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Control of homeostasis and rapid response to tissue damage in the liver is orchestrated

by crosstalk between resident and infiltrating inflammatory cells. A crucial role for

myeloid cells during hepatic injury and repair has emerged where resident Kupffer cells,

circulating monocytes, macrophages, dendritic cells and neutrophils control local tissue

inflammation and regenerative function to maintain tissue architecture. Studies in humans

and rodents have revealed a heterogeneous population of myeloid cells that respond

to the local environment by either promoting regeneration or driving the inflammatory

processes that can lead to hepatitis, fibrogenesis, and the development of cirrhosis

and malignancy. Such plasticity of myeloid cell responses presents unique challenges

for therapeutic intervention strategies and a greater understanding of the underlying

mechanisms is needed. Here we review the role of myeloid cells in the establishment

and progression of liver disease and highlight key pathways that have become the focus

for current and future therapeutic strategies.

Keywords: hepatitis (general), hepatocellular carcinoma, cirrhosis, fibrosis, myeloid derived suppressor cell

(MDSC), neutrophil (PMN), macrophage, circulating monocytes

INTRODUCTION

Myeloid cells arise from the common myeloid precursor and give rise to monocytes, dendritic cells
and macrophages, and granulocytes. Myeloid cell functions include the recognition, ingestion and
degradation of cellular debris, foreign material or pathogens, subsequent control of inflammatory
responses, and maintenance of tissue architecture. There is increasing evidence implicating
granulocytes in liver homeostasis and disease but this review will focus mainly on monocytes and
macrophages. Macrophages are a diverse, heterogeneous population derived from short-lived, but
plastic, precursor monocyte populations. Monocytes are rapidly recruited to sites of injury and
their functions are imprinted in the bone marrow, whereas macrophages tend to be long-lived and
tissue-resident, where their functions are dictated by environmental cues (1). A highly coordinated
pathway of monocyte recruitment and subsequent imprinting of macrophage “identities,” the
mechanisms of which are only now beginning to be understood, controls local tissue inflammatory
and regenerative functions and is critical in maintaining tissue architecture (2–4). Extensive
rodent and human studies have demonstrated key roles for monocytes and macrophages in the
establishment, progression and regression of liver disease including a critical role in directing
tissue regeneration (5–7). This fine balance of pro- and anti-inflammatory mediators is crucial to
determining the path of disease progression, and understanding how myeloid cells contribute to
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injury and repair will enable the rational design of novel
therapies. In this review we summarize the identities and
roles of myeloid cell populations in the liver, and describe
approaches that are being developed to reduce inflammation
through targeting this innate immune cell population.

HEPATIC MONOCYTE AND
MACROPHAGE POPULATIONS

Kupffer Cells
The liver contains a population of self-renewing resident
macrophages, termed Kupffer cells (KC), derived from yolk
sac-derived progenitor cells (8, 9) or hematopoietic stem cells
(10). In mice KC phenotype is thought to be controlled by a
specific set of transcription factors including ID3 and ZEB2
through progenitor cell development and maintenance of the
expression of LXRα permitting replenishment of the KC niche by
progenitors from the circulation (2, 11–13) (Figure 1, Table 1).
They are non-migratory, being retained in the sinusoids where
they maintain a tolerogenic environment despite the presence
of low levels of food particles and bacterial antigens delivered
from the gut via the portal vein (4, 14, 15). This is achieved
through highly effective phagocytic and scavenging mechanisms
triggered by toll-like receptor (TLR) signaling and scavenger
receptors such as CD36, scavenger receptor-A and galectin-3
(16, 17). Their expression of high levels of pattern recognition
receptors (PRRs) allows macrophages to respond to a wide
range of danger-associated molecular patterns (DAMPs) released
during tissue injury, such as high mobility group protein B1
(HMGB1), ATP, uric acid, DNA fragments and cholesterol
crystals (5) and pathogen-associated molecular patterns (PAMPs,
such as lipopolysaccharide and flagellin) released from microbes.
Activation of PRRs leads to the formation of the inflammasome
(18) via multi-protein complexes including the NOD-, LRR-
and pyrin domain-containing 3 (NLRP3) (19). Formation of
the inflammasome promotes the release of potent signaling
molecules including IL-1β, PGE2, HMGB1, TNF-α, and IL-17,
driving inflammation and fibrosis (20–24). KC from both mouse
and human liver also secrete the anti-inflammatory cytokine
IL-10 (25–27), express low levels of MHC class II and co-
stimulatory molecules combined with high levels of the T-cell
inhibitory molecule PDL-1 (27). This makes them unable to
fully activate T cell effector function but rather to promote
the development of regulatory T-cells (Treg). This is further
enhanced through their secretion of PGE2 (28) and upregulation
of the indolamine 2,3-dioxygenase pathway which promotes
immune cell tolerance (29).

Murine KC have been well characterized
under homeostatic conditions and in experimental
models of hepatic injury, where they express
CD11b+F4/80++CD68+CD11c+/−CLEC4F+TIM4+ in
addition to TLR4, TLR9, and CRIg, but are negative for the
chemokine receptor CX3CR1. Recent advances in proteomic
analysis has revealed circadian regulation of not only KC
numbers in uninjured mouse liver, but also components of the
immune response pathway which peak during the daytime,

including Tlr4, Myd88, Irak4, and Tak1 (30). Human KC are
less well described but can be identified through expression of
CD68+CD14+TLR4+ and lack of CX3CR1.

