 64). Hence, mTOR activation appears to control DC
activation, especially maintaining it for prolonged periods of
time (43) (Figure 3). Indeed, ectopic AKT/PKB activation, which
sustains mTOR activation, enhances co-stimulatory molecule
expression and cytokine secretion in human pDCs (32). Also,
mTOR signaling is essential for induction of IFN-I responses of
(primary) mouse and human pDCs (65). In concert, rapamycin
treatment of anti-CD40-stimulated GM-DCs in vitro or IL-
4-treated spleen CD11c+ DCs in vivo downregulates co-
stimulatory molecules/cytokines and promotes activation of
Tregs, but not allogeneic CD4+ T cells (30, 66).

Nevertheless, sustained mTOR signaling may also be
detrimental for proinflammatory DC functions (23, 41, 59, 67).
For example, knockdown or pharmacological inhibition of
mTOR enhances life span, prolongs the expression of co-
stimulatory molecules, cytokine production, and promotes T
cell stimulatory activity of LPS-stimulated GM-DCs (64, 68, 69)
(Figure 3). Indeed, mTOR promotes NO production by activated
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GM-DCs, which limits their mitochondrial energy metabolism,
while mTOR inhibition restores the metabolic flexibility of
those cells in the long term (68) (Figures 3, 4). However, loss
of the negative mTORC1 regulator TSC1 in mouse DCs causes
impaired cytokine production and antigen presentation upon
TLR4 stimulation (36). mTORC1 inhibition in human CD1c+
cDC2s enhances proinflammatory cytokine production upon
stimulation with various agents but has the opposite effect
on LPS-stimulated human moDCs. Those contrasting effects
are ascribed to differential activation of NFκB upon mTORC1
blockade, which increases in LPS-stimulated CD1c+ cDC2s but
remains unchanged in moDCs (2). A spatiotemporal model to
integrate the ambiguous roles of mTOR regulating DC functions
has been proposed (23).

Sustained Glycolysis: The Role of HIF1α

HIF1α stabilization is also involved in enhanced glycolytic
activity of GM-DCs and human moDCs upon stimulation
in vitro and of natural mouse cDCs in vivo (15, 47, 51)
(Figures 3, 4). Many glycolytic genes are HIF1α targets and
are downregulated in DCs upon HIF1α loss, such as GLUT1
and LDHA (47, 50, 54, 60). Moreover, only potent GM-DC
stimulation that leads to long-term induction of glycolysis causes
HIF1α stabilization and induction of its target genes, while weak
activation fails to do so (56). In line, GM-DCs in the steady
state express higherMHCII and co-stimulatorymolecule levels in
hypoxic conditions (14). LPS stimulation of GM-DCs in hypoxia
compared with normoxia further elevates HIF1α activation,
glucose consumption, glycolytic enzyme expression, and lactate
and ATP production, enhancing GM-DC activation (47). Similar
effects are also observed upon in vitro Aspergillus fumigatus
stimulation of humanmoDCs in hypoxia in vitro (54). Inhibition
or loss of HIF1α in GM-DCs or human moDCs prevents the
increase in glycolytic rate and upregulation of glycolytic genes
upon LPS or Aspergillus fumigatus stimulation and reduces
co-stimulatory molecule expression, proinflammatory cytokine
production (including IL-12), and CD4+ T cell stimulatory
capacity in the long term (47, 51, 54). However, LPS-stimulated
HIF1α-deficient GM-DCs show enhanced IL-12 expression and
CD8+ T cell activation (60). Hence, further efforts will be
necessary to clarify the exact role of HIF1α on DC functions.
Nevertheless, spleen CD11c+ MHCII+ cDCs of mice lacking
HIF1α in CD11c-expressing cells also fail to induce higher
glycolysis and display reduced immunogenicity 14–18 h after
poly(I:C) stimulation. However, some of those effects might
be ascribed to elevated death of HIF1α-deficient spleen cDCs
(15). Importantly, HIF1α can be induced or stabilized by many
other mechanisms apart from mTORC1 or hypoxia, such as
glucose withdrawal (60), which might differentially influence
the effects on immunogenic DC activation. Moreover, HIF1α
can be activated by intracellular pyruvate or lactate produced
by glycolysis (70, 71). Indeed, the timing of HIF1α stabilization
occurring in humanmoDCs 4 h after LPS or zymosan stimulation
trails the immediate increase in glycolysis (50). Notably, weakly
stimulated GM-DCs do not accumulate HIF1α while still
inducing early glycolysis, in contrast to strongly activated GM-
DCs that stabilize HIF1α and maintain high glycolytic activity

at later stages (56). Taken together, HIF1α is implicated in the
maintenance rather than in the early induction of glycolysis
after DC stimulation (50) (Figures 3, 4) and appears to partially
depend on glucose availability (60).

Extracellular Cues Influencing Glycolytic Metabolism

of Activated Dendritic Cells
Signals in the microenvironment can strongly influence DC
function via modulating their glucose metabolism. For example,
the anti-inflammatory cytokine IL-10 inhibits the LPS-mediated
increase in glycolysis and GM-DC maturation likely via
maintaining active AMPK (13), and IL-10-deficient GM-
DCs display higher levels of the glycolytic enzyme ENO1
(57). Similarly, IL-10 loss in macrophages causes enhanced
glycolytic reprogramming upon LPS stimulation, which is
ascribed to mTORC1 inhibition by autocrine IL-10 via signal
transducer and activator of transcription 3 (STAT3) and
DNA damage inducible transcript 4 (DDIT4). Notably, they
also accumulate dysfunctional mitochondria due to reduced
autophagy independent of NO (62).

