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Hidradenitis suppurativa/acne inversa (HS) is a chronic inflammatory disease involving

hair follicles that presents with painful nodules, abscesses, fistulae, and hypertrophic

scars, typically occurring in apocrine gland bearing skin. Establishing a diagnosis of

HS may take up to 7 years after disease onset. HS severely impairs the quality

of life of patients and its high frequency causes significant costs for health care

system. HS patients have an increased risk of developing associated diseases, such as

inflammatory bowel diseases and spondyloarthropathies, thereby suggesting a common

pathophysiological mechanism. Familial cases, which are around 35% of HS patients,

have allowed the identification of susceptibility genes. HS is perceived as a complex

disease where environmental factors trigger chronic inflammation in the skin of genetically

predisposed individuals. Despite the efforts made to understand HS etiopathogenesis,

the exact mechanisms at the basis of the disease need to be still unraveled. In

this review, we considered all OMICs studies performed on HS and observed that

OMICs contribution in the context of HS appeared as not clear enough and/or rich of

useful clinical information. Indeed, most studies focused only on one aspect—genome,

transcriptome, or proteome—of the disease, enrolling small numbers of patients. This

is quite limiting for the genetic studies, from different geographical areas and looking

at a few aspects of HS pathogenesis without any integration of the findings obtained

or a comparison among different studies. A strong need for an integrated approach

using OMICs tools is required to discover novel actors involved in HS etiopathogenesis.

Moreover, we suggest the constitution of consortia to enroll a higher number of patients

to be analyzed following common and consensus OMICs strategies. Comparison and

integration with the findings present in the OMICs repositories are mandatory. In a

theoretic pipeline, the Skin-OMICs profile obtained from each HS patient should be
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compared and integrated with repositories and literature data by using appropriate

InterOMICs approach. The final goal is not only to improve the knowledge of HS

etiopathogenesis but also to provide novel tools to the clinicians with the eventual aim of

offering a tailored treatment for HS patients.

Keywords: hidradenitis suppurativa, genomics, transcriptomics, proteomics, OMICs, data integration, public

repositories

INTRODUCTION

Hidradenitis suppurativa/acne inversa (HS) is a chronic-
recurrent, inflammatory, debilitating skin disease that usually
presents after puberty. It is hallmarked by painful, deep-seated,
chronic, suppurating lesions most commonly located in the
axillary, inguinal, anogenital, and infra-mammary areas (1,
2). Treatment strategies rely on both medical and surgical
options. Medical treatment is founded on the use of antibiotics,
such as tetracyclines, rifampicin and clindamycin, retinoids,
and immunosuppressive agents. Anti-TNFα agents, notably
adalimumab that is the only biologic agent approved for HS, are
the mainstay of treatment in moderate-to-severe HS (3–5).

HS incidence in different countries ranges from 6 per 100.000
in Olmsted County (6) to 6.7 per 1,000 in Australia (7) to 1.8
per 100 in Denmark (8). This epidemiological variability may
reflect differences both in the awareness of physicians and in
susceptibility to HS in distinct populations. In fact, it has been
shown that in the United States, African Americans are more
susceptible to HS, even if the underlying causes are unknown
(9, 10).

The idea that the disorder is primarily caused by an
inflammation of apocrine sweat glands is nowadays rejected
and follicular hyperkeratosis and perifolliculitis are regarded
as the earliest events detected in HS skins (11, 12). Follicular
hyperkeratosis probably engenders the occlusion of the terminal
hair follicles, its dilation, and finally its rupture (12). It is thought
that keratin, corneocytes, hair shaft, sebum products spilled
from breached pilosebaceous units into the dermis (13) can act
as danger-associated molecular patterns (DAMPs) activating an
immune response in deep dermis sustained by CD3+ T cells
(mainly CD4+, but also CD8+), B lymphocytes, macrophages
and, more importantly, neutrophils (13). CD4+ T cells (T helper
(Th)) and neutrophils are the main producers of IL-17 (14, 15)
that, together with TNF-α, IL-1β, and IL-10, are the cytokines
found consistently overexpressed in HS lesional and perilesional
skin (16–19).

Very few data are available for the events of the “subclinical
inflammation” phase (20) but the hypothesis of microfilm-
forming microbes or skin pathogens as main drivers of HS
inflammation is fading away. In fact, Ring et al. (21) showed
by peptide nucleic acid (PNA)-FISH a paucity rather than
an enrichment of bacterial aggregates in HF pre-clinical HS
skin when compared with healthy controls. Next-generation
sequencing (22) studies performed on skin microbiome of
HS patients during flares showed the existence of a dysbiosis
(21, 23) that could allow the development of a pathobiome
or an augmented expression of virulence factors by otherwise

harmless commensal bacteria (24, 25) probably driven by host
inflammation, as shown in atopic dermatitis (26). It is still
debated whether these bacteria maintain a vicious circle that
amplifies and sustains skin inflammation or are the primum
movens of the disease (27).