Infiltrating Monocytes
Circulating monocytes are actively recruited to the liver, guided
by adhesion molecules and chemokine gradients generated
at the sinusoidal endothelial interface (see below). In mice
bone marrow derived myeloid cells expressing high levels of
Ly6C and CCR2 rapidly infiltrate tissue and are associated
with the expression of pattern recognition receptors (PRR) and
inflammatory cytokines (CD11b+CCR2+CX3CR1

+CD43−).
In contrast Ly6Clow monocytes from the spleen express a
broad range of scavenger receptors and exhibit a patrolling
behavior that may enable the engulfment of apoptotic cells
(CD11b+CCR2−CX3CR1

++CD43+) (27, 31–36). In humans
there is no discriminatory expression of Ly6C and monocytes are
classified according to the expression of CD14 and CD16 giving
rise to classical (CD14++CD16−), intermediate (CD14+CD16+),
and non-classical (CD14−CD16+) populations. Gene expression
profiling of these subsets has determined that CD14++CD16−

monocytes resemble murine Ly6Chigh infiltrative cells and
CD14−CD16+ monocytes more closely align with the patrolling
Ly6Clow population (31). Potent immunomodulatory myeloid
derived suppressor cells (MDSC) are also present in both
murine and human liver tissue. MDSCs are a heterogeneous
population of cells which express markers shared with other
immune cell populations (CD11b+Ly6C+ in mice, CD14+HLA-
DR+/−CD33+ in humans), therefore identification is usually
confirmed by means of a T-cell suppression assay (37). MDSC
suppress immune responses through production of arginase 1
(Arg1), inducible nitric oxide synthase (iNOS) and generation of
reactive oxygen species (ROS), or secretion of IL-10 (38).

RECRUITMENT FROM THE CIRCULATION
AND DIFFERENTIATION IN TISSUE

Damage to tissue results in an upregulation of adhesion
molecules on liver sinusoidal endothelium (LSEC) and the
secretion of chemokines, cytokines and other bioactive molecules
that promote immune cell recruitment [reviewed in (39)].
Circulating CCR2+ monocytes are recruited in response to
local CCL2, released primarily by hepatic stellate cells (HSC)
(40, 41), or through the CCR8/CCL1 and CXCR3/CXCL10 axes
(42–44). In humans the migration of CD14−CD16+ monocytes
is promoted through activation of CX3CR1 by endothelial
CX3CL1, a transmembrane chemokine that is expressed at high
levels during inflammation (45). Intermediate CD14+CD16+

monocyte populations are enriched in the diseased liver (46),
partly due to their increased propensity when compared with
other monocytes to migrate across LSEC. These cells exhibit high
phagocytic activity and secrete pro-inflammatory and fibrogenic
mediators (47). Bidirectional migration of monocytes affects the
local balance of inflammatory and anti-inflammatory cells. Pro-
inflammatory CD14−CD16+ subsets undergo reverse migration
from tissue back into the circulation via across LSEC from
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FIGURE 1 | Myeloid populations present within the liver. Kupffer cells are derived from the yolk sac or hematopoietic stem cells, under the control of transcription

factors such as ID3 and ZEB2. Infiltrating monocytes originating in the bone marrow or spleen express the chemokine receptors CCR2 and CX3CR1, and can

differentiate into monocyte-derived dendritic cells. Following injury monocytes undergo transendothelial migration across LSEC and differentiate into monocyte derived

macrophages, which can mature into a more restorative phenotype or replenish the KC pool. A GATA6+ macrophage population that migrates from the peritoneum

during hepatic injury has been identified in mice. Markers that identify hepatic macrophages in mice, humans or are common to both are highlighted in red, blue and

black text, respectively.

where they may contribute to systemic inflammatory responses,
whereas anti-inflammatory cells remain in the tissue where
they suppress T-cells and promote endotoxin tolerance (48). A
phenotypic switch in macrophage phenotype is observed during
acute liver injury in humans where MAC387 (S100A9) can be
used to identify circulation-derived macrophages in contrast to
CD68+ resident populations (49). Infiltrating monocytes also
undergo local intrahepatic differentiation into anti-inflammatory
MDSC following injury via contact-dependent mechanisms such
as communicationwith hepatic stellate cells (HSC), or interaction
with soluble mediators such as catalase (50, 51).

In mouse models of sterile injury CCR2+Ly6Chigh monocytes
form rings to demarcate the extent of injury (14), and
subsequently mature into Ly6Clow monocytes that promote
the resolution of injury and fibrosis (52). These “pro-restorative”
macrophages exhibited a phenotype distinct from the classical
M1 (pro-inflammatory) or M2 (pro-resolution) dichotomy
with increased expression of genes that promote tissue
restoration including matrix metalloproteinases (MMPs),
growth factors, and phagocytosis-related genes. Murine
monocytes can also take unconventional routes into liver
tissue. In a model of sterile liver injury GATA6-positive
macrophages (CD11b+F4/80+Gata6+) originating in the
peritoneal compartment were observed within the hepatic
compartment at a very early stage of tissue damage (53). These

cells migrate directly across the mesothelium, dependent on
adenosine triphosphate and the adhesion molecule CD44.
The contribution of these cells to disease pathogenesis is
currently unknown.

Thus, local polarization of myeloid cell populations, and
recruitment of macrophages from other sites, has important
implications in disease pathogenesis where the balance of pro-
/anti- inflammatory mediators and fibrogenic responses dictates
the course of the disease.

RESPONSE TO ACUTE AND CHRONIC
LIVER DISEASE

Acute Liver Disease (Such as
Acetaminophen Overdose, Acute Viral, or
Alcoholic Hepatitis)
Acute liver failure (ALF) is associated with high mortality
and toxic liver injury in response to overdose of drugs such
as acetaminophen is a more common cause of ALF than
immune-mediated injury arising from acute viral hepatitis
(54, 55). Much of what we know of macrophage function
during early disease is derived from experimental models of
acute liver injury in rodents such as carbon tetrachloride
toxicity (hepatocyte necrosis) (56), bacterial infection (57),
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TABLE 1 | Myeloid cell populations in humans and mice.

