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The description of “serum sickness” more than a century ago in humans transfused

with animal sera eventually led to identification of a class of human antibodies directed

against glycans terminating in the common mammalian sialic acid N-Glycolylneuraminic

acid (Neu5Gc), hereafter called “Neu5Gc-glycans.” The detection of such glycans in

malignant and fetal human tissues initially raised the possibility that it was an oncofetal

antigen. However, “serum sickness” antibodies were also noted in various human disease

states. These findings spurred further research on Neu5Gc, and the discovery that it is

not synthesized in the human body due to a human-lineage specific genetic mutation

in the enzyme CMAH. However, with more sensitive techniques Neu5Gc-glycans were

detected in smaller quantities on certain human cell types, particularly epithelia and

endothelia. The likely explanation is metabolic incorporation of Neu5Gc from dietary

sources, especially red meat of mammalian origin. This incorporated Neu5Gc on glycans

appears to be the first example of a “xeno-autoantigen,” against which varying levels of

“xeno-autoantibodies” are present in all humans. The resulting chronic inflammation or

“xenosialitis” may have important implications in human health and disease, especially in

conditions known to be aggravated by consumption of red meat. In this review, we will

cover the early history of the discovery of “serum sickness” antibodies, the subsequent

recognition that they were partly directed against Neu5Gc-glycans, the discovery of the

genetic defect eliminating Neu5Gc production in humans, and the later recognition that

this was not an oncofetal antigen but the first example of a “xeno-autoantigen.” Further,

we will present comments about implications for disease risks associated with red meat

consumption such as cancer and atherosclerosis. We will also mention the potential utility

of these anti-Neu5Gc-glycan antibodies in cancer immunotherapy and provide some

suggestions and perspectives for the future. Other reviews in this special issue cover

many other aspects of this unusual pathological process, for which there appears to be

no other described precedent.
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FIRST REPORTS OF “SERUM SICKNESS”
IN HUMANS INFUSED WITH
ANIMAL SERUM

Following the discovery of the effectiveness of tetanus and
diphtheria antitoxins by Emil von Behring and Shibasaburo
Kitasato, the popularity of serotherapy soared in the 1880s
and 1890s (1). However, reports of reactions to the diphtheria
antitoxin also started to appear. In 1899, Bolton reported
100 cases of reactions to the diphtheria antitoxin (2). Pirquet
and Schick suggested the use of the phrase “serum sickness”
in their book Die Serumkrankheit (3) recognizing that the
reactions were against animal serum components present in the
antitoxin preparations.

“SERUM SICKNESS” PATIENTS HAVE
“H-D” ANTIBODIES, SOME OF WHICH
RECOGNIZE NEU5GC-CONTAINING
GLYCANS FOUND IN HUMAN CANCERS

The Initial Definition of “H-D” Antibodies
Two decades later, Hanganutziu and Deicher independently
described human antibodies that agglutinated animal
erythrocytes (4, 5). These Hanganutziu-Deicher antibodies (H-D
antibodies) were prominent in subjects with serum sickness who
had received therapeutic animal antisera. Subsequently, similar
antibodies were reported in patients with no prior exposure to
animal sera but instead suffering from other diseases (6).

A Portion of H-D Antibodies Are Directed
Against Neu5Gc-Containing Glycans, but
HD Antigens Can Also Be Present in
Diseased Human Tissues
About 50 years later, two groups independently showed that
a portion of these heterophile H-D antibodies recognized
gangliosides containing the sialic acid N-Glycolylneuraminic
acid (Neu5Gc) (7, 8). This sialic acid was later shown
to be derived from the common mammalian sialic acid
N-Acetylneuraminic acid (Neu5Ac) by the addition of a
single oxygen atom that is added to CMP-Neu5Ac in a
complex cytosolic reaction catalyzed by the enzyme cytidine
monophosphate N-acetylneuraminic acid hydroxylase (Cmah)
(9–13). The definition of H-D antibodies sparked further
research and these were then detected in the sera of patients with
multiple pathological conditions, including rheumatoid arthritis,
infectious mononucleosis, leprosy, syphilis, leukemia, Kawasaki
disease (a disease that causes inflamed blood vessels), and various
cancers (14–24).