Metabolic reprogramming of mouse spleen cDCs may rely on
type I IFNs in concert with PRR signaling, as IFNα/β receptor
(IFNAR)-deficient cDCs fail to elevate glycolytic activity after
poly(I:C) stimulation in vivo while maintaining active OXPHOS
(15), and mouse pDCs from FLT3L-DC cultures increase their
OCR and ECAR upon 24 h exposure to IFNα (72) (Figure 4).
However, IFNα treatment or IFNAR inhibition in primary
human blood pDCs ex vivo does not affect induction of glycolysis
after stimulation with influenza A virus (52).

Last, exogenous metabolites such as fatty acids or lactate are
sensed by DCs, leading to an adaption of their metabolism and
functions [reviewed in Pearce and Everts (41)], such as lactate-
mediated effects on HIF1α (70, 71, 73). For example, the short-
chain fatty acid butyrate can prevent maturation and glycolytic
reprogramming of humanmoDCs upon LPS stimulation, driving
them to induce Tregs (74).

Fatty Acid Synthesis and ER Stress During
Dendritic Cell Activation
Generation of TCA cycle intermediates regulates function and de
novo FAS upon DC stimulation. Indeed, while glycolysis-derived
ATP appears to be dispensable for early GM-DC activation,
incorporation of pyruvate into the mitochondrial TCA cycle
is essential, as knockdown of the mitochondrial pyruvate
carrier MPC-1 (Figure 2) limits GM-DC maturation and
cytokine production (49). Accumulation of TCA intermediates
such as citrate, succinate, and fumarate in stimulated DCs
contributes to the regulation of inflammatory responses as well
as cytokine production (45, 75). Additionally, citrate escaping
the mitochondria serves as an important substrate for protein
acetylation, nicotinamide adenine dinucleotide phosphate
(NADPH) production, and, importantly, cytosolic FAS in
activated DCs (49, 75) (Figures 2, 3). In addition, knockdown of
the PPP enzyme glucose-6-phosphate dehydrogenase (G6PDH)
reduces LPS-induced maturation of GM-DCs (49). The PPP
produces ribose 5-phosphate (R5P), a precursor for biosynthesis
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of nucleotides, and NADPH, which is needed for production of
ROS and NO as well as for cytosolic FAS (Figure 2).

De novo FAS and accumulation of phospholipids increase
upon GM-DC stimulation with LPS (49) and after activation
of in vitro bone marrow-derived cDC1-like cells (iCD103;
Table 2) with LPS, CpG, and Mycobacterium bovis Bacille
Calmette Guerin (BCG) (76) (Figure 4). Indeed, accumulation of
intracellular fat in LPS- or IL-4-stimulated GM-DCs correlates
with enhanced T cell activation capacity (61). FAS also leads
to increased lipid storage in lipid bodies (LBs) in GM-DCs
(49), organelles composed of a core of neutral lipids such as
cholesteryl esters or triglycerides (TAG) surrounded by a single
layer of phospholipids (77). Notably, intracellular LB formation
associates with induction of cross-presentation potential in GM-
DCs, FLT3L-DCs, andmouse spleen cDCs that is at least partially
dependent on inflammasome activation or IFNγ-induced protein
immunity-related GTPase family member m3 (Irgm3) (78, 79).
Accordingly, the specialized cross-presenting CD8+ cDC1 subset
(Table 1) in the spleen harbors more LBs than CD8– cDCs (79).
Human and mouse liver DCs with high lipid content are more
potent activators of NK, CD4+, and CD8+ T cells, which is
reduced by inhibition of FAS (80). In line, FAS blockade in GM-
DCs by knockdown of the mitochondria–cytosol citrate shuttle
citrate transport protein (CTP) or by the FASN or ACC inhibitors
C75 and TOFA (Figure 2) prevents LPS-induced activation and
proinflammatory functions of GM-DCs (49). However, non-
activated GM-DCs or human moDCs differentiated in the
presence of TOFA show high levels of ER stress, ERK and
AKT signaling, and PPARγ expression, linked to enhanced
DC immunogenicity and T cell priming (7). In the iCD103
culture system that rather represents cDC1-like DCs (Table 2),
deficiency in ACC1 or 2 or their inhibition by TOFA does
not affect co-stimulatory surface marker expression and their
inflammatory cytokine profile uponCpG orMycobacterium bovis
BCG stimulation. T cell priming capacity or in vivomycobacterial
control of iCD103 DCs also remains unaffected by interference
with FAS (76). Of note, FAS impairment in iCD103s also results
in enhanced uptake of extracellular fatty acids, which might
represent a compensatory mechanism for fatty acid generation.
Nevertheless, the actual role and subsequent usage of fatty acids
produced by DCs appear to be dependent on the context and DC
subsets (Figure 4). For example, de novo synthesized fatty acids
provide building blocks for expansion of the Golgi apparatus and
the ER in LPS-stimulated GM-DCs and are ultimately required
for activated DCs to produce and secrete large amounts of
cytokines, which can lead to ER stress and the unfolded protein
response (41, 49). Liver DCs containing high amounts of lipids
have an increased ER stress, and its blockade reduces their ability
to induce immune responses (80). Indeed, ER stress can enhance
IL-23 production in zymosan-stimulated human moDCs via
IRE1α and X-box binding protein 1 (XBP1) (50). In contrast,
in mouse pDCs sorted from FLT3L-DC cultures, an increase
in ECAR late after CpG or IFNα stimulation associates with
enhanced FAS, which, in this setting, serves as a source of fatty
acids for FAO to maintain high OXPHOS levels (72) (Figure 4).