Myeloid

population

Murine

markers

Human

markers

Role

Myeloid-derived

dendritic cell

CD11b+

MHCII+

CD11c+

CD103+/−

CD11c+

HLA-DR+

Tolerogenic in nature;

Upon injury may adopt an

inflammatory phenotype;

Functional role in liver disease ill-defined

Kupffer cells CD11b+

CD68+

F4/80++

CLEC4f+

TIM4+

CX3CR1
−

TLR4+

TLR9+

CRIg+

CD68+

CD14+

TLR4+

CX3CR1
−

Promote tolerance under steady-state

conditions to restrict immune response

against food-borne antigens;

Activated during tissue damage; main

source of cytokines / chemokines

governing local inflammation

Myeloid derived

suppressor cells

CD11b+

Ly6C+

CD14+

HLA-

DR+/−

CD33+

Immunosuppressive;

Facilitate HCC growth by dampening

T-cell activity

Monocyte

derived

macrophage

CD11b+

Ly6C+/−

F4/80+/−

CCR2+

CX3CR1
+

CD64+

CD14+

CCR2+

CD16+/−

See subsets below

Inflammatory

macrophage

Ly6Chigh

CD11b+

CCR2++

CX3CR1
+

iNOS+

TNF+

CD14++

CD16−

CLEC5A+

S100A9+

Pro-inflammatory, massively recruited

during liver injury; elicits tissue damage;

drive fibrogenesis by maintaining

inflammation and activating fibrosis

effector cells; can undergo phenotypic

switch to restorative macrophages

Pro-resolution

macrophage

Ly6Clow

CD11b+

CCR2+

CX3CR1
++

CD206+

MMP9+

MMP12+

CD14−

CD16+

CD163+

CCR2+

CX3CR1
++

Stabilin-1+

(MERTK+)

Anti-inflammatory; restorative function in

liver fibrosis; promote tissue repair after

acute damage; in humans CD16+ rather

linked to fibrosis progression

Neutrophils CD11b+

Ly6G+

Fpr1+

CD44+

CXCR1+

CXCR2+

CD15+

CD16+

CD49d−

FPR1+

CD44+

CXCR1+

CXCR2+

Ambiguous role in liver injury; functional

role likely context-dependent; putatively

profibrogenic in steatohepatitis

Peritoneal

infiltrating cells

CD11b+

F4/80+

GATA6+

Unknown Currently not known

concanavalin A (T cell mediated hepatocyte destruction) (58),
ischemia-reperfusion (I-R) injury (59), sterile injury (14),
and viral infection (60). These models show that extensive
hepatocyte damage mediated by heat/toxin/immune-mediated
killing releases DAMPs such as HMGB1 and nuclear DNA
which are sensed by KC leading to the release of cytokines and
chemokines, creating an environment that drives the recruitment
of inflammatory macrophage subsets (5). In the absence of
persistent injury, tissue repair is initiated by the maturation of
pro-inflammatory populations to a more restorative phenotype,

associated with anti-inflammatory and pro-angiogenic responses
(52) (Figure 2).

In acetaminophen (APAP) induced liver injury, perhaps the
best described rodent model of ALF, KC respond to tissue
damage through the rapid release of cytokines and chemokines
including IL-1β, TNF-α, CCL2, and CCL5 (61). Initially the
numbers of KC are reduced (<24 h) and early injury is associated
with high numbers of infiltrating Ly6Chigh monocytes which
produce proinflammatory cytokines such as TNF-α and IL-1β
and chemokines such as CCL2 and CCL5 (62–65). Evidence that
these early entrants drive tissue injury comes from data showing
that (i) infiltration of these cells during acetaminophen-induced
injury can be reduced through blockade of CCR2-mediated
recruitment (mNOX-E36, a CCL2 inhibitor, or cenicriviroc,
a CCR2/CCR5 dual inhibitor) and (ii) that adoptive transfer
of bone marrow monocytes exacerbated tissue damage (66).
Initiation of repair and control of inflammation is mediated
following a phenotypic switch in hepatic macrophages toward
a pro-resolution, hepatoprotective subset expressing IL-10, IL-
4 and IL-13 (67–69). This maturation event is dependent on
colony stimulating factor 1 (CSF1) and secretory leukocyte
protease inhibitor (SLPI) in areas of hepatic necrosis (70–72).
The emergence of CCR2lowCX3CR1

high cells is also associated
with the expression of vascular endothelial growth factor A
(VEGF-A) which promotes repair of the vascular architecture,
and increased phagocytic capacity to remove dead and dying
cells (72–74). In murine models this reparative pathway can
be disrupted via modulation of CCR2 signaling or depletion
of macrophages through treatment with liposomal clodronate,
indicating that both tissue resident and infiltrating myeloid cell
populations orchestrate repair (62, 63, 75).

Similar findings have been described in patients with ALF.
Clusters of CCR2+ macrophages are seen in patients with
APAP-induced liver failure (66) and increased serum CCL2
levels are associated with an unfavorable prognosis (49). A pro-
resolution population of MerTK+HLA-DRhigh cells has been
identified in circulatory and tissue compartments of patients
with ALF (72, 76). Analysis of these macrophages determined
that they secreted anti-inflammatory mediators and exhibited
reduced responses to bacterial challenge, consistent with an
anti-inflammatory immune tolerant function. This is supported
by the fact that APAP-treated Mer knockout animals exhibited
persistent liver injury and inflammation associated with a defect
in efferocytosis (72).

The pathways involved in other acute injury settings also
result in activation of KC following hepatocyte damage mediated
by T-cells (concanavalin A), oxidative stress (I-R), heat (sterile
injury), or virus induced apoptosis (hepatitis viruses). During
viral infection of humans KC increase in number and drive
the infiltration of other immune cell populations through the
production of inflammatory cytokines such as IL-1β, IL-18, and
TNF-α (77–80). KC expression of IL-6, IFN-γ, reactive oxygen
species, FAS ligand, granzyme B and TRAIL has been shown
to inhibit hepatitis C (HCV) replication, and induces apoptosis
of infected hepatocytes (81, 82). Triggering of KC responses
arises as a result of engulfment of hepatitis B viral particles
(leading to production of IL-18 and NK cell stimulation) (83)
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FIGURE 2 | The role of myeloid cells in acute liver injury. Hepatocyte cell death releases DAMPs that activate KC and hepatic stellate cells, leading to the release of

chemokines such as CCL2 and IL-8 (CXCL8) that drives the recruitment of myeloid cells into local areas of inflammation (top). Neutrophils are recruited via CD44 and

hyaluronan and generate ROS that promotes hepatocyte death, whereas infiltrating monocytes (and KCs) secrete proinflammatory cytokines such as TNFα and IL-1β.