Generation of H-D Antibodies in Chickens,
Confirming H-D Antigens in
Human Cancers
Early on, it was also noted that anti-H-D serum of high
titer could be generated in chickens immunized with H-D

antigen-active glycosphingolipid, N-Glycolylneuraminyl-
lactosylceramide (purified from equine erythrocytes) (18, 25).
Immunohistochemistry or thin-layer chromatography using
these polyclonal antibodies as well as indirect methods such
as inhibition of bovine erythrocyte agglutination by human
H-D antiserum were then used to confirm the presence of
Neu5Gc-glycans in meconium and multiple human tumors
(14–24). Paradoxically, the H-D antigens or Neu5Gc-glycans
were also found on human tissue gangliosides and glycoproteins
(18, 25–35). Much later, work from our group resulted in
further affinity purification of such chicken polyclonal antibodies
(36) (during the process we have noted that the bovine serum
albumin preparation originally used as a “carrier” for the
immunogen is contaminated with bovine serum glycoproteins
bearing Neu5Gc-glycans, which also contribute importantly to
the immune response in chickens). These preparations were
used as a valuable tool for the detection of smaller amounts
of Neu5Gc-glycans present even in normal human tissues
(36, 37), particularly on epithelia lining hollow organs (the
origin of carcinomas), and on endothelia (where atherosclerotic
cardiovascular disease occurs).

HUMANS CANNOT SYNTHESIZE Neu5Gc

Humans Are Genetically Deficient in
CMAH, the Primary Enzyme That
Generates Neu5Gc
These findings inspired further work on CMAH, and the
discovery of an inactivating mutation that likely got fixed in the
human lineage >2 million years ago. All humans were found
to be homozygous for a deletion of exon 6 in the CMAH gene
(38, 39) and this deletion was later shown to have been mediated
by a single Alu-Alu fusion event (40). While the first published
report incorrectly claimed that themutation resulted in an altered
reading frame and a large non-functional fusion protein (38), the
second report the same year (41) showed that it actually results
in a greatly truncated form of the enzyme. Comparisons with
our closest living evolutionary relatives (42) indicated that this
mutation occurred after our common ancestry with these “great
apes” (Figure 1).

Possible Selection Mechanisms for the
Initial Hominin Mutation in CMAH
Whether this mutation got fixed in the human lineage as a result
of positive or negative selection is still a matter of speculation. A
pandemic caused by a lethal infectious pathogen that preferred
to bind to Neu5Gc leading to negative selection is one possible
explanation (43). Another mutually non-exclusive possibility is
selective fertility of Neu5Gc-deficient females with Neu5Gc-
deficient males, leading to positive selection of this genotype (44).
This so-called “cryptic female choice” theory (44) is pictorially
depicted in Figure 2 (The figure legend details this theory) (45).

This mechanism was demonstrated in human-like Cmah
null mice (44, 46). On the other hand, a random CMAH
mutation may simply have become fixed in a small group
of individuals who eventually gave rise to modern humans.
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FIGURE 1 | Evolutionary Loss of CMAH. Multiple methods of analysis indicate that the CMAH mutation occurred about 2–3 mya after the divergence from the

Pan group.

FIGURE 2 | Potential scenario for the role of Neu5Gc loss and female anti-Neu5Gc immunity in the origin of the genus Homo via interplay of natural and sexual

selection acting on cell-surface Sias. There are many known pathogens that recognize and exploit Neu5Gc (blue diamond) as a receptor on host target cells. Natural

selection by such pathogens may have selected for rare CMAH null alleles that abolish Neu5Gc expression in homozygote individuals. Such individuals have only

Neu5Ac and its derivatives on their cells (red diamonds) allowing an escape from pathogens, but at higher frequencies would be targeted by adapting pathogens,

resulting in maintenance of a balanced polymorphism. CMAH−/− females with anti-Neu5Gc antibodies also present in their reproductive tract would favor sperm from

CMAH−/− males due to anti-Neu5Gc antibody-mediated cryptic selection against CMAH+/− or CMAH+/+ males expressing Neu5Gc on their sperm. Once the

frequency of the CMAH null allele reaches a critical level, this process can drive fixation of the loss-of-function allele in a population by directional selection. Figure and

figure legend reproduced from Bergfeld et al. (45).
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Regardless, this inactivation of CMAH lead to drastic changes
in the sialoglycome that likely pre-dated the origin of the genus
Homo (44). Given that Neu5Gc has been found in multiple
species of the deuterostome lineage ranging from sea urchins to
non-human primates, CMAH is at least 500 million years old
(47). Interestingly, Neu5Gc was independently lost in multiple
lineages including sauropsids (birds and reptiles), monotremes
(platypus) and certain other lineages (47, 48). More details
about the evolutionary implications of Neu5Gc and anti-Neu5Gc
glycan antibodies have been covered by P. Gagneux in another
review in this special issue.

HUMANS EXPRESS DIETARY-DERIVED
Neu5Gc ON THEIR CELL SURFACES

Neu5Gc-Glycans Are Present in Smaller
Amounts in Normal Human Epithelia
and Endothelia
Apart from onco-fetal human tissue, very small amounts of
Neu5Gc-glycans were surprisingly also found to be incorporated
in normal human secretory epithelia and small and large
vessel endothelia (36, 37, 49) (Figure 3). Concurrent mass-
spectrometric studies of purified sialic acids confirmed the
presence of Neu5Gc (49) and in N-glycans released from tumor
samples (50).