GENOMICS

Genetics of HS: γ-Secretase
Identification of English families where HS was transmitted
as an autosomal dominant trait has shed light on the genetic
basis of disease susceptibility (28). Still, in pedigrees with
members from more generations affected, the percentage of
first-degree relatives affected was 34%. This was, according
to the authors, quite far from the 50% expected for a
dominant disease but was incompatible with a multigenic
trait transmission. Interestingly, some families showed more
women affected than men, with a 3:1 female to male
ratio that today is confirmed by several epidemiological
studies (8, 9), whilst other ones showed a preferential male-
to-male transmission predicting that one gene-one disease
cannot be applied for HS. Authors stated that assessment of
genetic transmission could have been complicated by reduced
penetrance, unpredictable onset age, and variable clinical
severity, leading to the fact that family members presenting
mild clinical manifestations might have remained undiagnosed.
In addition, a strong feeling of shame associated with the
disorder may lead relatives to conceal their condition to the
family (28).

Gao and colleagues analyzed a four generations Chinese
family by linkage analysis using microsatellite markers mapping
the genes for HS in a region of about 76Mb at chromosome
1 (1p21.1 - 1q25.3) (29). Later on, Wang et al. (30), using the
same strategy with Gao et al. analyzed two Chinese Han families
identifying a region on chromosome 19q13 containing about
200 Refseq genes. By Sanger sequencing, Wang et al. found
two different one-nucleotide deletions not found in 200 healthy
controls in PSENEN, encoding for presenilin enhancer (PEN2).
As PSENEN encodes for one of the four subunits of γ-secretase
complex (31), they sequenced all γ-secretase genes in four
families and found 1 frameshift mutation in PSEN1 (14q24.2) and
3 in NCSTN (1q23.2). Notably, each family presented a different
mutation and all the mutations caused haploinsufficiency of
one γ-secretase following the non-sense mediated decay (NMD)
of their mRNA. Since γ-secretase catalyzes the intramembrane
proteolysis of Notch receptors (30), deficiency of which caused
histological features of HS in several mice models (32–34),
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Wang and collaborators concluded that HS is the results of an
attenuated Notch signaling in the skin of patients with NCSTN,
PSENEN, and PSEN1 inactivating mutations (30).

A DNA variant affecting splicing was found later by Liu
et al. (35) in the family analyzed by Gao and collaborators
thus confirming the association of NCSTN mutations (and the
chromosome region 1q23.2) with HS. NCSTN and PSENEN
novel mutations segregating with the trait were found in families
fromUK (36), France (37), Japan (38) and one African-American
family from the United States (39).

Interestingly, two studies on sequentially recruited patients
showed that very few “sporadic” patients, i.e., patients that
did not report a family history for HS, presented pathogenic
DNA variants in the three morbid genes (40, 41). Deep
sequencing of NCSTN was performed by Liu et al. (42) on
95 European and African-American HS patients enrolled in
the Pioneer I and II clinical trials. The majority (n = 57)
of patients had a family history of the disease but only one
patient with a nonsense mutation (rs387906896; p. R117X) and
one sporadic patient with a missense variant (rs147225198; p.
A410V) were found, thus reinforcing the idea that mutations
in γ-secretase genes are responsible for a small percentage
of HS cases and are not sufficient alone to explain all
HS phenotypes.

Reduced penetrance of NCSTN mutations has been shown
once in a Japanese family analyzed by Nomura et al. (43) where
the proband’s 70-year-old sister carrying the missense variant
p.Q568X had never manifested any sign of the disease probably
because, unlike to the other affected family members, she claimed
to have never smoked.

To date more than 30 mutations have been described in
NCSTN in HS patients (44, 45), 15mutations in PSENEN (46–48)
and only one “likely pathogenic” mutation in PSEN1 (44).

Interestingly mutations in PSENEN results in 3 different
phenotypes: (1) HS, (2) Dowling-Degos Disease (DDD), or (3)
HS and DDD (47, 49), whilst DDD is not associated with any
mutations in NCSTN.

Even if the common idea is that HS is the result of a deficient
NOTCH signaling in patients with mutations in γ-secretase
genes, this claim has been weakened lately by different findings.

For instance, the “likely pathogenic” mutation
PSEN1 c.725delC was shown to increase, not to diminish,
NOTCH signaling in zebrafish (50). In addition, genomic
variations in TSPEAR that decrease NOTCH signaling similarly
to γ-secretase mutations, have been associated to a novel form
of ectodermal dysplasia affecting tooth and hair follicles without
any sign of skin inflammation typical of HS (51).

The mechanism by which NCSTN, PSEN1, and PSENEN
mutations lead to HS has yet to be elucidated. This seems a rather
complex mechanism as γ-secretase has more than 100 identified
substrates (31, 52) and process 21 Receptor Tyrosine Kinases
(RTKs) involved in important cellular processes such as cell cycle,
survival, differentiation, and migration (53). Gamma-secretase
deficiency could also regulate inflammation as it processes
important cytokines receptors such as IL-1β R1/R2 and IL-
6R (31).

Genetic of the HS: Other Genes
As shown inTable 1 and depicted in Figure 1, in addition to the 3
genes that encode for the subunits of γ-secretase complex, other
8 genes are involved in HS.

Mutations in the connexin-26 gene (GJB2) on chromosome
13q11-q12 GJB2 gene, that encodes connexin-26 (Cx26),
have recently been linked to HS. Mutations in this gene
caused Keratitis-ichthyosis-deafness (KID) syndrome, a rare
congenital disorder of the ectoderm that gives rise to keratitis,
erythrokeratoderma and neurosensory deafness. HS has been
reported in association with KID syndrome in a few cases with
distinct Cx26 mutations such as D50N, A40V, G12R (55–57).

Cx26 is one of the main connexins in human skin and is
normally restricted to hair follicles and eccrine sweat glands (58).