Hepatic viruses can also stimulate KC through internalization (HBV) or binding to TLR2 (HCV). Homeostasis is restored through the action of restorative macrophages

(matured by phagocytosis) that secrete anti-inflammatory cytokines and promote angiogenesis, and secretion of IL-6 and IL-10 by KC (lower panel). Infiltrating

neutrophils are removed through efferocytosis mediated by MERTK+ macrophages and SLPI. Solid lines indicate cell migration, dashed lines represent the secretion

of soluble mediators.

or via TLR2 signaling and formation of the inflammasome, with
concomitant secretion of IL-18 and IL-1β, in the case of HCV
(84, 85). Conversely in the setting of chronic hepatitis B viral
infection the immune response is impaired through release of IL-
10 (86), reduced IL-12 expression (87) or T-cell exhaustion (88)
mediated by TLR2 signaling on KCs, via upregulation of galectin-
9 expression driving further immune cell exhaustion following
engagement with Tim-3 (89), or through increased expression
of the inhibitory ligand PDL1 (90). An excess of hepatitis B
virus antigen can also dampen TLR responses which contribute
to viral evasion of innate and adaptive immune responses (91).
This is thought to occur through suppression of proinflammatory
cytokines and expression of tolerogenic mediators (IL-10 in
particular) reminiscent of the tolerogenic effects of LPS, although
the signaling pathways mediating this effect may be distinct.

Chronic Liver Disease and Contribution
to Fibrosis
A prolonged cycle of iterative bursts of tissue damage
and inflammation underlies chronic liver disease leading to
fibrogenesis and ultimately in some cases cirrhosis. A proportion
of patients will develop hepatocellular carcinoma on the
background of continuing inflammation and fibrogenesis (92).
The incidence of non-alcoholic fatty liver disease (NAFLD) and

alcohol related liver disease (ARLD) has increased rapidly in
recent years and following advances in the treatment of chronic
viral hepatitis, attention is now switching to treating these
increasingly common chronic conditions (93) (Figure 3).

NAFLD is a spectrum of disease ranging from simple
steatosis (fatty liver) to non-alcoholic steatohepatitis (NASH),
fibrosis and cirrhosis (with or without malignancy). The
underlying pathology is driven by dysregulation of lipid
metabolism and accumulation of lipid in hepatocytes. It
is a systemic disease where dysregulated inflammation in
adipose, and liver tissue and changes in the gut microbiome
all drive the production of inflammatory mediators such as
cytokines and chemokines (94). In patients with NAFLD
enlarged and aggregated KC populations are seen in the
liver and their presence correlates with the severity of the
disease (95).

This is consistent with observations in diet-induced murine
models of NAFLD where KC activation leads to triglyceride
accumulation and production of proinflammatory cytokines
such as TNF-α (96, 97). Murine hepatic macrophages can
also receive activation signals from lipid-stimulated hepatocyte-
derived extracellular vesicles via tumor necrosis factor-related
apoptosis-inducing ligand receptor 2 (TRAIL-R2, also known
as DR5) and receptor-interacting protein kinase 1 (98), and
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FIGURE 3 | A dual role for myeloid cells in the establishment and resolution of chronic liver disease. (A) Hepatocyte damage driven by steatosis or alcohol toxicity

activates KC which secrete proinflammatory cytokines that drive disease progression and promotes infiltration of myeloid cells. In steatotic livers fat laden

macrophages exhibit impaired endotoxin responses but may prime T-cell mediated immunity. (B) Cholangiocyte-derived chemokines promote recruitment of hepatic

neutrophils and subsequent damage to hepatocytes promotes further inflammation. Bile acids promote KC inflammasome formation; however this can be suppressed

through binding of bile salts to TGR5 expressed by monocyte-derived macrophages. (C) Secretion of soluble factors by KC and monocyte-derived macrophages

promotes fibrosis through the activation and differentiation of hepatic stellate cells, promoting survival of myofibroblasts and the generation of extracellular matrix

proteins. (D) Resolution of fibrosis is mediated by Ly6Clow macrophages, generated from Ly6Chigh precursors, by degradation of ECM by matrix metalloproteinases,

induced apoptosis of hepatic stellate cells and myofibroblasts, and secretion of anti-inflammatory cytokines.

obese mice also show reduced expression of the glucocorticoid-
induced leucine zipper (GILZ) in macrophages associated
with a proinflammatory phenotype (99). In this context the
development of steatohepatitis arises from chronic inflammation
associated with an influx of Ly6C+ monocytes that enhances
the proinflammatory environment through activation of liver
resident cell populations (100, 101). These infiltrating monocyte
subsets are recruited via chemokine receptor pairs such as CCR2-
CCL2 (40, 102) and CXCR3-CXCL10 (44), or atypical adhesion
molecules including vascular adhesion protein-1 and scavenger
receptors (103).

Intestinal dysbiosis and hepatocyte apoptosis contribute to
the inflammatory response via DAMP- and PAMP-mediated
pathways respectively (104, 105) associated with increased
expression and activation of receptors such as TLR4 and TLR9
in both humans and murine models of NASH (106). Changes in
the microbiome can have complex effects on the liver altering
metabolic response through the production of metabolites that
enter the liver via the portal vein as well as through bacterial
products such as LPS, and in the presence of a leaky gut intact
bacteria are taken up by KC (107). KC also regulate anti-
inflammatory responses through secretion of IL-10. In addition
to its more general anti-inflammatory properties KC derived IL-
10 also induces the apoptosis of proinflammatory KC allowing

KC to self-regulate toward a more tolerogenic environment
(108). The induction of a pro-resolution M2 KC phenotype is
dependent on activation of RORα and KLF4, and provision of an
activator of RORα (JC1-40) improved the symptoms of NASH in
a high fat diet murine model suggesting that KC polarization is
a viable therapeutic strategy (109). Immune checkpoint proteins
such as Tim-3 have been detected on a range of macrophage
subsets inmurinemodels of NASH. The presence of TIM-3 limits
steatohepatitis by controlling ROS induced activation of NOX2
and the NLRP3 inflammasome and secretion of IL-1β and IL-
18 (110). Thus, therapeutic strategies could look at promoting
the recruitment or differentiation of TIM-3 macrophages to
shift the local environment toward resolution and suppression
of inflammation.