Neu5Gc-Glycans in CMAH Null Humans
and Mice Are Exclusively Derived From
Food Sources
Although human cells cultured in FCS have been reported
to express Neu5Gc-glycans (42, 51) this appears to be
due to metabolic incorporation or passive adsorption of
glycoconjugates. So far it seems that the only source of exogenous
Neu5Gc in human and humanized Cmah null mice is via dietary
intake (49, 50, 52, 53) Sialic acids have never been detected in
plants and are found in large amounts primarily in vertebrates
and a few “higher” invertebrates as well as in some insects (54–
58). The occurrence of Neu5Gc in poultry and fish is rare but
common in some milk products and greatly enriched in red
meats (49, 53, 59, 60).

Red Meat as the Primary Dietary Source of
Neu5Gc–The First Example of
a “Xenoautoantigen”
With no other explanation for the presence of Neu5Gc-
glycans in human tissues as confirmed in the mouse model, it
was concluded that humans incorporate Neu5Gc from dietary
sources. Studies using a DMB-HPLC assay to detect Neu5Gc
showed its enrichment in beef, pork and lamb (53). Additionally,
all humans produce anti-Neu5Gc glycan antibodies in varying
titers (61). In light of these antibodies that likely bind to
any incorporated Neu5Gc-glycans, this is the first example
of a “xenoautoantigen.” This state, with both the presence
of Neu5Gc-glycans as well as the corresponding anti-Neu5Gc
glycan antibodies has been called “Xenosialitis” and likely plays a

role inmultiple human pathologies, as elaborated in later sections
of this review.

Mechanisms of Neu5Gc Uptake and
Incorporation Into Human Tissues
and Cells
When human volunteers ingested free Neu5Gc, it was
shown to be largely excreted in the urine (49). Extended
feeding of Cmah null mice with free Neu5Gc in drinking
water also did not result in efficient tissue incorporation
except in a malignant tumor (52). In contrast, feeding of
glycosidically-bound Neu5Gc attached to porcine mucins gave
low-level incorporation into normal tissues over a period
of weeks (62). While it has been previously shown that N-
glycolylmannosamine a degradation product of Neu5Gc which
may more easily be taken up than the parental sialic acid (63),
the exact mechanism by which bound Neu5Gc from the diet
results in metabolic incorporation is not known and requires
further investigation.

In contrast, human epithelial cells in culture can metabolically
incorporate free or bound Neu5Gc and express it into
endogenous glycoproteins (64) (Figure 4). The mechanism of
uptake and incorporation of the Neu5Gc into human epithelial
cells (derived from a primary colon carcinoma), fibroblast, and
neuroblastoma cells was shown to be dependent on non-clathrin-
mediated pinocytic pathways (64). Free Neu5Gc taken up by
pinocytosis, or bound Neu5Gc released by a lysosomal sialidase,
can then be exported to the cytosol by the lysosomal sialic acid
transporter. Activation of the resulting cytosolic free Neu5Gc
by the CMP-sialic acid synthase then generates the donor for
incorporation into glycoconjugates in the Golgi apparatus, on
newly synthesized glcoconjugates. The reason why free Neu5Gc
gives incorporation in cultured cells but not in the intact
organism is because of the rapid clearance by the kidney in the
latter situation. The difference between free and bound Neu5Gc
is also relevant to recognition by antibodies which can only
interact with the latter. Moreover, the typical antibody binding
site can accommodate glycan chains of 4–6 monosacharride
(66). Antibodies typically cannot efficiently recognize just a
terminal Neu5Gc even when glycosidically bound. For this
reason, many studies that have utilized simple alpha-linked
Neu5Gc as a target in ELISA assays grossly underestimate
the amount and complexity of anti-Neu5Gc glycan antibody
response (67). Hereafter, we therefore refer to antibodies
against glycosidically-bound Neu5Gc as “anti-Neu5Gc-glycan
antibodies” which are diverse and complex because of the
underlying glycans.

Metabolic Fate of Neu5Gc
As the reaction catalyzed by Cmah is irreversible, all mammalian
cells must have pathways to adjust cellular Neu5Gc levels to
their needs to avoid continued accumulation. We discovered a
metabolic pathway for the turnover of exogenous Neu5Gc in
human cells (68). It was shown that cytosolic extracts harbor
the enzymatic machinery to sequentially convert Neu5Gc
into N-glycolylmannosamine, N-glycolylglucosamine, and
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FIGURE 3 | Detection of Neu5Gc in aortic endothelium of human autopsy samples and microvasculature of colon and placenta. The chicken anti-Neu5Gc antibody