The mutations of Cx26 disturb the gap junctions, specialized
channels that connect the cytoplasm of adjacent cells. These
cellular structures are important for tissue homeostasis,
growth and development and for cellular response to external
stimuli (59).

The exact correlation between HS and Cx26 mutations
and the interplay of gap junctions and inflammation remain
to be elucidated; it is believed that HS might result from
the hyperproliferative tendency of KID syndrome patients’
epidermis, leading to follicular plugging, cyst formation, and
rupture and spillage of keratin and glandular secretions into the
subcutaneous tissue, causing an inflammatory response (55).

Recently, Higgins et al. (60) identified a germline missense
mutation in fibroblast growth factor-receptor 2 (FGFR2) gene
in exon 5 (c.G492C, p.K164N) in a patient with HS. FGFR2 is
normally expressed in keratinocytes, hair follicles and sebaceous
gland. It is a tyrosine-protein kinase that plays an essential role in
cell proliferation, differentiation, migration, and apoptosis, and
in the regulation of embryonic development (61). Unfortunately,
to date there are no functional and expression studies about
this mutation. A predictive analysis with the help of several
prediction algorithms has assessed that this mutation may have
a pathological consequence on the impaired protein function.
Considering that FGFR2 mutations are also associated with
acne and that FGFR2 results in the activation of the HS-related
PI3K/Akt pathway (caused by mutations in γ-secretase genes),
exploration of this aspect could be relevant (62, 63).

Marzuillo et al. (64) identified mutations in inositol
polyphosphate-5-phosphatase 1 (OCRL1) gene in HS patients.
OCRL1 encodes an inositol polyphosphate 5-phosphatase and
is involved in regulating membrane trafficking and primary
cilium formation. Mutations in OCRL1 are associated with Dent
disease 2 (DD2), a disorder characterized by proximal tubule
dysfunction. In a case report Marzuillo et al. described 5 DD2
patients with OCRL1 mutations and 4 of these patients were
diagnosed as having HS.

Mutations in OCRL1 drastically reduce the OCRL1 activity,
causing an increase of phosphoinositol-4,5-bisphosphate
(PI(4,5)P2) levels in the plasma membrane, a substrate of this
enzyme. The correlation between HS and DD2 could just be due
to an accumulation of PI(4,5)P2, able to increase susceptibility to
cutaneous infections.

Frontiers in Immunology | www.frontiersin.org 3 April 2019 | Volume 10 | Article 892

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Tricarico et al. Skin-OMICs in HS

TABLE 1 | Summary of the genes involved in HS pathogenesis, including their encoding proteins, functions, and mutation category.

Gene Encoding protein Function Mutation category

PSENEN Presenilin enhancer

protein 2

Essential subunit of the gamma-secretase complex, an endoprotease

complex that catalyzes the intramembrane cleavage of integral membrane

proteins such as Notch receptors, and Amyloid-beta Precursor Protein

Frameshift, nonsense,

splicing, missense

PSEN1 Presenilin 1 Catalytic subunit of the gamma-secretase complex, an endoprotease

complex that catalyzes the intramembrane cleavage of integral membrane

proteins such as Notch receptors, and Amyloid-beta Precursor Protein

Frameshift

NCSTN Nicastrin Essential subunit of the gamma-secretase complex, an endoprotease

complex that catalyzes the intramembrane cleavage of integral membrane

proteins such as Notch receptors, and Amyloid-beta Precursor Protein

Missense, nonsense,

frameshift, splice site

GJB2 Gap junction protein

beta 2, Connexin-26

Member of the gap junction protein family specialized in cell-cell contacts

that provide direct intracellular communication.

Missense

FGFR2 Fibroblast growth

factor receptor

Member of the fibroblast growth factor receptor family that plays an

essential role in the regulation of cell proliferation, differentiation, migration,

and apoptosis, and in the regulation of embryonic development

Missense

OCRL1 Inositol polyphosphate

5-phosphatase

Involved in regulating membrane trafficking and primary cilium formation Missense

TNF Tumor necrosis factor Multifunctional proinflammatory cytokine involved in the regulation of a wide

spectrum of biological processes including cell proliferation, differentiation,

apoptosis, lipid metabolism, and coagulation

Non coding variant that

is associated with gene

expression

IL-12Rb1 Interleukin-12 Receptor

Subunit Beta-1

IL-12/IL-23 pathway. IL-12 is implicated in the differentiation of the Th-1

immune response and IL-23 is mediating T17 response, the latter priming

chronic neutrophils influx

Missense

DEFB103 Defensin beta 3 (hBD3) Play an important role in innate epithelial defense Copy number variation

DEFB4 Defensin beta 2 (hBD2) Play an important role in innate epithelial defense Copy number variation

MYD88 Myeloid differentiation

primary response

protein MyD88

Plays a central role in the innate and adaptive immune response and it is

involved in the Toll-like receptor and IL-1 receptor signaling pathways

Nonsense

FIGURE 1 | Genes associated with susceptibility and progression of hidradenitis suppurativa. Susceptibility to the disease is caused by mutations in genes involved in

keratinocytes homeostasis having a role in maintaining the integrity of the epithelial barrier. Common polymorphisms in genes encoding for proteins involved in the

immune response have been associated to severity of the disease and influence the inflammatory and chronic phases. The disease model depicted is based on the

most accepted model reported by Berna-Serna and Berna-Mestre (54) for hidradenitis suppurativa.