Overall, regulation of ER stress and lipid metabolism in
activated DCs can notably influence their function to release

cytokines and to present antigen (41, 81), and further efforts
will be needed to understand the precise functions in different
settings. In that regard, the importance of de novo FAS and lipid
accumulation in tolerogenic or dysfunctional DCs in cancer is
discussed in the section Lipid Accumulation and Dendritic Cell
Dysfunction in Cancer.

Mitochondrial Energy Generation
Regulating Dendritic Cell
Activation—Specific to Dendritic Cell
Subsets and the Context
Mouse GM-CSF Dendritic Cell Cultures
Development of natural DCs largely relies on FAO to fuel
OXPHOS (see the section Metabolic Control of Dendritic Cell
Development). However, in cultured GM-DCs, mitochondrial
energy metabolism is dramatically reduced upon immunogenic
stimulation in the long term (13) (Figures 3, 4). Indeed, the FAO
inhibitor etomoxir, the glutaminolysis inhibitor 6-diazo-5-oxo-
L-norleucine (DON), or glutamine deprivation has no effect on
GM-DCmaturation upon LPS stimulation (46, 49). Furthermore,
GM-DCs display irresponsiveness to ETC inhibitors and exhibit
decreased OCR and 19m 18 or 24 h post-LPS stimulation,
which is independent of PI3K/AKT signaling (13, 48). The
production of NO via the enzyme inducible NO synthase (iNOS)
is central to the collapse of OXPHOS of activated GM-DCs
in the long term and their functions (48) and was recently
reviewed (82). In brief, NO is induced in GM-DCs within 6 h
after LPS stimulation, and their enhanced glycolytic rate becomes
NO dependent about 9 h after stimulation, when OXPHOS
declines (49). Stabilized HIF1α enhances NO generation by
increasing the expression of iNOS, which, in turn, leads to the
inhibition of prolyl hydroxilases (PHDs) that label HIF1α for
degradation. This positive loop causes NO accumulation, which
leads to nitrosilation of some ETC complexes and inhibits their
functionality (48, 60, 82) (Figures 3, 4). A small proportion of
mouse moDCs induced by Listeria monocytogenes infection also
display a comparable NO-mediated inhibition of OCR late after
stimulation that is compensated by enhanced glycolysis (48).
Based on those and other studies in tolerogenic DCs (see the
section DC Metabolism in Tolerance), anabolic metabolism, and
glycolysis are generally associated with immunogenicity of DCs,
while catabolic metabolism and active mitochondrial respiration,
regulated via AMPK/PGC1α, are related to tolerogenicity of DCs
(41, 43, 83).

However, several pieces of evidence point toward a potential
role of mitochondrial energy metabolism and functional
OXPHOS in immunogenic, activated DCs. Indeed, 19m and
OCR are actually increased in GM-DCs in the short term up
to 6 h after LPS stimulation before iNOS becomes expressed
(Figure 4), which is prevented by 2-DG (48, 49), andweak stimuli
like HDM or ZymD do not reduce mitochondrial respiration
18 h post-activation (56). Moreover, decreased mitochondrial
abundance is usually not associated with NO-mediated OXPHOS
inhibition upon GM-DC activation (13), and 24 h LPS-activated
GM-DCs or mouse moDCs fully restore their mitochondrial
respiratory profile when NO production is diminished (48). Also,
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ENO1 loss causes a profound dysregulation of mitochondrial
morphology in short-term (2 h) Chlamydia-stimulated GM-
DCs associated with a drop of intracellular pyruvate levels and
enhanced cell death (57). Additionally, antiviral responses of
DCs promoted by cytoplasmic RNA sensor RIG-I-like receptor
(RLR) signaling depend on the mitochondrial localization of
the antiviral signaling protein (MAVS), which requires active
19m (41).

These observations suggest that mitochondrial energy
generation contributes to DC activation in certain settings.
Indeed, deficiency or inhibition of iNOS in LPS-activated
GM-DCs maintains active OXPHOS and even enhances aspects
of DC activation, such as CD8+ T cell stimulation and CD86
and MHC molecule expression in the long term (48) (Figure 3).
The presence of the mTORC1 inhibitor rapamycin attenuates
NO production and ameliorates the decrease in mitochondrial-
dependent OCR in activated GM-DCs (60, 68). The maintenance
of functional OXPHOS permits the cells to use FAO and
glutaminolysis for energy generation (68). Also, the culture of
LPS-activated GM-DCs in galactose enhances OCR, while ECAR
levels plummet (60). Indeed, in the long term, rapamycin-treated
or galactose-cultured activated GM-DCs display a prolonged
life span together with extended co-stimulatory molecule and
IL-12 expression that leads to more potent activation of CD8+
T cells, which is at least partially dependent on suppression of
HIF1α/iNOS signaling (60, 64, 68) (Figure 3).