(cGcAb) was used to detect the presence of Neu5Gc on the endothelium of autopsy samples of normal-appearing human aorta. Typical representatives of 8 autopsy

samples studied are shown. The red Cy3 fluorescence represents labeling of endothelial cells of the aorta. (A) Specificity of the antibody was demonstrated by the

lack of signal with the non-immunized control chicken IgY (middle) and the abrogation of signal by adsorption with Neu5Gc-rich glycoproteins of chimpanzee serum

(right). Magnification ×200. (B) Sections were double-stained with anti-CD31 for endothelial cells and counterstained with DAPI to visualize nuclei (magnification

×1000). (C) Sections of placenta (top) and colon (bottom) stain for Neu5Gc along microvasculature endothelial lining with the use of cGcAb. Control IgY (right)

demonstrates specificity of signal (magnification ×200). Figure and figure legend reproduced from Pham et al. (37).

N-glycolylglucosamine 6-phosphate, whereupon irreversible
de-N-glycolylation of the latter results in the ubiquitous
metabolites glycolate, and glucosamine 6-phosphate. Later, it
was shown that metabolic turnover of the dietary Neu5Gc
in humans and Cmah null mice modifies chondroitin
sulfate and this stable N-Glycolyl chondroitin sulfate (Gc-
CS) survives even in ancient fossils (45). This discovery
opened a door for “ancient glycomics” and could help
in tracking early human lineages and their food habits.
Additionally, we are working on developing a simplified
assay to measure levels of Gc-CS in serum to predict red
meat-related incorporation.

Parallel studies of the P. falciparum malarial protein
VAR2CSA that mediates parasite attachment to the placental
trophoblast led to discovery of the target “oncofetal chondroitin
sulfate” (ofCS) which is not detected in normal tissues, but is
shared by many types of cancers and can be detected using
recombinant VAR2CSA(rVAR2) (69–72). As this pattern is
similar to that of Neu5Gc-glycans in placental and tumor tissue, it
was natural to suspect that it might be related to Gc-CS. However,
this matter requires further investigation.

HUMANS ALSO HAVE
ANTI-Neu5Gc ANTIBODIES

All Humans Have Circulating
Anti-Neu5Gc-Glycan Antibodies
All human adults have varying levels of circulating IgM, IgG, and
IgA antibodies against Neu5Gc-glycans (49, 61, 73–75). Human
anti-Neu5Gc glycan antibodies interact with metabolically
incorporated Neu5Gc to promote chronic inflammation, likely
contributing to tumor inflammation and cancer progression (50,
53) and vascular inflammation (37).

Origin of Human Anti-Neu5Gc-Glycan
Antibodies
Our group later showed that human anti-Neu5Gc glycan
antibodies appear during the first year of life and correlate
with the introduction of Neu5Gc in the diet (76). Sera from
infants aged 0–12 months were analyzed, and anti-Neu5Gc IgM
and IgG antibodies against Neu5Gcα2-6Lac started to appear
at the time these infants were weaned on to cow’s milk-based
formula. Interestingly, anti-Neu5Gc IgM antibodies were absent
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FIGURE 4 | Examples of incorporation of Neu5Gc in malignant and healthy human tissue. Expression of Neu5Gc is observed to be enhanced in malignant epithelia as

seen here in carcinomas of the ovary, prostate and colon (left panel). In contrast, expression of Neu5Gc in normal tissue is seen in the ducts of the prostate gland and

in the epithelial lining of the colon (Right panel). Endothelial cells of the normal placenta are used here as a positive control for Neu5Gc immunostaining. As a negative

control, the binding is blocked competitively with Neu5Gc-containing chimpanzee serum. Magnification used was 200× and scale bar is 100µm. Figure and figure

legend reproduced from Samraj et al. (65).

at birth and at 3 months, appeared at 6 months and the
levels stabilized at 12 months. There was no difference in anti-
Neu5Gc IgM and IgG titers between male and female subjects.
The absence of anti-Neu5Gc IgM antibodies in cord blood
sera suggests that anti-Neu5Gc antibodies are not germ-line
encoded “natural” antibodies (77) that occur naturally in human
and other mammals, but instead require a postnatal antigenic
stimulus. Anti-Neu5Gc antibodies are likely to be affinity
matured antibodies as has been shown earlier (78). However,
spontaneous generation of anti-Neu5Gc IgM or IgG antibodies
in Cmah null mice did not occur even when large quantities
of Neu5Gc were fed to them. This is despite the presence of
relatively hyper-reactive B cells, apparently caused by the loss
of Neu5Gc-containing Siglec ligands (79, 80). On the other
hand, deliberate immunization with an artificial immunogen rich
in Neu5Gc, such as chimpanzee RBCs, and complete Freund’s
adjuvant, did elicit anti-Neu5Gc IgM, and IgG antibodies in
Cmah null, but not in wild type mice (50, 75).