Considering evidence suggesting the central role of deranged
immune response in the pathogenesis of HS, several genetic
studies have focused the attention on genes encoding for protein
of immune response.

In this context, Savva et al. (65) decided to investigate SNPs
in tumor necrosis factor (TNF) and Toll-like receptor 4 (TLR4)
genes, in DNA from 190 patients and 84 healthy controls. They
found that only one SNP of the promoter region of the TNF gene
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(-238 TNF gene polymorphism) is related both with susceptibility
to HS and with the natural course of the disease; in fact, it is
related to more frequent exacerbation and more severe disease.
Regarding TLR4 SNPs, they failed to identify the impact of these
SNPs on susceptibility to HS (65).

Indeed, Giatrakos et al. (66) have hypothesized that the
dysregulation of antigen-presentation could play a role in the
pathogenesis of HS, in particular the IL-12/IL-23 pathway.
Considering that both IL-12 and IL-23 receptors have a common
subunit encoded by the IL-12Rb1 gene and that there is an
association between this gene and several autoimmune disorders,
they decided to investigate the association between the risk for
developing HS and SNPs in IL-12Rb1. Studying DNA from 139
patients and 113 healthy controls, they observed that SNPs in IL-
12Rb1 did not seem to play a role in the genetic predisposition;
however, they found that these SNPs impacted considerably on
the clinical phenotype of the disease; in fact, they are associated
with more severe disease, extended skin involvement and earlier
disease onset (66).

Of note, few times genetic findings contradicted common
concepts in HS pathogenesis. This is true, for instance, for
the study of copy number variation (CNVs) of β-defensin
genes DEFB103 and DEFB4 (67). The idea that HS is caused
by uncontrolled growth of skin microflora or by a bacterial
pathogen colonizing the skin of the patients is testified by the
common use of antibiotics as a first line treatment for the
disease. Thus, researchers would have expected a deficiency in
antimicrobial peptides production, but Giamarellos-Bourboulis
and collaborators showed that an increased number of DEFB103
and DEFB4 genes, associated with augmented expression of β-
defensin 2 and 3 proteins, is an important risk factor for HS
susceptibility. However, patients with more copies of these genes
were protected against a severe phenotype in terms of both age of
initiation and number of affected sites (see Figure 1).

Recently, Agut-Busquet et al. (68) observed an association
of Myeloid differentiation primary response gene 88 (MYD88)
SNPs and susceptibility to severe HS, analyzing the DNA of
101 HS patients. This gene encodes a cytosolic adapter protein
that plays a central role in the innate and adaptive immune
response. This protein is involved in the Toll-like receptor and
IL-1 receptor signaling pathway in the innate immune response
(69). Agut-Busquet et al. found a significantly increased risk of
developing severe HS (Hurley III) for the GG genotype of rs6853
inMYD88 gene.

Genotype-Phenotype Correlation
Different authors have attempted to clinically classify HS
in order to stratify patients for clinical trials and identify
subpopulations prone to respond to specific therapies. Canoui-
Poitrine et al. (70) identified 3 subtypes of disease (“axillary-
mammary,” “follicular,” and “gluteal”) by means of a latent class
analysis on prospective clinical data of 618 consecutive patients,
while 6 different phenotypes (regular type, frictional furuncle
type, scarring folliculitis type, conglobata type, syndromic type,
ectopic type) were suggested by Van der Zee and Jemec (71).
Despite these efforts to distinguish different clinical categories
of HS, establishing a clear genotype-phenotype correlation is

not possible to date. However, several mutations affecting the
components of the inflammasome cascade or the proteins
that regulate inflammasome function have been described in
syndromic HS patients. The two main syndromes including
HS as a part of their cutaneous manifestations are PASH, a
disorder presenting with the triad pyoderma, acne and HS (72–
76), and PAPASH, a syndrome described by our group and
characterized by the same triad of PASH and pyogenic arthritis
(77) in whom genetic studies evaluating exons 10 and 11 of
the PSTPIP1 gene revealed a p.E277D previously unreported
missense mutation.

PASH patients are generally young adults with a very early
onset of the clinical manifestations of the syndrome, especially
acne (72–74, 78, 79). For the first two reported PASH cases,
it was hypothesized that the presence of alleles with a higher
number of CCTG motif repeats close to the PSTPIP1 promoter
deregulated PSTPIP1 expression and predisposed to neutrophilic
inflammation (72). This microsatellite may, therefore, be
involved as a modifier gene, although it is probably not causal
(80). The initial hypothesis was that PASH is a monogenic
disorder, but nowadays its polygenic autoinflammatory nature
has been confirmed (74, 81). An observational study of five
PASH patients (74) showed that their nine gene mutations
had already been entered in the database of single nucleotide
polymorphisms and that seven were in the registry of hereditary
autoinflammatory disorder mutations. Four of these five patients
had genetic alterations typical of monogenic autoinflammatory
diseases, and the only patient without any genetic changes
had Crohn’s disease, which is regarded as an autoinflammatory
disease. Indeed, mutations of the MEFV (Mediterranean fever)
gene have previously been associated with the typical clinical
picture of recessive familial Mediterranean fever (FMF) and
mutations of the NOD2 (nucleotide-binding oligomerization
domain-containing protein 2) gene are associated with an
increased risk of developing Crohn’s disease (82). A loss-of-
function mutation in the NCSTN gene has been reported
in one PASH patient (79). The nature and location of this
mutation do not distinguish it from the reported HS mutations
(83), thus supporting a close relationship between isolated HS
and PASH.