Similar mechanisms of disease progression have been
described for ARLD, where metabolism of alcohol in the
liver drives hepatocyte cell death. In rodent models of ARLD
such as the Lieber-DeCarli diet hepatic macrophages become
activated to produce TNF-α, IL-6, CCL2 and ROS (111,
112) and depletion of macrophage populations with either
GdCl3 or liposomal clodronate attenuated alcohol-induced liver
inflammation (111, 113). Expression ofmyeloidNADPHoxidase,
specifically the catalytic subunit gp91phox, contributes to the
pathogenesis of murine ARLD by driving a switch between
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pro-inflammatory and pro-resolution macrophage populations.
Thus, gp91phox-deficient animals show an increased ratio of
Ly6Chigh/Ly6Clow intrahepatic macrophages and a diminished
capacity for efferocytosis (114). Clustering of myeloid cells close
to portal tracts is observed in ARLD patients (115) associated
with increased levels of cytokines (IL-6, IL-8, IL-18), chemokines
and macrophage activation markers that correlate with outcome
and severity of disease (116–119). Gut permeability is increased
in patients with ARLD leading to high levels of endotoxin in the
liver resulting in a greater sensitivity of circulating monocytes
from these patients to LPS (120, 121); a phenomenon also
reported for resident KC isolated from alcohol-fed mice where
increased sensitivity to endotoxin promoted expression of TNF-α
and CCL2 (122, 123).

The role of macrophages in cholestatic diseases such as
primary biliary cholangitis (PBC) and primary sclerosing
cholangitis (PSC) is not well described. Accumulation of
perisinusoidal hepatic macrophages in human tissue is reported
in PSC but not in PBC (124) and increased infiltration of
CD68+/CCR2+ cells was observed at later stages of disease in
PSC including both CD206+ (anti-inflammatory) and iNOS+

(pro-inflammatory) macrophages (125). In diseases associated
with cholestasis dysregulated bile acid production and excretion
by cholangiocytes directly affects macrophage function and
differentiation although the effects are complex. Although in
mice hydrophobic bile acids have been reported to promote the
formation of macrophage inflammasomes and IL-1β secretion
(126, 127) other studies report activation of anti-inflammatory
pathways in human macrophages by taurolithocholic acid
through a PKA-mediated increase in IL-10 (128). Mice lacking
the bile acid transporter Mdr2 (Abcb4) develop hepatobiliary
inflammation and fibrosis with some, but not all, features of
PSC including an accumulation of peribiliary, proinflammatory
macrophages recruited in response to cholangiocyte secretion
of IL-8 and CCL2. Pharmacological treatment of mice with
the CCR2/CCR5 antagonist cenicriviroc attenuated macrophage
infiltration and liver injury consistent with an effector role for
macrophages (125) and other rodent models have shown that
the G-protein-coupled bile acid receptor, Gpbar1 (TGR5) is
expressed by macrophages to sense and respond to bile acids
(129, 130). Activation of murine TGR5 leads to PKA-induced
ubiquitination of NLRP3, acting as a brake on inflammasome
activation (131) and dampening cytokine responses (129). In
a murine model of colitis treatment with the TGR5 agonist
BAR501 reduced the trafficking of Ly6Chigh monocytes into the
intestinal mucosa, reduced the expression of inflammatory genes
(Tnfa, Ifng, Il1b, Il6, and Ccl2), and induced a regulatory T-cell
environment through the production of IL-10 and TGF-β (132).
The therapeutic potential of other TGR5 agonists such as 6α-
ethyl-23(S)-methyl-cholic acid (6-EMCA, INT-777) are currently
being explored in cholestatic liver disease (126, 133).

NEUTROPHIL MEDIATED LIVER INJURY

Neutrophils are derived from bone marrow and are released into
the peripheral circulation where they play an important role in

host defense and tissue healing (134), characterized by a high
phagocytic capacity, the production of antimicrobial molecules
and ability to shape immune responses (134, 135). The identities
of neutrophil subsets and their functions are not clearly defined,
with much of our knowledge arising from murine models. As a
result their important roles in liver homeostasis and disease are
only beginning to be understood (136, 137).

Neutrophil recruitment from the circulation into the liver
is independent of selectins (138) and in many conditions is
also independent of α2 integrin and ICAM-1 (139). Instead,
neutrophils use CD44 to bind hyaluronan (HA) on LSEC and
respond to chemokine ligands of CXCR2. A signaling network
of TLR2, S100A9 and CXCL2 was shown to be necessary for
neutrophil recruitment in a chronic model of liver injury in the
mouse (140), while activation of TLR4 on LSEC was sufficient
to induce the deposition of serum-associated hyaluronan-
associated protein within the hepatic sinusoids which promoted
CD44-dependent neutrophil migration in a murine model of
endotoxemia (141). In sterile rodent injury models such as local
thermal injury, HA-CD44 driven recruitment is less important
and neutrophils use αMβ2 (Mac-1) binding to ICAM-1 (21).
This pathway plays little role in septic injury because IL-10
leads to a loss of cell surface αMβ2 (142). Invading neutrophils
in septic injury tend to arrest soon after infiltrating the tissue,
whereas in sterile injury these cells migrate toward the focus
of damage and adopt a swarming behavior which restricts
neutrophil motility to within the boundary of the injury. This
behavior is amplified by leukotriene B4 (LTB4) produced by the
first invading neutrophils (21, 143). In sterile injury neutrophil
recruitment can be promoted by ATP release from necrotic
hepatocytes leading to activation of the inflammasome, and
presentation of ligands for CXCR2 on the surface of the hepatic
sinusoids (21). Alternatively N-formyl peptides released from
dying and dead hepatocytes are detected by the formylated
peptide receptor-1 on neutrophils which guide them toward the
site of injury (21, 144, 145). This enables neutrophils to prioritize
their responses to chemoattractant gradients that arise directly
from damaged tissue over competing signals from chemokines or
LTB4 and remain within the boundaries of the necrotized tissue
(146–149). Live cell imaging in mice identified a non-muscle
myosin II protein that was essential for neutrophil trafficking,
demonstrating that myosin heavy chain 9 (Myh9) was localized
in branching lamellipodia and in the uropod where it may enable
fast neutrophil migration (150).