Natural Mouse and Human Dendritic Cell Subsets
Crucially, contrary to cultured GM-DCs, most DC subsets
present in lymphoid organs do not express detectable levels of
iNOS, foremost naturally occurring cDC1s and cDC2s, as well
as cultured human moDCs (82) (Tables 1, 2 and Figure 4). In
line, mitochondrial energy metabolism and OXPHOS remain
intact in in vitro LPS- or zymosan-stimulated human moDCs
(50). Also, splenic mouse cDC1 and cDC2 increase their ECAR
shortly after in vivo LPS stimulation (49); however, notably, they
do not display any differences in the ECAR/OCR ratio 24 h
after ex vivo LPS stimulation (48) (Figure 4). Uptake of dead
cell material and cross-presentation potential of unstimulated
natural mouse spleen cDC1s and DN-DCs/mcDCs (Table 1) are
diminished upon abrogated mitochondrial function caused by
aging or ETC inhibition (22). Conversely, 14 h in vivo poly(I:C)
stimulation reduces 19m and OCR of total spleen cDCs, which
is prevented by IFNAR deletion (15) (Figure 4), suggesting an
additional context-mediated mechanism. In the same study,
maintenance of mitochondrial energy metabolism and reduction
in ECAR upon poly(I:C) stimulation by HIF1α loss in spleen
cDCs reduce their T cell activation potential. However, this
effect is ascribed to unbalancing cellular metabolism leading
to enhanced ROS production, lower ATP levels, and increased
cell death (15). Nevertheless, in 6 h-stimulated human blood
cDC2s, mitochondrial morphology and dynamics are altered,
the OCR is strongly reduced, and BNIP3-dependent mitophagy
is triggered, which appears necessary for glycolytic activity and
activation (53).

Notably, pDCs appear to show distinctive rewiring of their
mitochondrial energymetabolism in different settings (Figure 4).

While human pDCs mildly decrease their OCR after 24 h ex
vivo influenza or rhinovirus infection (52), they elevate OXPHOS
6 h post-pRNA stimulation, which appears to be mediated
by autophagy-induced glutaminolysis (53). Importantly, the
induction of mitochondrial energy metabolism in human pDCs
is required for the production of IFNα, CD80, and PD-L1
expression (53). Mouse pDCs sorted from FLT3L-DC cultures
enhance mitochondrial pyruvate import and FAO that fuel
elevated OXPHOS 24 h post-CpC stimulation. This effect is due
to IFN-I induction, with IFNα itself promoting FAO via PPARα

(72), in contrast to mouse spleen cDCs where IFNAR deficiency
maintains high OCR (15) (Figure 4).

Hence, no general conclusion can be reached as to the
importance and function of mitochondrial energy metabolism,
OCR, and OXPHOS in activated DCs, and it appears context
and DC subset dependent (Figure 4). Metabolic flexibility of
activated DCs to switch their carbon source for ATP generation
from glucose to galactose, glutamine or fatty acids would
be of benefit in DC function and indeed, prevention of
OXPHOS collapse and metabolic plasticity enhance DC survival
and activation upon glucose deprivation and mTOR or iNOS
inhibition (48, 60, 68). In the future, it will be interesting
to determine the influence of the microenvironment in which
DCs are activated. Not only nutrient or oxygen availability but
also other environmental factors can strongly influence DC
metabolism, such as extracellular lactate, fatty acids (41), the
TCA intermediates citrate, succinate, and fumarate (45, 75), as
well as IL-10 (13, 57) or IFN-I (15, 52, 72), as discussed in
the section Extracellular Cues Influencing Glycolytic Metabolism
of Activated Dendritic Cells. Moreover, NO produced by
neighboring cells can cause HIF1α stabilization and trigger a
cellular loop in DCs, leading to a glycolytic switch (60, 68).

Development andmaintenance of different DC subsets display
differential metabolic requirements (discussed in the section
Metabolic Control of Dendritic Cell Development), which will
likely reflect on their metabolic reprogramming upon activation.
Considering that different DC subsets specialize on distinct
functions (Table 1), their metabolic requirements to exert those
tasks might differ, as suggested in a recent study (53). Moreover,
a fine regulation of OXPHOS activity, such as reported in the
case of supercomplex assembly in macrophages (84, 85), may also
have a functional effect on DCs.

DENDRITIC CELL METABOLISM IN
TOLERANCE

DCs contribute to the maintenance of immunological tolerance
in order to prevent hyperactivation of the immune system and
subsequent autoimmune diseases. Generally, such tolerogenic
DCs arise in the steady state during uptake of (self-)
antigen in the absence of danger signals, upon sensing
of anti-inflammatory cytokines/factors, and during various
pathological states, including cancer, due to tolerizing signals
(86, 87). Tolerogenic or semimature DCs can be identified by
upregulation of regulatory surface molecules or receptors such
as PD-L1 and tolerogenic cytokines IL-10, IL-27, and TGFβ,
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leading to induction of Treg activation at the expense of effector
T cells (83, 86). Much of the functionality of tolerogenic DCs is
intertwined withmetabolic activity, such as lipid accumulation or
catabolism of amino acids [tryptophan (Trp) and arginine (Arg)].

Metabolic State(s) and Their Regulatory
Cellular Pathways in Tolerogenic Dendritic
Cells
Metabolic Adaptions of Tolerized Dendritic Cells
Our understanding of energy metabolism of tolerogenic DCs is
largely based on observations in human moDC cultures treated
with vitamin D3 or D2 (VitD3 or VitD2), dexamethasone (DEX),
and/or resveratrol (83, 88–91). Resveratrol is a plant-derived
polyphenol that induces regulatory properties in mouse and
human DCs, preventing their maturation and immunogenic
activation (92, 93). Glucocorticoid receptor engagement by DEX
modulates many aspects of DC maturation, including antigen
presentation and cytokine production, leading to a tolerant
phenotype (83, 94, 95). VitD3 skews DC functionality toward an
inhibitory phenotype inducing Tregs and enhancing expression
of inhibitory receptors (96, 97).