N-Glycolyl Groups Are Rare in Nature,
Increasing the Likelihood of Antigenicity
N-acetyl groups are common in nature (PubMed search of
“N-Acetyl” gives >30,000 citations), often originating from the
donor acetyl-CoA. In contrast, a search of “N-Glycolyl” gives
∼270 citations, which are either about Neu5Gc or about N-
Glycolylmuramic acid, found in certain bacterial peptidoglycans
(81–86). The CMAH gene is a distant homolog of prokaryotic

genes generating UDP-N-glycolylmuramic for peptidoglycan
biosynthesis (82, 83). In both instances, a mono-oxygenase
reaction is involved. It is unclear why glycolyl-CoA formed
during fatty acid beta-oxidation (87, 88) is never utilized to make
N-glycolyl groups. Regardless, the rarity of this modification
makes it more likely to be antigenic. N-glycolylmuramic acid
occurs in Freund’s adjuvant (which has mycobacterial products),
which we use to immunize Cmah null mice against Neu5Gc-
glycans, but we do not observe anti-Neu5Gc Abs in mice given
only adjuvant.

Markedly Different Antigenicity of
Glycosidically-Bound vs. Free Neu5Gc and
Impact of Underlying Glycans
As was touched upon earlier, the difference between free and
bound Neu5Gc is also relevant to Ab recognition, which can
only interact with the latter. Moreover, since the typical Ab
binding site accommodates 4 to 6 monosaccharides (66, 89, 90),
Neu5Gc-dependent Abs cannot efficiently recognize a terminal
glycosidically-bound Neu5Gc by itself. Thus, studies that utilized
simple alpha-linked Neu5Gc as a target in assays (67, 91–95)
grossly underestimate the complexity of the human anti-Neu5Gc
Abs, which are diverse and complex, because of variations
in underlying glycans (61, 96, 97). Recently, it has also been
shown that the presentationmode of Neu5Gc-containing glycans
in various assays affects recognition by anti-Neu5Gc glycan
IgGs (98).
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Possible Mechanism of
“Xenoauto-Immunization” by Microbes
Like Haemophilus influenzae
While humans develop antibodies against Neu5Gc-containing
glycans during infancy, the mechanism of immunization is still
unclear. One possible explanation is “xeno-autoimmunization”
by microbes such as H. influenzae, that normally colonize
humans. Non-typeableH. influenzae (NTHi) like all other known
microbes cannot synthesize Neu5Gc but has been shown to be
able to incorporate trace amounts of free sialic acids into its cell-
wall LPS (99). Also, anti-Neu5Gc antibodies appear in infants
around the same time as antibodies against NTHi (76). One likely
source of Neu5Gc for these microbes is foods of mammalian
origin used for weaning. Indeed, NTHi was shown to be able to
incorporate Neu5Gc from baby foods (76).

A Parallel but Inconsistent Literature About
Anti-tumor MAbs Against (Neu5Gc)GM3
An extensive literature originating primarily from one group
(100–113) claims that a Neu5Gc-version of ganglioside GM3
(Siaα2-3Galβ1-4Glcβ1-1’-Ceramide) is tumor-specific, and
cancer vaccines and MAbs (idiotypic and anti-idiotypic) targeted
against it are even in clinical trials (114, 115). Until recently this
group assumed that expression was unrelated to dietary intake,
and that the antigen is absent from normal cells. Moreover, a
collaborating group recently suggested that hypoxia induces

de novo synthesis of (Neu5Gc)GM3 in human cells through
a poorly defined “CMAH domain substitute” (116). However,
hypoxia also increases uptake and incorporation of Neu5Gc,
and fetal calf serum contains Neu5Gc. Once human cancer
cells are placed in Neu5Gc-free human serum, for several
passages, we find that all traces of Neu5Gc disappear. Moreover,
our broad-spectrum polyclonal monospecific chicken anti-
Neu5Gc Ab cannot detect any Neu5Gc in Cmah null mice
on a Neu5Gc-free diet. Further confusion arises because the
original group also uses these antibodies to treat tumors in
Cmah wild type mice (107), which already have a large amount
of endogenously synthesized Neu5Gc-GM3. This is also true of
preclinical toxicity studies done in CMAH-positive monkeys
(117). We may be misunderstanding something about this body
of work, but our present assumption is that the tumor-associated
(Neu5Gc)GM3 being targeted arises from dietary Neu5Gc.
Alternatively, the actual epitope may be different. Regardless
of the final resolution, it does not change the basic underlying
hypothesis driving our current work, on red meat-derived
Neu5Gc-induced “xenosialitis.”