During acute liver injury, neutrophils use the receptor for
advanced glycation end products (RAGE) to respond to HMGB1
released by necrotic hepatocytes (151). However, this pathway
also contributes to sepsis through diminished bacterial killing
by neutrophils and reduced NADPH oxidase activation (152).
Neutrophils form extracellular traps by a process known as
NETosis to enhance antibacterial defenses [reviewed in (153)].
Defects in NET formation have been linked to impaired
efferocytosis and contribute to liver injury and sepsis in models
of liver disease (154). In murine models of chronic liver disease
neutrophils drive hepatocellular damage but are also associated
with mechanisms of tissue repair. Myeloperoxidase secreted
by neutrophils drives oxidative damage and contributes to the
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development of NASH in mice (155) and increased levels of
myeloperoxidase activity have been detected in patients with
NASH (156). The development of obesity-related inflammation
in patients with NASH also correlated with an increase in
the ratio of neutrophil elastase to its inhibitor α1-antitrypsin,
although the ratio reduced as the disease progressed to fibrosis
(157). Conversely murine neutrophils can alleviate fibrosis
through secretion of MMP8 and MMP9 (158), and depletion
of neutrophils improved liver function in a diet-induced model
of NASH (159). Following resolution of tissue damage in sterile
injury neutrophils migrate out of the tissue and back into the
vasculature and, following passage through the lungs where
they upregulate CXCR4, return to the bone marrow where they
undergo apoptosis (160). It is not currently known if this process
contributes to the pathogenesis of other hepatic diseases.

The Contribution of Dendritic Cells to the
Development of Liver Disease
In contrast to hepatic macrophages liver dendritic cells are scarce
and mostly scattered in the portal region where they capture
antigens delivered by via the portal vein (161). Dendritic cells can
also translocate from blood to lymph via the hepatic sinusoids
to concentrate in regional perihepatic lymph nodes (162).
Hepatic dendritic cells comprise plasmacytoid DCs (pDCs) and
classical (myeloid) DCs (cDCs) which express high levels of
MHC-Class II molecules (e.g., HLA-DR) but are negative for
other hematopoietic lineage markers (163). In general hepatic
DCs are tolerogenic and inherently anti-inflammatory, but
they can gain pro-inflammatory properties in the setting of
chronic liver injury (164, 165). Plasmacytoid DCs identified as
lin−CD11cintMHC-IIintPDCA-1+Siglec-H+ in some respects
resemble B-cells and represent the most abundant subset in the
murine liver under steady-state conditions (163, 166). Human
pDCs are characterized by BDCA-2 and CD123 expression, but
occur less frequently than in mice (167). This cell population
responds to TLR7/8 ligands and mediate antiviral immunity
by secreting type I interferons such as IFN-α but are less
potent T-cell inductors. Classical DCs comprise two subtypes:
cross-presenting lin−CD11c+CD11b−CD103+CX3CR1

−

DCs (mainly interacting with CD8+ T-cells via MHC-I) and
conventional lin−CD11c+CD11b+CD103−CX3CR1

+ DCs
(presenting MHC-II bound antigens to CD4+ T-cells) which
correspond to human CD141 (BDCA-3) and CD1c (BDCA-
1) DCs respectively (61, 163). In human liver CD1c+ DCs
prevail in contrast to mice (168). Another recent nomenclature
differentiates hepatic DCs based on lipid content with high-
lipid liver DCs inducing robust T-cell activation and cytokine
secretion whereas low-lipid DC promote immune tolerance in
both mice and humans (169).

Several factors contribute to the tolerogenic nature of hepatic
DCs. When compared to splenic DCs, hepatic DCs were shown
to be relatively immature (less CD40, CD80, CD86, CD83) with
a reduced capacity to cross-present antigen to T-cells. Human
DCs secrete high levels of IL-10, but less IL12p70 upon LPS-
exposure (165) thereby contributing to endotoxin tolerance in
the healthy liver (170). According to some reports hepatic DCs

also predominantly induce regulatory and IL-4 secreting T-cells
(171). During homeostasis low levels of circulating LPS trigger
the expression of indoleamine-2,3-dioxygenase in human pDCs
which catalyzes the production of immunoregulatorymetabolites
(172, 173). Following CpG stimulation murine pDC also fail
to release abundant class I interferons owing to high NOD2
expression (174). Interestingly, circulating DCs that cross the
hepatic sinusoids to reach the afferent lymphatics are educated by
the hepatic microenvironment to adopt a regulatory phenotype,
emphasizing the inherent tolerogenic phenotype of the hepatic
niche (175).