TRANSCRIPTOMICS: DIFFERENTIAL
GENE EXPRESSION IN HS

The impact of genetics in the susceptibility to hereditary
and sporadic HS is not only limited to mutations impairing
proteins known to be associated with the disease (i.e., those
involved in the γ-secretase pathway); other genetic variations
such as epigenetic changes, or variations in regulatory regions
could play a role in HS susceptibility or in HS clinical
phenotype modulation.

With this purpose, several studies analyzed the gene
expression profiles in different anatomical districts (i.e., lesional
skin, peripheral blood) of HS patients aimed at discovering
novel actors possibly involved in the diseases or in its clinical
modulation (see Table 2).
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TABLE 2 | Overview of gene expression in lesional and non-lesional skin of HS patients, healthy controls, and subjects suffering from other skin diseases, such as

psoriasis and atopic dermatitis.

Gene Expression Tissue Technique Number of subjects References

Whole genome 50 probes differentially

expressed (no validation), 10

putative disease-related

pathways

Lesional skin,

non-lesional skin whole

blood

Affymetrix GeneChip.

NO VALIDATION

27 (17 HS patients, 10

healthy donors)

(84)

Drosha, DGRC8, Dicer

Exportin-5

Drosha ↓, DGRC8 ↓ in non

lesional skin

Skin lesions and

non-lesional skin

RT QPCR, IHC 28 (18 HS patients, 10

healthy controls)

(85)

miRNA-155-5p, miRNA-223-5p,

miRNA-31-5p, miRNA-21-5p,

miRNA-125b-5p, and

miRNA-146

miRNA-155-5p ↑,

miRNA-223-5p ↑,

miRNA-31-5p ↑,

miRNA-21-5p ↑,

miRNA-146a ↑,

miRNA-125b-5p ↓

Lesional and

perilesional skin

RT QPCR 25 (15 HS patients, 10

healthy controls)

(86)

TRBP1, TRBP2, PACT, AGO1,

AGO2, metadherin, SND1

TRBP1 ↓,

PACT ↓, AGO1 ↓, AGO2↓,

SND1 ↓

Lesional skin,

peri-lesional skin

psoriasis, healthy skin

RT QPCR 38 (18 HS patients, 10

psoriasis patients, 10

healthy controls)

(87)

IL-12, IL-23, IL-17 Il 12 ↑, IL17 ↑, IL-23 ↑ Lesional skin, healthy

skin

RT QPCR, IHC 18 (10 patients with

HS, 8 healthy controls)

(88)

IL-22, IL-20, IL-17A, IL-26,

IFN-γ, IL-24, IL-1β, hBD1, hBD2,

hBD3, S100A7, S100A8,

S100A9

IL-22 ↓, IL-20 ↓,

hBD1 ↓, hBD2 ↓, hBD3 ↓,

S100A7 ↓, S100A8 ↓, S100A9 ↓

HS lesional skin vs.

Psoriatic and atopic

dermatitis lesional skin

RT QPCR 37 (8 healthy controls;

14 Psoriasis patients; 7

HS patients; 8 patients

with atopic dermatitis)

(89)

IL-1β, IP-10, RANTES, hBD1,

hBD2, hBD3, S100A7, S100A8,

S100A9, RNAse7

IL-1β↑, IP-10↑, RANTES ↑,

hBD1↓, S100A7↑

Keratinocytes isolated

from hair follicles

RT QPCR – (90)

IL-17, IL-1β, TNF-α, NLRP3,

IL1β, IL18

IL-17↑, IL-1β↑, TNF-α↑,

NLRP3↑, IL1β↑, IL18 ↑

LESIONAL,

non-lesional skin,

uninvolved skin from

the same patients.

RT QPCR, FC,

enzyme-linked

immunosorbent assays

54 (44 HS patients, 10

healthy controls)

(20)

IL32 IL32 ↑ Lesional skin and

serum

RT QPCR, IHC, ELISA 36 (20 HS patients, 8

psoriasis patients, 8

atopic dermatitis

patients)

(91)

IL36 IL36 ↑ Lesional skin and

serum

RT QPCR, IHC, ELISA 38 (25 HS patients, 6

psoriasis patients, 7

healthy donors)

(92)

TLR2 TLR2 ↑ Skin lesions, CD68+

macrophages,

CD209+ DCs

RT QPCR, IHC, FC 16 (9 HS patients, 7

healthy controls)

(93)

hBD3, RNAase 7, psoriasin

(S100A7), dermicin (DCD)

hBD3 ↑ Lesional skin, healthy

skin

RT QPCR 93 (36 HS patients 57

healthy controls)

(94)

GSE72702 expression profile of

genes encoding

sphingolipid-related enzymes

from Gene Expression Omnibus

database

Perilipin 1 ↑,

S1P (sphingosine-1-phosphate)

↑, SMase, (sphingomyelinase) ↑;

CerS2 (Ceramide synthase 2) ↓,

SK2 (sphingosine kinase) ↓, SPT

(serine palmitoyl CoA

transferase) ↓

Skin inflammatory

lesions, skin biopsies of

healthy controls

In silico

Microarray repository

NOT VALIDATED

30 (17 HS patients; 13

healthy skin tissue)

(95)

↑, up-regulated in HS lesional skin; ↓, down-regulated in HS lesional skin.