ANTI-Neu5Gc ANTIBODIES IN
DISEASE STATES

As alluded to earlier, anti-Neu5Gc antibodies have been described
in a multitude of diseases. Anti-Neu5Gc antibodies have broad
implications in transplantation (93, 118–125) which will be

FIGURE 5 | Suggested pathological implications of Neu5Gc consumption, accumulation, and subsequent inflammation in atherosclerosis and cancer [Image created

with objects sourced from Servier Medical Art (http://smart.servier.com/), licensed under a Creative Common Attribution 3.0 Generic License].
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covered in a separate review in this special issue. While
transplantation can be associated with high levels of anti-
Neu5Gc-glycan antibodies due to ATG serum therapy and/or
the xenotransplant itself, these are very unusual clinical states
with associated immunosuppression and other pathologies. Also
of note, the phenomenon of “hormesis” has been documented
with these antibodies, with very highly levels having the
opposite effects e.g., killing of tumors (126, 127). In this review,
we will focus on a possible role of moderate levels of the
antibodies in two diseases that otherwise normal humans are
particularly prone to develop: epithelial cancers (carcinomas) and
atherosclerosis (Figure 5).

Carcinomas
Accumulation of Neu5Gc-glycans has been detected in human
tumors such as breast, colon, ovary, and prostate carcinomas (49,
65, 128, 129). Distinctly, red meat is enriched with bound forms
of the Neu5Gc. Numerous epidemiological studies concluded
that consumption of red meat is associated with atherosclerotic
cardiovascular diseases and an increased risk of cancer (130, 131).
Recent findings involving the Health Professionals Follow-up
Study and the Nurses’ Health Study cohorts confirmed that
a higher intake of red meat (specifically processed red meat
products) was associated with a significantly elevated risk of
cancer, prominently colorectal cancer (132). The epidemiological
data ruled out alternate factors such as (a) high-fat intake
(133); (b) the production of heterocyclic amines and polycyclic
aromatic hydrocarbons (134); (c) the presence of mutagenic N-
nitroso compounds (135), that were once believed to be themajor
promoter of carcinogenesis. Our laboratory has shown that the
Neu5Gc and anti-Neu5Gc-glycan antibody interaction induced
“xenosialitis” may promote chronic inflammation leading to
cancer progression (53).

Another possibly related carcinogenic mechanism arising
from red meat was revealed by the isolation of a number of small
DNAs obviously derived from specific plasmids of Acinetobacter
bacteria from commercially available cow milk samples by de
Villiers and zur Hausen (136–138). These authors suggest that
such infections with autonomously replicating plasmids early
in life are risk factors for human colon and breast cancers
several decades later (139), that incorporated Neu5Gc from
dietary sources might provide receptors for the viruses, and that
antibodies against these viral proteins may work in concert with
Neu5Gc-induced “xenosialitis.”

As has been shown earlier, inflammation and associated
activation of the immune system can promote carcinogenesis
(inflammation-induced cancer) and cancer progression (140–
142). The seminal review on the hallmarks of cancer by Hanahan
and Weinberg also mentions tumor-promoting inflammation as
one of the enabling factors of cancer (143). Moreover, growing
tumors induce an inflammatory response that can support cancer
progression (cancer-related inflammation) (140, 144). Chronic
inflammation in auto-inflammatory diseases and diet-induced
metabolic syndrome is also an important etiological factor for the
development of cancer (142, 145). Hence it is not surprising that
red meat consumption and the “Western diet” have often been
associated with increased circulating markers of inflammation

in human population studies (146). Cell surface glycosylation is
heavily altered in cancer cells, as seen in malignant tissue that
incorporate Neu5Gc (62, 64, 147). Thus, anti-Neu5Gc antibodies
likely support cancer progression by enhancing tumor-related
inflammation via induction of “xenosialitis” in the humanized
mouse model (Cmah−/−) (53, 148, 149). A recent study showed
that there is no increase in colon cancer risk following anti-
Neu5Gc antibody induction with Neu5Gc-bearing rabbit anti-
T cell IgG (ATG) in recipients of kidney (150). However, there
was no estimation regarding red meat intake in this study
and patients with renal failure are typically advised to reduce
meat intake. Furthermore, some such patients are also under
immunosuppression, which would alter outcomes∗.

Sialoglycan microarray studies enabled us to differentiate
between controls and patients with various carcinomas including
prostate, ovary, endometrium, colon, lung, and pancreas with
regard to antibodies against Neu5Gc-Sialyl-Tn (96). A recent
nested case-control study from our laboratory assessed the
association between total anti-Neu5Gc antibodies and the risk
of colorectal cancer (CRC) in the Nurses’ Health Study cohort.
This study showed that the sum total of polyclonal anti-Neu5Gc
glycan antibodies were associated with CRC risk (97).