Tolerogenic human moDCs, generated either by treatment
with DEX+VitD3 for 48 h or 1,25-dihydroxyvitamin D3
[1,25(OH)2-VitD3, the active form of VitD3] for 24 h, exhibit
enhanced catabolism and metabolic plasticity, increased
expression of genes involved in OXPHOS, glycolysis/glucose
metabolism, and FAO in concert with higher mitochondrial
respiration (OCR) and glycolytic activity (ECAR) than untreated
moDCs (88, 89). Intriguingly, LPS stimulation of DEX+VitD3-
tolerized moDCs slightly decreases their OXPHOS capacity;
however, their glycolytic capacity drops to levels of immunogenic
LPS-stimulated DCs, which are, in this study, lower than those
of untreated moDCs (88). Functionally, while MHCII expression
of LPS-stimulated immunogenic moDCs is sensitive to glycolysis
inhibition, LPS-stimulated DEX+VitD3-tolerogenic moDCs
remain unaffected. DEX+VitD3-tolerogenic moDCs increase
their MHCII levels upon inhibition of FAO instead. In line, FAO
inhibition rescues the ability of DEX+VitD3-tolerogenic moDCs
to induce expression of activationmarkers on CD4+ T cells upon
LPS stimulation (88). Moreover, in the context of melanoma,
a Wnt5a/β-catenin and PPARγ pathway induces FAO and a
tolerogenic indoleamine 2,3-dioxygenase (IDO)-producing and
Treg-activating phenotype in DCs (98). In contrast, in moDCs
tolerized by DEX+VitD2, immunogenic stimulation induces
even higher glycolysis/cellular LDH activity than in activated
moDCs (91). Nevertheless, the maintenance of tolerogenic
features of both 1,25(OH)2-VitD3-treated and (re-stimulated)
DEX+VitD2-treated moDCs relies on glycolysis, and their
tolerogenic phenotype is abrogated by 2-DG treatment (89, 91).
Notably, levels of FAO are unaltered in 1,25(OH)2-VitD3-treated
vs. control moDCs, and FAO inhibition by etomoxir does not
affect their tolerogenic hallmarks (89). Accumulation of pyruvate
during glycolysis may partially cause the concomitant increase
in OXPHOS in those tolerogenic moDCs in concert with
elevated OXPHOS-related gene expression (89). Those results
indicate a metabolic plasticity and responsiveness of tolerogenic

moDCs, which display a very active metabolism, despite showing
differential dependencies on glycolysis vs. FAO/OXPHOS. Those
controversies may be due to the different experimental settings,
presence or absence of immunogenic stimulation, and the fact
that 1,25(OH)2-VitD3 has stronger effects on OXPHOS, lipid,
and glucose metabolism of tolerogenic moDCs than DEX (99).
Nevertheless, tolerogenic DCs appear to rely less on glycolysis
than LPS-activated immunogenic DCs for their functionality
and, as they largely upregulate functional OXPHOS, might
be able to adapt their metabolism depending on the context.
However, those conclusions are solely based on cultured human
moDCs, and the metabolism of other tolerized DC subsets in
complex in vivo settings largely remains to be investigated.

AMPK and mTOR Pathways Influence Tolerogenicity

of Dendritic Cells
The tolerogenic status of DCs is also influenced by a balance
of the nutrient-sensing pathways AMPK and mTOR, which
appear to be equally context dependent as for immunogenic
stimulation of DCs. Inflammatory activation of DCs involves
enhanced glycolytic activity and anabolic metabolism compared
to immature DCs that largely appear to be controlled by
mTOR signaling (see the section Mechanisms That Control
Glycolytic Reprogramming in Activated Dendritic Cells), and,
despite controversial findings (64, 68), mTOR inhibition by
rapamycin can cause DC tolerization (30, 66). Accordingly,
DEX or resveratrol treatment of macrophages can block
iNOS expression and NO generation (100, 101), whose
upregulation associates with LPS-activated GM-DCs (82),
while VitD3 had varying effects (102). Indeed, an axis
involving AMPK, PGC1α, and PPARγ is suggested to control
tolerogenicity of DCs, largely by preventing biosynthetic
metabolic adaptions or pathways driving immunogenic DC
activation such as mTOR (41, 43, 59, 83). This concept
is founded on the observations that tolerogenic DCs show
enhanced mitochondrial respiration and that AMPK activation
favors catabolic metabolism, FAO, and OXPHOS, largely via
PPARγ and the mitochondrial biogenesis inducer PGC1α (41,
43, 59, 83). Indeed, DEX+VitD3- and 1,25(OH)2-VitD3-treated
human moDCs upregulate AMPK activity and signaling (88,
89), human cDC2s (53) and GM-DCs reduce AMPK activation
upon pRNA or LPS exposure, and the inhibitory effect of IL-
10 on LPS-mediated maturation of mouse GM-DCs appears
to be AMPK dependent (13). Further, AMPKα1-deficient LPS-
stimulated GM-DCs show augmented proinflammatory features
such as enhanced co-stimulatory molecule expression and
CD40 signaling, increased IL-6 and TNFα, but decreased
IL-10 production and skewing of CD4+ T cell activation
toward a Th1 and Th17 phenotype (33). The AMPK inducer
5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) is
equally potent in blocking glucose consumption by LPS-
stimulated GM-DCs as 2-DG (13) and AMPK activation after
uptake of dead cells induces autophagy, tolerogenic properties,
and reduced anti-tumor immune responses (103). Intriguingly,
several studies also implicate VitD3, resveratrol, and DEX
in enhancing AMPK activation in various other settings and
cell types (104–110). Moreover, resveratrol treatment promotes
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OXPHOS and mitochondrial biosynthesis in mice and humans
via mechanisms similar to AMPK, such as activating the histone
deacetylase Sirtuin 1 and augmenting PGC1α expression (90,
111). Loss of the PGC1α targets PPARγ or nuclear factor
erythroid 2-related factor 2 (NRF2) enhances DC maturity and
proimmunogenic functionality (41).