Whole Genome Expression
To the best of our knowledge, the most complete gene
expression profiling in HS patients has been performed by
Blok et al. (84), who analyzed lesional skin and whole blood
from 17 HS patients comparing their whole gene expression
profile with 13 samples of healthy skins (from non lesional
areas of HS patients) and whole blood from 10 healthy
donors. The authors studied the whole genome expression

using the Affymetrix GeneChip HT HG-U133+PM Array
(Affymetrix, Santa Clara, CA, US). The first interesting finding
is that no differences in NCSTN, PSEN1, and PSENEN gene
expression have been found either at skin level or in whole
blood from patients and controls. Blok et al. claim that the
absence of differences in whole blood between HS patients and
controls should be related to a possible post-transcriptional
negative control of cytokines production due to augmented
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serum level of tumor necrosis factor (TNF)-α as reported by
Matusiak et al. (96).

When considering HS patients skin, Blok et al. identified 50
probes differentially expressed between lesional and non-lesional
skin of HS patients as well as 10 pathways possibly involved
in the disease (97); these pathways are (in order of statistical
significance based on p-values): Granulocyte adhesion and
diapedesis, agranulocyte adhesion and diapedesis, atherosclerosis
signaling, hepatic fibrosis, primary immunodeficiency signaling,
communication between innate, and adaptive immune cells,
dendritic cell maturation, complement system, systemic lupus
erythematosus signaling and leukocytes extravasation signaling.

The authors, in our opinion, did not exhaustively explain
the findings obtained, just justifying the differences in gene
expression based on the genetic background of HS patients.
However, it should be underlined that Blok et al. acknowledged
the limitation of their study related to the relatively small
number of samples analyzed and overall to the lack of validation
(both immunohistochemistry on in situ hybridization as well
as RT-QPCR).

miRNA Regulatory Elements Expression
Another important aspect of gene expression regulation has been
widely considered by Hessam et al. (85–87); in three independent
studies, the authors analyzed miRNA expression profiles in
inflammatory lesions from HS patients.

In the first study, the authors. (85) assessed, using RT
QPCR, the expression of Drosha, Drosha co-factor DGRC8,
Dicer and Exportin-5 in skin lesions and non-lesional skin
from HS patients, skin lesions from patients with psoriasis and
skin biopsies from healthy individuals. By finding a down-
regulated gene expression of Drosha and DGRC8 just in non-
lesional skin from HS patients, the authors hypothesized an early
intervention of these miRNA regulators during the first, clinically
and histologically not detectable, stages of inflammation, thus
suggesting that when inflammation signs become observable only
at that moment Dicer and Exportin-5 are involved.

In the second study (86), the expression of inflammation-
related miRNA (namely miRNA-155-5p, miRNA-223-5p,
miRNA-31-5p, miRNA-21-5p, miRNA-125b-5p, and miRNA-
146) was evaluated through RTQPCR in lesional and perilesional
skin of 15 HS patients and 10 healthy controls: the above-
mentioned miRNA was shown as differentially expressed in
HS patients as compared to controls, leading the authors to
hypothesize a function in the modulation of the inflammatory
response in the lesional skin of HS patients.

In the third study, Hessam et al. (87) enrolled HS and
psoriasis patients as well as healthy controls analyzed
the expression profile of RNA-induced silencing complex
(98) components (specifically, transactivation-responsive
RNAbinding protein-1 (TRBP1), TRBP2, protein activator
(PACT) of the interferon-induced protein kinase R, Argonaute
RISC Catalytic Component-1 (AGO1) and Component- 2
(AGO2), metadherin, and staphylococcal nuclease and Tudor
domain-containing-1 (SND1)), also in this case using RT QPCR,
in their inflamed tissues (skin biopsies). The authors concluded,
after RISC component comparison between skin biopsies of

HS and psoriasis patients and healthy controls, that all RISC
components were differentially expressed thus highlighting
a possible role in the modulation of skin inflammation in
HS patients.

Indeed, the three studies of Hessam et al., also in this case
with the limitation of the low number of individuals considered
and the lack of information about ethnicity of patients and
controls enrolled, possibly accounting for genetic differences,
evidenced novel possible biomarkers correlating with local skin
inflammation to be eventually considered in the follow-up of HS
patients (4).

Cytokine Expression
Due to their widely accepted role in the modulation of
inflammatory processes, cytokine-encoding genes have been
extensively studied in the context of HS etiopathogenesis.

Schlapbach et al. (88) analyzed, using RTQPCR and validating
their findings with immunohistochemistry, lesional skin of HS
patients and compared IL-12, IL-23, and IL-17 gene expression
with skin biopsies from healthy controls. The authors observed
a specific expression of the IL-23/Th17 pathway in lesional skin,
thus evidencing, as expected, a connection between the immune
system and the inflammatory phenotype in the HS lesions.

Starting from the observation that IL-22 has been reported
as correlated with chronic cutaneous diseases such as psoriasis,
Wolk et al. (89) evaluated IL-22 encoding gene expression in
HS patients. In their work, the authors showed diminished
expression of IL-22 and IL-20, but not of IL-17A, IL-26,
IFN-γ, IL-24, or IL-1β in HS lesional skin. Furthermore, a
correlation between a shortage of IL-22 and IL-20 and reduced
expression of antimicrobial peptides (hBD1, hBD2, hBD3,
S100A7, S100A8, S100A9) has also been found in HS lesional
skin. Wolk et al. concluded that IL-22, same as for other chronic
skin diseases, could be another actor potentially involved in
HS etiopathogenesis.