Atherosclerosis
Myocardial infarctions (MIs), ischemic heart disease, strokes
and peripheral vascular disease in humans are primarily
caused by atherosclerotic cardiovascular disease (CVD) (151).
Chimpanzees, our closest evolutionary cousins, on the other
hand suffer from “heart attacks” as a result of idiopathic
interstitial myocardial fibrosis (152). Additionally, captive
chimps do not get human-like MIs despite major risk factors
such as dyslipidemia and hypertension (152). There is a clear
association between consumption of red meats and processed
meats with increased risk of CVD in humans (131, 153). While
multiple theories for this association have been put forward
including cholesterol and saturated fat (154), conversion of
choline and carnitine into proatherogenic Trimethylamine N-
oxide (TMAO) (155–157), and oxidative damage due to heme
iron (158–161), these mechanisms appear not to be specific
for red meats as explained in an earlier review from our
laboratory (162). “Xenosialitis,” unlike these theories, is specific
to red meats and may contribute to the uniquely human
severity of complications of atherosclerosis. Earlier studies from
our lab have shown that Neu5Gc can be detected in the
endothelium overlying the atherosclerotic plaque as well as
the sub-endothelium (37). Further, human endothelial cells fed
with Neu5Gc and subsequently exposed to serum containing
anti-Neu5Gc glycan antibodies led to IgG and complement
deposition which in turn led to increased endothelial activation,
increased cytokine production, and selectin expression, events
associated with early atherogenesis. These effects were inhibited
by Neu5Gc-alpha-methyl glycoside, a specific competitor to
anti-Neu5Gc antibodies. Cmah−/− mice also showed Neu5Gc
accumulation in their endothelium when fed with Neu5Gc (62).
We are currently studyingCmah−/− mice bred into a low-density
lipoprotein knockout (Ldlr−/−) background fed with Neu5Gc
and immunized with Neu5Gc bearing antigens to see if they
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have a higher risk of developing atherosclerosis as compared
to controls fed Neu5Ac. Large human cohort studies are also
necessary to confirm the role of anti-Neu5Gc antibodies in CVD.

CLINICAL APPLICATION OF ANTI-Neu5Gc
GLYCAN ANTIBODIES

Possible Therapeutic Role of
Neu5Gc-Antigens and
Anti-Neu5Gc Antibodies
Despite the possible pathogenic effects of these antibodies as
described above, anti-Neu5Gc antibodies may also be potentially
utilized as anti-cancer immunotherapeutic agents. Tumor cells
are aberrantly sialylated and the content of sialic acid on these
cells goes up markedly when compared to cells of healthy
tissue (163, 164). This upregulation may explain why ingested
Neu5Gc preferentially accumulates in cancer tissue (49, 62).
There is also an upregulation of sialyl-Tn antigen (165–169),
an epitope not commonly found (165, 170, 171) or “hidden”
by O-acetylation of sialic acid (166) in healthy human tissue.
Recent findings also show the presence of Sialyl-Tn in stem-
like cells in cancer cell lines (172) and therapeutic benefits of
antibodies that target these epitopes in patient-derived xenograft
models of Ovarian carcinoma (173). If Neu5Gc-Sialyl-Tn is
found to be relatively cancer specific, it may be used to image
or even treat cancers. Indeed, in vitro assays have shown that
human antibodies against Neu5Gc-Tn antigen purified from
IVIG activate antibody-dependent cellular and complement-
dependent cytotoxicity (ADCC and CDC) (96).

Another approach that has been tried is vaccination with
(Neu5Gc)GM3 along with outer membrane protein complex of
Neisseria meningitidis in proteoliposomes leading to antibody
production in advanced stage breast cancer patients in a phase
I study (174). A mouse-monoclonal antibody directed against
(Neu5Gc)GM3, 14F7 was isolated (129) and further, has been
humanized (175). 1E10, the corresponding anti-idiotype to
14F7, named racotumomab has also been tried in humans
(176) and also shown to have non-apoptototic cytoxic effects
in vitro (177). This antibody is able to bind to multiple
malignant tissues including skin cancers, neuroectodermal
tumors, genitourinary cancer, non-small cell lung cancer, and
gastrointestinal tumors (178–182) and multiple human trials
have also been conducted (e.g., NCT01598454, NCT01460472,
NCT02998983, NCT01240447). However, as mentioned earlier,
these studies do not make any direct link to dietary Neu5Gc, and
the antibodies are reported to work even inCmahwild-typemice,
which have a vast excess of Neu5Gc antigens on normal tissues.

Despite all these efforts to develop effective
immunotherapeutics, no efforts have been taken to control
Neu5Gc consumption in cancer patients. Notably, if cancer
patients are encouraged to reduce Neu5Gc consumption, a
“washout” of Neu5Gc may occur in normal tissue. Following
this, IV Neu5Gc may be used to “feed” tumors followed by
an antibody that recognizes Neu5Gc-containing epitopes
to now “find” the tumor. “Feeding” tumors is possible as
Neu5Gc preferentially accumulates in malignant tissue due

to increased micropinocytosis (64), rapid growth rates and
hypoxic upregulation of the sialin transporter (147). This
“feed-and-find” approach may turn out to be more effective than
the present approaches. Additionally, monoclonal antibodies
targeting Neu5Gc-containing glycans may be tested on an
advanced sialoglycan microarray (183) and coupled with a newly
developed computational methods (184) to confirm specificity.