However, the precise role of balanced mTOR/AMPK
signaling in tolerogenic DCs remains controversial. Indeed, the
PI3K/AKT/mTOR axis is reported to be vital for tolerogenic
features of moDCs, independent from AMPK (89, 91). Human
restimulated DEX+VitD2-tolerized moDCs strongly upregulate
mTOR phosphorylation and signaling compared to non-
tolerized controls (91). PI3K or mTOR inhibition (by LY294002
or rapamycin, respectively) enhances MHC and co-stimulatory
molecule expression and reduces co-inhibitory molecules as
well as the IL-10/IL-12p70 expression ratio by 1,25(OH)2-
VitD3-treated and DEX+VitD2-treated moDCs without or after
immunogenic activation. Induction of CD4+ and CD8+ T cell
proliferation and IFNγ production is also enhanced by mTOR
inhibition in both tolerogenic human moDC cultures (89, 91).
Importantly, in this setting, AMPK activation by AICAR is
ineffective in altering the tolerogenic phenotype of 1,25(OH)2-
VitD3-treated moDCs (89). Moreover, the context dependence
of cellular metabolism associated with active mTOR signaling
is highlighted by a recent study of allergic airway inflammation
in mice harboring mTOR-deficient CD11c-expressing cells (31).
There, HDM exposure induces the generation of lung CD11c+
MHCII+ CD11b+ DCs that depend on macrophage CSF (M-
CSF) and, hence, likely represent moDCs (Table 1). Upon loss of
mTOR, those induced CD11b+ DCs show enhanced expression
of CD80 and CD86 co-stimulatory molecules and skew the
HDM-mediated Th2-polarized allergy toward a neutrophilic
Th17-mediated lung inflammation. Moreover, mTOR-deficient
CD11b+ DCs accumulate fatty acid metabolites, and FAO
inhibition by etomoxir diminishes their activated phenotype
(31). Those observations suggest anti-inflammatory/tolerizing
effects of mTOR associated with inhibition of FAO that, in turn,
appears functionally important for an activated state and Th17
polarization capacity of lung CD11b+ inflammatory DCs in
allergic airway inflammation.

In summary, research on primary DC subsets in settings
of immune tolerance, additional to tolerized DC cultures,
will be needed to advance our knowledge on tolerogenic
DC metabolism.

Lipid Accumulation and Dendritic Cell
Dysfunction in Cancer
The role of lipid metabolism for immunogenic and tolerogenic
DC function is ambiguous. Although lipid accumulation in DCs
seems to support immunogenic immune responses and cross-
presentation (78, 79) (see the section Fatty Acid Synthesis and
ER Stress During Dendritic Cell Activation), it also associates
with DC dysfunction in tumor settings. Tumor-associated DCs
accumulate high amounts of cytosolic lipids in both mice
and humans. Lipid-laden DCs isolated from tumor-bearing
mice exhibit defective T cell stimulation ability due to altered

antigen processing and presentation (112). The aberrant lipid
accumulation in DCs is fostered by yet-unknown factors secreted
by tumor cells and mediated by macrophage scavenger receptor
1 (Msr1) on DCs (112), a receptor that binds primarily modified
lipoproteins (113). Inhibition of Msr1 or blockade of FAS with
TOFA restores lipid content and DC immunogenicity, indicating
that enhanced lipid uptake, FAS, or a combination impairs
DC-mediated antitumor immunity. Interestingly, this effect is
observed in cDC1s and cDC2s but not in pDCs (112), which
might be a reflection of the different functions and/or metabolic
pathway usage among DC subsets in vivo (Table 1 and Figure 4).
Indeed, CD103+ cDC1s from draining LNs (dLNs) of tumor-
bearing mice accumulate more LBs compared to the CD103– DC
counterparts, which substantially reduces their ability to cross-
present antigens (114). Cross-presentation plays a central role in
the generation of efficacious anticancer CD8+ cytotoxic T cell
responses (115), and these data provide a metabolic explanation
for the impaired ability of tumor-infiltrating DCs to induce
potent antitumor adaptive responses.

The differential effect of lipid accumulation in DCs seen in
tumor settings may be due to accumulation and/or signaling
by modified lipid species. For instance, tumor-derived factors
act on DCs activating liver X receptor (LXR)-α signaling,
whose natural ligands are oxidized cholesterol (oxysterols), and
reduce the expression of CCR7, inhibiting their migration to
the dLNs (116). Consistently, LXR-α/LXR-β-deficient GM-DCs
show impaired migration in response to the CCR7 ligands
CCL19 and CCL21, and this response is partially dependent on
the LXR target CD38, a molecule that is linked to leukocyte
trafficking (117). Oxidized lipids contained in tumor-associated
DCs also affect cross-presentation (118). Accumulation of
oxidized polyunsaturated fatty acids, cholesterol esters, and TAG
impairs cross-presentation without affecting the presentation of
endogenous antigens. Notably, the accumulation of non-oxidized
lipids does not alter cross-presentation, supporting the idea that it
is not the mere storage of lipids but the accumulation of modified
lipids that alters DC function (114, 118). Consistent with these
observations, tumor-derived factors trigger lipid peroxidation in
tumor-associated DCs, which activates the ER stress response
mediated by IRE-1α and its target XBP1. XBP1 activation, in
turn, induces a lipid biosynthetic program that results in the
accumulation of LBs and blunted antigen presentation, leading
to a reduced ability to control tumor growth (119). Regarding
the mechanisms by which LBs and modified lipids could impair
cross-presentation, oxidatively truncated TAG accumulate on
the surface of LBs and bind the heat shock-induced chaperone
heat shock protein 70 (HSP70). As a result of this interaction,
peptide–MHCI complexes do not traffic to the cell surface and
rather accumulate in lysosomal/late endosomal compartments
(114), although the mechanism by which HSP70 controls antigen
cross-presentation remains to be elucidated.