Hotz et al. (90) observed a significant increase in IL-1β, IP-
10 secretion, and chemokine ligand 5 (CCL5/RANTES), either
constitutively or on pattern recognition receptor stimulations, in
keratinocytes isolated from hair follicles of patients with HS.

Using a multitasking experimental approach involving RT
QPCR, flow cytometry and enzyme-linked immunosorbent
assays, Kelly et al. (20), detected an augmented expression
of genes encoding IL-17, IL-1β and TNF-α in biopsies of
lesional skin from HS patients when compared to biopsies
from non-lesional skin and uninvolved skin from the same
patients. Moreover, the authors demonstrated an involvement
of the inflammasome platform in HS lesions, being increased
the expression of NLRP3, IL-1β, and IL-18. Finally, differential
cytokine expression was detected in perilesional and non-lesional
skin biopsies, leading the authors to hypothesize the presence of
inflammation in HS patients present before the development of
clinically evident lesions.

Thomi et al. (91) reported an increased expression of IL-36
encoding gene in skin biopsies and serum from HS patients,
highlighting a local and systemic involvement of this cytokine,
but the exact mechanism of action of IL-36 in HS pathogenesis
has not been suggested.
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In another independent study, the same authors (92) observed
enhanced IL-32 gene expression in both lesional skin and serum
from HS patients when compared to healthy controls or patients
suffering from psoriasis and atopic dermatitis. Moreover, Thomi
et al. identified the cells producing IL-32, namely natural killer
cells, T cells, macrophages and dendritic cells localized at dermal
level. The authors conclude that IL-32 could be a potential target
for novel drug development.

At last, Jenei et al. (99) suggested after performing protein
arrays that not only the microbiota and chemical content of
human skin show three main topographical areas (dry, moist,
oily/sebaceous), but probably in correlation to this, the immune
and barrier characteristics of these topographical regions are also
distinct, which can make these skin regions become prone to the
development of “region-specific” inflammatory skin diseases, like
HS on apocrine gland-rich areas and acne or rosacea.

Other Differentially Expressed Genes
Hunger et al. (93) aimed at exploring the function of TLR2
in the modulation of the clinical phenotype of HS patients,
studies TLR2 encoding gene expression in skin lesions of HS
patients. Using a multidisciplinary approach consisting in RT
QPCR, immunohistochemistry and flow cytometry, the authors
demonstrated an up-regulated TLR2 gene expression in HS
patients skin lesions, also identifying CD68+ macrophages and
CD209+ DCs as the cells expressing TLR2.

Hofmann et al. (94) published a seminal paper on defensins
gene expression in the epithelium of HS patients. The authors
analyzed through RT QPCR, the expression of HBD3, RNAase 7,
psoriasin, and dermicin antimicrobial peptides encoding genes
in lesional skin from HS patients (36 individuals) and skin
biopsies from healthy controls (57 subjects). It has been observed
a defective RNAase 7 expression (both at RNA and protein levels)
in HS patients, while HBD3 expression (both RNA and peptide)
was increased in HS patients but not in those with a more severe
phenotype (Hurley grade III). The authors suggest that lack
of antimicrobial peptide expression could predispose to major
susceptibility to infections in skin lesions, while reduced HBD3
expression in severe HS cases could be related to a potential
anti-inflammatory role.

Dany and Elston (95) using a microarray-based approach
analyzed the expression of sphingolipid-related enzymes in
skin inflammatory lesions of HS patients and skin biopsies
of healthy controls. The authors observed an up-regulation of
genes encoding ceramide and sphingomyelin generating enzymes
as well as augmented expression of genes encoding enzymes
catabolizing ceramide to sphingosine and those converting
ceramide to galactosylceramide and gangliosides. Dany and
Elston suggested that, based on the findings obtained and
acknowledging the limitation due to the lack of evaluation of the
sphingolipids generated by the evaluated enzymes, sphingolipid
metabolism ismodified inHS lesional skin. This study also suffers
the absence of RT QPCR validation of the microarray results.

PROTEOMICS

Two studies on proteins being involved in HS development have
been performed by Blok et al. (97) and Zouboulis et al. (100).

The authors analyzed sera from 17 patients with moderate to
severe HS (based on Hurley scale), treated with ustekinumab,
a monoclonal antibody directed against IL-12 and IL-23 and
approved for the treatment of psoriasis. The clinical trial has been
designed to understand if any proteomic marker was possibly
involved in the successful (or not) treatment with the drug
for 40 weeks follow-up. Blok et al. analyzed 1,129 proteins
in the sera of HS patients at the beginning and the end of
ustekinumab treatment.

Serum proteomic analysis revealed a different expression
of 54 proteins in the 17 HS patients when compared to 10
healthy subjects. These 54 differentially expressed proteins, after
accurate pathway analysis, resulted involved in inflammatory
processes, cellular signaling related to immune processes and
tissues architecture modulation. Moreover, among the 4 patients
who achieved a good response after drug administration, all
were characterized by up-regulated production of Leukotriene
A4 Hydrolase (LTA4H), follicle-stimulating hormone (FSH),
luteinizing hormone (LH), and human chorionic gonadotropin
(HCG), firstly detected with protein array, then validated by
ELISA. No effect of ustekinumab treatment has been observed
when considering TNF-α, IL-17A, IL-17F.