Compared to other myeloid cells such as macrophages and
monocytes the role of DCs in the initiation and progression of
liver diseases is poorly defined. After switching from a regulatory
to a proinflammatory state hepatic DCs can exacerbate acute
liver injury in certain murine models (176, 177) whereas in
human fatty liver disease there is emerging evidence they are
protective by removing cellular debris and restricting DAMP
driven activation of innate effector CD8+ T-cells (178). CD103+

DCs might be central to this response as Batf3 deficient mice
that lack CD103 displayed a more aggressive course in an
experimental model of NASH (179). The failure to clear HCV
has been associated with a reduced capacity of pDCs to secrete
antiviral IFN-α and their ability to stimulate inhibitory T-
cell receptors such as PD-1, TIM-3, and CTLA-4 (180–182).
Thus, impaired DC activation in HCV infection might favor
T-cell unresponsiveness leading to viral immune escape and
persistence. DCs are not the only APCs within the liver. The
liver’s unique metabolic functions and constant exposure to gut
antigens and gut-derived microbial products has resulted in
a complex system for regulating immune responses in which
DCs, endothelial cells and stromal cells may all contribute to
presenting antigens andmaintaining immune homeostasis (175).

Some studies have suggested that DCs may play a role in
driving fibrogenesis beyond their ability to activate immune
responses. However, the data are not compelling and most
evidence points to DCs being largely dispensable for the
progression of fibrosis. Although the expansion of CD11b+

DCs has been observed during hepatic fibrogenesis in mice
(183, 184), DCs are thought to promote resolution rather than
progression of fibrosis. For example depletion of DCs during
the regression phase of murine liver fibrosis significantly impairs
tissue repair whereas in vivo expansion or adoptive transfer
of purified DCs enhanced fibrosis reversal. This pro-resolution
effect was mediated by MMP9 activity and clearance of activated
hepatic stellate cells (185). Moreover, due to their anti-angiogenic
properties DCs can counteract the profibrotic effect of VEGF
mainly by expressing the VEGF receptor 1 (sFLT1) thus reducing
the bioavailability of VEGF (186).

Role of Macrophages in Fibrosis
Progression and Resolution
Liver fibrogenesis was previously regarded as a unidirectional
process with little chance of resolution once scar tissue has
formed. However, evidence now shows that even advanced
fibrosis and in some circumstances cirrhosis are at least partially
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reversible if the cause of liver injury can be eliminated (187). This
concept has been demonstrated in both experimental models of
chronic liver injury (188–190) and in human liver disease (191).
For example in humans successful treatment of chronic viral
hepatitis can lead to a marked improvement in liver architecture
indicating that the liver has the potential for regeneration
and remodeling of scar tissue. A landmark study by Marcellin
et al. demonstrated that following 5 years of treatment of
chronic Hepatitis B infection with tenofovir disoproxil fumarate,
cirrhosis could be reverted in 74% of cases (192).

Kupffer cells and infiltrating monocyte-derived macrophages
are crucially involved in this process of tissue remodeling
(Figure 3) and it is clear that hepatic macrophages can play
context-dependent fibrogenic and fibrolytic roles due to their
heterogeneity and plasticity. For example hepatocyte-derived
HRG, a non-inflammasome activating factor contributing to
KC stimulation, favors a profibrotic phenotype of murine
hepatic macrophages. This was demonstrated in HRG-deficient
knockout mice where liver fibrosis was significantly attenuated
in diet and toxin-induced models of liver injury (193). Similarly
in humans interleukin-34 and macrophage colony-stimulating
factor (M-CSF) promote a profibrotic phenotype in hepatic
macrophages in the setting of chronic viral hepatitis (194).
KC neutralize circulating endotoxins during homeostasis and
release anti-inflammatory mediators such as IL-10 during
low-level lipopolysaccharide (LPS) exposure (26). However,
dysbiosis and translocation of gut bacteria and bacterial products
due to intestinal barrier dysfunction result in the excessive
presence of PAMPs within the hepatic microvasculature that
reach the liver via the portal vein (195) which, in murine
models, drives inflammasome activation of profibrotic hepatic
stellate cells (196, 197). In a recent publication the cell-
specific innate immune receptor triggering receptor expressed
on myeloid cells-1 (TREM-1) was reported to promote hepatic
inflammation and fibrosis in mice and humans (198), and
inhibition of TREM-1 in mice ameliorated inflammation and
macrophage and neutrophil activation in a mouse model of
ARLD (199).

Chemokines released by KCs shapes the subsequent phase
of hepatic inflammation. The CXC chemokines CXCL1,
CXCL2, CXCL8 attract neutrophils whereas CCL2 is the
major chemokine that governs influx of bone-marrow-derived
monocytes (5). Hepatic stellate cells are another important
source of CCL2 and there is a bidirectional relationship
between pro-fibrotic effector cells and hepatic macrophages
(197) as shown by the ability of HSC to respond to CCL2
and CCL5 produced by hepatic macrophages. Bone-marrow
chimeric mice were used to show that activation of CCR2 and
CCR5 in HSC drives fibrogenesis through stimulation of HSC
migration and collagen production, whereas CCR1 acts solely
on monocytes/macrophages (200–202). In humans macrophages
exposed to HCV serum synthesize CCL5 and activate hepatic
stellate cell confirming the murine data (203). CCL3 deficient
mice display reduced HSC proliferation and migration and
attenuated fibrogenesis (204). Secretion of CCL3 was shown
to be dependent on the expression of the scavenger receptor
Stabilin-1 by a specific macrophage population, and genetic

deletion of Stab1 led to diminished anti-fibrotic responses in diet
and toxin-induced murine models of liver disease (205).

The release of CCL2 during early hepatic injury in
mice augments the intrahepatic pool of macrophages by
selectively attracting bone-marrow derived inflammatory
CCR2+CX3CR1

lowLy6Chigh monocytes but not
CCR2−CX3CR1

highLy6Clow counterparts (56). The expansion
of hepatic macrophages is maintained during iterative episodes
of liver injury that drive fibrogenesis (56) and CCR2 directed
inhibition of monocyte recruitment during liver injury in murine
models reduces liver scarring (56, 200, 206, 207). Targeting CCR2
with either the small molecule inhibitor cenicriviroc (208–210)
or the L-enantiomeric RNA oligonucleotide mNOX-E36 (211)
achieved similar results. In line with this data from the phase 2b
Centaur trial revealed that treatment with cenicriviroc reduces
fibrosis in patients with NASH after 1 year of treatment (212).
Despite these advances, the profibrotic role of monocytic CCR2
is not fully understood following recent studies demonstrating
that CCR2 expressed by monocytes/macrophages is dispensable
for liver fibrogenesis (200). This was confirmed following
further studies in mice which revealed that CCR1 (which
binds CCL3 and CCL4), CCR8 (which binds mainly CCL1)
and CCR9 which binds CCL25 are also involved in recruiting
monocytes to the site of hepatic injury during fibrogenesis
(42, 201, 213).