Taken together, these data illustrate mechanisms by
which capabilities of DCs are suppressed in tumors through
modification of their lipid metabolism, either by secreted factors
or indirectly by an altered tumor microenvironment. Tumor-
associated DCs exert their functions in a tissue where glucose is
scarce due to the high glycolytic rates of tumor cells (120), and
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the inability to adopt a glycolytic metabolism can impair DC
effector functions (see the section Metabolic Rearrangements
Upon Immunogenic Dendritic Cell Stimulation). Alternatively,
tumor-derived factors can enforce FAO and OXPHOS in
DCs and promote accumulation of lipids, which can, in turn,
inhibit secretion of proinflammatory cytokines and antigen
cross-presentation, respectively (98, 112, 119). Nonetheless,
it remains unanswered why and how tumor-associated DCs
accumulate high amounts of lipids. Some reports indicate
that lipid accumulation is due to activation of a lipogenic
program (119), while others suggest increased lipid uptake
(112). Moreover, tumor cells also secrete other factors to the
local milieu that act on tumor-infiltrating DCs and support the
acquisition of a tolerogenic phenotype such as adenosine (121)
or lactate (70, 71, 73). Thus, the metabolic reprogramming of
tumor-associated DCs can contribute to tumor progression.

Amino Acid Metabolism and Tolerizing
Dendritic Cell Functions
Catabolism of the essential amino acid Trp is critical in balancing
inflammation and tolerance. Trp is metabolized by the enzyme
IDO1, generating kynurenine (Kyn) in a process that consumes
oxygen (122). This enzyme is highly expressed by tumor cells
and exploited as a mechanism for immune evasion (123). IDO1-
mediated Trp catabolism promotes local immunosuppression
by two means: (1) Trp starvation limits T cell proliferation
by impairing the T cell cycle machinery (124, 125), and (2)
Kyn products induce T cell apoptosis (126), inhibit T cell
cytotoxicity via downregulation of T cell receptor (TCR) CD3
ζ-chain (127), and induce differentiation of Tregs (127, 128).
Notably, a subset of tumor-associated pDCs that accumulate
in tumor-draining LNs (tdLNs) express IDO and mediate
antigen-specific T cell anergy, contributing to tumor progression
(129, 130). Cytokines such as IFNγ and TGFβ (131–134) and
immunosuppressive drugs such as DEX (131) induce IDO in
pDCs. Remarkably, cytotoxic T-lymphocyte-associated protein
(CTLA)-4-expressing Tregs bind B7 family receptors on pDCs
also triggering IDO1 expression (132, 133). This bidirectional
conditioning also happens upon glucocorticoid-inducible TNF
receptor-related protein (GITR) ligand (GITRL) engagement by
GITR, expressed by Tregs and pDCs, respectively, inducing IDO1
expression via activation of the IKB–IKKα non-canonical NFkB
pathway in pDCs in an IFNα-dependent manner (131). This
crosstalk would establish a positive feedback loop to favor long-
term immunosuppression. DEX induces this tolerogenic pathway
by concomitant upregulation of GITR on CD4+ T cells and
GITRL on pDCs (131). DEX treatment is a frequently used
treatment to tolerize human moDCs in vitro (see the section
Metabolic Adaptions of Tolerized Dendritic Cells), which often
display high FAO and OXPHOS rates (88, 89). Therefore, one
could hypothesize that FAO and IDO1 activities collaborate in
establishing a tolerogenic program in DCs. Indeed, an oxidative
metabolic profile adopted by tolerogenic DCs supports IDO1
function, providing a direct link between FAO and tolerogenic
DC responses in vivo (98).

Arg is another amino acid that has a central
immunomodulatory role. In immune cells, Arg is metabolized
by iNOS under inflammatory conditions to generate L-citruline
and NO (135), the latter being associated with activated GM-
DCs (82). Alternatively, Arg can be metabolized by arginases
1 and 2 (Arg1 and 2) to produce ornithine, a precursor for
polyamines that can support tumor cell proliferation (135, 136).
Notably, tumor-infiltrating DCs act as Arg sinks, contributing
to local Arg depletion and indirectly inhibiting T cell antitumor
responses (137). Additionally, Arg1-dependent production
of the polyamine spermidine by DCs induces both IDO1
enzymatic and signaling activities, allowing the establishment of
a tolerogenic phenotype in response to TGFβ (138). Interestingly,
myeloid-derived suppressor cells also release polyamines that
condition DCs to express IDO1 and, therefore, amplify the
immune suppression exerted through joint modulation of amino
acid catabolism in cancer (138).

Enhanced Trp and Arg catabolism causes amino acid
depletion in the local microenvironment, which is sensed by T
cells via the Ser/Thr kinase general control non-derepressible
2 kinase (GCN2) and results in limited protein synthesis and
proliferative arrest (139–141). Intriguingly, GCN2 activation in
response to amino acid scarcity improves antigen presentation
by human moDCs in vitro in response to yellow fever vaccine
YF-17D by enhancing autophagy (142). Indeed, human CD8+
T cell responses after YF-17D vaccination correlate with
increased expression of GCN2 and autophagy-related genes,
and mice deficient for GCN2 or autophagy related-proteins 5
or 7 in the CD11c compartment show impaired antiviral T
cell responses (142). Hence, active Trp and Arg amino acid
metabolism by DCs influences the microenvironment and T cell
responses and is involved in immune suppression.