At the end of their clinical the authors suggest that treatment
with ustekinumab, a drug used for psoriasis, was somehow
beneficial for HS patients, also proposing the dosage of LTA4H,
together with the clinical evaluation using the Hidradenitis
Suppurativa Clinical Response (HiSCR) score, for the prediction
of the immunosuppressive drug in patients with mild or
severe HS.

This work is of some interest in the field of serum markers
possibly associated with HS and its treatment. What is strongly
needed to unravel the molecular mechanisms at the basis of
HS by means of proteome analysis in lesional, pre-lesional, and
healthy skin in biopsies from mild to severe HS patients, as
studied in the second preliminary study by Zouboulis et al. (100)
in 8 HS patients involved and uninvolved skin and 8 gender-,
age-, and skin location-matched female patients. The response to
pharmacological treatment could be also considered but themain
goal should be depicting what is happening at proteomic level in
the skin of individuals with HS. Of course, the identification of
serological markers related to the clinical conditions and drugs
response of patients suffering from HS is also envisaged, since it
is easy to be employed in their routine follow-up.

DATA INTEGRATION SKIN-OMICS

After several studies tackling HS pathogenesis using a single
OMICs approach, the one of Hoffmann et al. (101) finally
succeeded to integrate skin/serum transcriptomics and
proteomics findings obtained in a limited number of HS
patients (n = 17) with different degree of disease severity and
healthy subjects (n = 10). The authors made comparisons
between transcriptomic and proteomics profiles present in the
main repositories or reported in previous articles (see those
described above). This integrated approach, the first to our
knowledge used until now to disclose the mechanisms at the
basis of HS pathogenesis, provided interesting results and opened
a new path to approach this complex disease.
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Hoffmann et al. propose, based on integrated OMICs findings
a novel pathogenic model for HS consisting of two distinct
and subsequent stages, initiation with the well-known follicular
obstruction and progression of the disease, being the latter
characterized by a strong immune response to microbiota, thus
adding a novel actor in HS etiopathogenesis.

The authors hypothesized that the differential genes and
protein expression (i.e., enhanced expression of innate immune
response, immunoglobulins, complements proteins, augmented
interferon signature) could be due to the attempts of the immune
system, both innate, and adaptive to react to microbiota present
in HS patients skin; this is particularly evident if we consider
the role of activated complement proteins in HS patients in
the fight against commensal skin bacteria, being the main taxa
(identified through literature search and metagenomic analysis)
Porphyromonas and Prevotella. Moreover, it is suggested that
the strong involvement of the skin-related immune system is a
mechanism already observed in other cutaneous diseases that
could share with HS the same immunologic mechanisms of
response to skin dysbiosis.

Despite the novel approach used, the study of Hoffmann
et al. suffers the important bias characterizing all OMICs studies
performed to date: few patients analyzed, lack of correlation
and integration with GWAS findings. In fact, the authors did
not consider in their interesting integrate approach the genetic
findings present in the literature, that could have contributed
to identifying genetic causative variants in genes encoding the
immune system actors involved in the response to dysbiosis,
so missing validation of their findings by triple-checking their
results with the genetic findings.

CONCLUSIONS

In this review, we collected all the information concerning the
OMICs studies performed on HS patients aimed at unraveling
the mechanisms at the basis of the disease or associated to clinical
severity and/or the successful response to pharmacological
treatment (including biological drugs).

The general picture of the OMICs contribution in the context
of HS is not so clear and/or rich of clinical useful information,
since most of the studies focused only on one aspect (genome,
transcriptome, or proteome) of the disease, enrolling small
numbers of patients (this is quite limiting for the genetic studies)
from different geographical areas, looking just a few aspects of HS
pathogenesis without any integration of the findings obtained or
a comparison within studies.

In this sense just two articles [(97, 100): described above]
constructively compared the transcriptomic and proteomic
profiles of skin and serum from HS patients with previous data
present in biological repositories. We do think that this is the
right path to be followed to disclose the fine mechanisms at the
basis of HS and its clinical course.

An integrated approach using OMICs tools is strongly
required to study the full genome, the skin transcriptome and
proteome (from lesional, perilesional, and non-lesional biopsies
as well as serum) of HS patients stratified based on the severity
of the diseases, type of treatment and response to drugs; the
number of enrolled patients, with the same ethnic background,
is a key issue, especially for the genetic studies, in this sense
we do recommend the constitution of consortia to better
address this key-point. A comparison and integration with the

FIGURE 2 | Integrated OMICs pipeline set up for disclosing the actors involved in hidradenitis suppurativa pathogenesis and proposing a personalized treatment for

the patients.
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findings present in the OMICs repositories is mandatory, so in
a theoretic pipeline the Skin-OMICs profile obtained from each
HS patient should be compared and integrated with repositories
and literature data by using appropriate InterOMICs approach
(i.e., see the interesting work performed on 16 types of cancer
integrating pathways and biological network data by Cava et al.
(102). Figure 2 shows the possible integrated strategy to be
adopted for tailored diagnosis and treatment of HS patients.

In our opinion, this is the more rapid and robust approach
to study the contribution of genome, transcriptome, proteome
in the constitution of integrated pathways and networks able to
better unravel HS etiopathogenesis, possibly discovering targets
for novel drugs design or to personalize HS treatment, in
accordance with the new challenges of the precision medicine.
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