Importantly, Neu5Gc has also been found in cancer
therapeutic agents. Monoclonal antibodies such as trastuzumab,
cetuximab and rituximab are integrated in today’s cancer
therapies (185). Glycosylation of these antibodies may involve
Neu5Gc-rich media and/or mammalian cells that express
Neu5Gc (186). Our laboratory has previously shown that
incorporation of Neu5Gc in cetuximab enhanced the formation
of immune complexes promoting drug clearance (187).
Avoidance of Neu5Gc during production of glycoproteins
may improve half-life of these antibodies while also reducing
their immunogenicity.

Biomarkers in Pathological States
Anti-Neu5Gc glycan antibodies could serve as potential
biomarkers for diseases associated with red meat consumption
including carcinomas, atherosclerosis, and type 2 diabetes (188–
192). Current biomarkers for cancer lack sufficient sensitivity
and importantly the specificity for early diagnosis (193, 194).
Although antibodies against tumor-associated antigens are
commonly found in cancer patients at an early stage and could
potentially be sensitive detectors for malignant transformation
(195, 196), none of the previously described autoantibodies show
sufficient specificity in screening. Given the incorporation and
display of Neu5Gc by tumor cells, the detection of Neu5Gc
body-burden and antibody response together might serve as a
potential biomarker for early carcinoma detection. It has been
demonstrated that comparison of anti-Neu5Gc antibody levels
can be used to differentiate between controls and patients with
various carcinomas (96, 97). Increased anti-Neu5Gc antibody
levels were also found in patients with Kawasaki disease (197).

CONCLUSIONS AND PERSPECTIVES

In this review, we have discussed important milestones from
the early description of “Serum-sickness” as being due to
antibodies directed against Neu5Gc epitopes all the way to
the present-day therapeutic implications of these antibodies in
cancer therapy. Some of these milestones have been represented
in a concise timeline (Figure 6). While the “Xenosialitis”
hypothesis is well-supported in the human-like mouse models,
it has yet to be conclusively proven in humans. It remains
to be seen if “Xenosialitis” plays a role in other uniquely-
human diseases.

There also remain certain unresolved complexities of
food sources of Neu5Gc and their propensity for metabolic
incorporation. It is noteworthy that processed red meat is much
more closely associated with disease risk than red meat per se.
This is usually explained on the basis of preservatives added to
process red meat. However, the same preservatives are added
to other foods but are not associated with the same disease
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FIGURE 6 | Timeline detailing important discoveries related to Neu5Gc and anti-Neu5Gc antibodies. Adopted and modified from Samraj et al. (65).

risks. One possible explanation is that the predigested nature
of the processed food enhances absorption and incorporation
of Neu5Gc. In this regard, there is currently no assessment of
the relative impact of different foods and food processing on
absorption in general. What is needed is that the equivalent of
a glycemic index for the impact of glucose uptake (198, 199),
i.e., “a GCemic index.” Along the same lines we are also missing
an equivalent of the HbA1c (198, 199) as an index of long-term

metabolic incorporation. We are currently studying the novel
metabolite N-Glycolyl-chondroitin sulfate as a candidate.

It is also important to emphasize that there are other dietary
sources of Neu5Gc besides red meat. While poultry is completely
free of Neu5Gc, low levels are found in “fish” (which typically
refers to the fish muscle). However, it is well-known that other
food sources such as fish eggs, sea urchins, goat milk etc. can be
high in Neu5Gc, and antibody development and xenosialitis in
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societies that consume large amounts of such foods needs to be
studied further. Of course, the presence of bound Neu5Gc does
not automatically equate to metabolic incorporation.

One other important perspective from these studies on
Neu5Gc and anti-Neu5Gc antibodies is the consumption of
red meat. With red meat being the richest source of Neu5Gc,
abstaining may be the best way to prevent any “xenosialitis”
induced pathologies though this would be largely improbable
to sustain in the general population. Another possible way
to prevent Neu5Gc uptake is to breed genetically-modified
CMAH null livestock. Like humans, these animals will be
unable to synthesize Neu5Gc and thereby prevent human
dietary incorporation. But besides worries about “GMOs,” one
dangerous implication of rearing such livestock is their increased
susceptibility to pathogens that bind Neu5Ac which also likely
affect humans. This may be combated by growing GMOmodified
CMAH−/− “cultured meat” that does not synthesize Neu5Gc

under strict aseptic conditions. Other alternatives include
competing with an excess of the human sialic acid Neu5Ac.
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