CONCLUDING REMARKS

DCs are functionally defined by their ability to prime immunity
and tolerance, but how their cellular metabolism (Figure 2) is
affected by sensing of environmental cues and how this metabolic
rewiring affects, in turn, DC function is an emerging fascinating
field. The diversity of DCs (Tables 1, 2) and the fact that a great
body of literature has been generated using DC-like cells from
mouse bone marrow cultures with GM-CSF (12) limit our ability
to predict what are the regulation and consequences of metabolic
rearrangements in natural DCs in vivo.

Moreover, the use of inhibitors or genetic deletion of
metabolic regulators to interrogate modulation of metabolic
pathways is debated. Metabolic inhibitors have the advantage
of immediate action on otherwise unaltered DCs and universal
application on primary mouse and human DCs ex vivo.
However, their applicability for DC-specific in vivo studies is
limited, and they can have off-target effects, such as reported
for C75, etomoxir, and 2-DG (16, 20, 58). On the other
hand, genetic deletion of metabolic regulators in DCs using
Cre-expressing mouse lines or other genetic approaches such
as shRNA or CRISPR/Cas9 largely circumvents side effects
and allows investigation of DCs with metabolic impairment
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in vivo. Nevertheless, genetic deficiency of important metabolic
regulators can cause a deregulation of DC development (see
the section Metabolic Control of Dendritic Cell Development)
that challenges investigation of their functions, and unrelated
compensating mechanisms that are difficult to control. While
there is probably no consensus on the ideal strategy, studying
consequences of manipulation of DC metabolism in vivo, rather
than in vitro, may be of high relevance, as the microenvironment
is crucial for cellular metabolism. Additionally, future studies
of DC metabolism employing combined approaches of
pharmacological inhibition and genetic deficiency will be
most convincing.

Nevertheless, some patterns are starting to emerge showing
that moDC and cDC1 generation is more dependent on
functional mitochondrial metabolism and OXPHOS than cDC2s
or pDCs (Tables 1, 2). Early induction of glycolysis characterizes
and is required for immunogenic activation of cultured DCs and
primary DC subsets, while long-term glycolytic reprogramming
is finely regulated and may have suboptimal consequences
(Figure 3). Indeed, important differences of metabolic/glycolytic
adaptions of DCs early or late after stimulation are emerging,
such as the different signaling pathways regulating early (49)
and, likely, rather late glycolytic reprogramming (50, 56) or
the time-dependent substrate use for glycolysis (46). Moreover,
while weak and potent stimulants induce early glycolytic activity
in GM-DCs, only strong activation achieves maintenance of
increased glycolysis for 18 h or longer (56), further supporting
the action of different mechanisms. Notably, metabolic flexibility
for energy generation of long-term activated GM-DCs (3 days
or more) seems to benefit their immunogenic functions (60, 64,
68) (Figure 3).

In contrast, tolerogenic DCs appear to generally rely more
on OXPHOS than glycolysis, based on cultured human moDCs
tolerized with specific stimuli. However, we only understand
fragments of the cellular energy metabolism of tolerogenic DCs
and the signaling pathways controlling their induction and
maintenance of their functions.

Importantly, different DC subsets (Table 1) emerge to display
pronounced variations in their adaption of mitochondrial energy
metabolism upon immunogenic activation (Figure 4), reaching
from strong induction of OXPHOS in pDCs, context-dependent
alterations in cDCs, to a long-term reduction in cultured GM-
DCs or human moDCs. Additionally, while enhanced glycolysis
and FAS appear as general features of activated DCs, the further
application of fatty acids as building blocks for the ER/Golgi
or substrate for FAO also largely varies among DC subsets
(Figure 4). Further efforts in primary DC subsets in different
settings will likely contribute to a better understanding of context
dependence and regulation of immunogenic and tolerogenic
DC subset metabolism, as highlighted for lung inflammatory
DCs (31).

Overall, integration of nutrient sensing and adequate
adaption of mTOR/AMPK signaling (Figure 1) are crucial
for metabolic adjustments by DCs. However, the complexity
of metabolic reprogramming of DCs (upon stimulation) is
highlighted by the fact that the signaling mechanisms involved
in inducing glycolytic activity show context dependency and

even contradictory effects with regard to regulating DC function.
This controversy might be explained by differential routes
of activation and additional functions and nutrient-dependent
regulations of those important cellular signaling networks in
DCs, apart from controlling glycolytic metabolism, that remain
to be defined. For example, mTOR signaling is often linked with
immunogenic DC activation due to increasing glycolytic and
anabolic metabolism (41, 43, 59). However, tolerized moDCs
also exhibit increased glycolysis compared to control moDCs
in the steady state or after additional stimulation (88, 89),
which was, indeed, also dependent on mTOR and reduced by
rapamycin (91). Those observations indicate that the general
association of a metabolic state, anabolic glycolysis vs. catabolic
FAO/mitochondrial respiration (Figure 2), and concomitantly
pathways controlling metabolic adaption to nutrients, mTOR vs.
AMPK activation, cannot be generally ascribed to immunogenic
vs. tolerogenic DCs.

Indeed, the influence of the particular immunogenic or
tolerogenic context, ontogenic constraints of distinct DC subsets,
and additional (environmental) factors on the balance of
nutrient-sensing pathways and metabolic adaptions of DCs will
have to be carefully assessed in the future.
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