Both monocyte-derived macrophages and Kupffer cells
promote fibrogenesis by secreting TGF-β and galectin-3,
which drive transdifferentiation of HSCs into matrix secreting
myofibroblasts (56, 214–216). Hepatic macrophages are also
implicated in the survival and activation of HSC through
secretion of IL-1β and TNF-α [in a NF-κB activation-
dependent fashion (183)] or via IL-4 and IL-13 secretion
in Th2-dominated rodent injury models such as parasitic
infections (217). Oncostatin M (OSM) might also function
as a potent regulator of hepatic macrophage/HSC interaction
by enhancing the expression of profibrotic and mitogenic
genes such as TGF-β and PDGF in bone-marrow derived
infiltrating macrophages, with macrophage-depleted livers
being largely protected from OSM-induced fibrosis (218).
Interestingly, the profibrotic effect of KC-secreted TGF-β is
retained following inhibition of CCL2-dependent monocyte
in experimental steatohepatitis (102) which might impede
the effectiveness of CCL2/CCR2 based therapies to treat
liver fibrogenesis.

The first reports of hepatic macrophages driving fibrosis
resolution were published alongside data describing the
profibrogenic nature of Kupffer cells and monocyte-derived
macrophages in liver injury. This apparent paradox was
clarified when Duffield and colleagues reported a dual role for
macrophages during different phases of chronic liver injury
in mice. They used a CCl4 model to show that mice in which
hepatic macrophages were selectively depleted exhibited less
matrix deposition at advanced stages of fibrogenesis but more
fibrosis when macrophages were depleted during the resolution
phase (219). These data suggested the existence of distinct
macrophage populations within the liver that fulfill opposing
functions according to the disease stage. A subsequent study by
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the same group confirmed this by reporting the accumulation
of macrophages around scar fibers during the resolution phase
that were capable of degrading ECM through expression of
matrix metalloproteinase protein 13 (MMP13) (220). These
scar-associated macrophages are also equipped with MMP9,
MMP12 and TRAIL, and contribute to the disruption of scar
tissue and induction of fibroblast apoptosis (187). However, these
studies did not identify which hepatic macrophage population
gave rise to this profibrolytic subset. One of the first lines
of evidence that monocyte-derived macrophages might be
responsible stems from a paper showing that CCR2 deficiency is
protective during fibrogenesis but hinders scar removal during
the regression phase following cessation of CCl4 challenge in
rodents. The putative mechanism is a balance between levels of
tissue inhibitor of metalloproteinase-1 (TIMP1) and MMP1 and
MMP13 mRNA, in the liver (207). This study also determined
that profibrotic and pro-resolution macrophages share the same
precursor cells; a hypothesis supported by a seminal paper in
2012 showing that in mice Ly6Chigh inflammatory macrophages
undergo a phenotypic switch to an anti-inflammatory and
anti-fibrotic “restorative” CD11bhighF4/80intLy6Clow subtype
(52). The accumulation of Ly6Clow macrophages producing
matrilytic MMPs peaked at the maximum point of fibrosis
resolution whereas the early phase of liver parenchyma damage
is dominated by freshly recruited inflammatory CCR2+Ly6Chigh

macrophages. Phagocytosis of cell debris drives macrophage
transdifferentiation toward a restorative Ly6Clow phenotype
(52). The concept of a context dependent hepatic macrophage
plasticity was demonstrated using sterile liver inflammation
models in which CCR2highCX3CR1

low macrophages accumulate
early after focal tissue injury in a ring-like structure and
then give rise to a reparative CCR2lowCX3CR1

high phenotype
which facilitate wound repair (14). There is also evidence
that in situ reprogramming of infiltrating macrophages from
a profibrotic to an antifibrotic subset is controlled by the
CX3CR1/CX3CL1 axis, which promotes macrophage survival
and imprints an anti-inflammatory state. Consequently,
CX3CR1 knockout mice display enhanced tissue damage and
fibrosis after bile duct ligation and CCl4 exposure (221, 222).
Though circulating Gr1low (Ly6Clow) CX3CR1

+ monocytes
show patrolling behavior in blood stream (34) there is no
data so far to support the idea that these cells are directly
recruited to the inflamed liver and thereby perpetuate fibrosis
resolution. Never the less, this cannot be excluded since
extravasation of CX3CR1

+ monocytes into affected organs has
been demonstrated in models of myocardial infarction and lung
injury (223, 224).

Translating findings from rodent models into patients is
not straightforward. Most importantly—as outlined above—
human liver macrophage subsets lack well-defined surface
marker patterns that allow for distinction of resident Kupffer
cells from infiltrating monocytes. For example CD68+ which
is deemed to be a macrophage marker in mice can also be
detected on circulating monocytes in human, and although gene
profiles show overlap between murine Ly6Chigh and “classical”
human CD14++CD16− monocytes and murine Ly6Clow and
“non-classical” human CD14+CD16++ monocytes (31) there

are clear functional differences. In addition, it is difficult to
integrate the “intermediate” CD14++CD16+ subset into the
murine nomenclature (225). In general, CD16+ monocytes are
enriched in the liver in comparison to peripheral blood even
under steady state conditions (46), with increased numbers being
observed in patients with cirrhosis (47). CD14+CD16− cells
can acquire CD16 expression under the influence of soluble
factors present in the diseased liver such as IL-10 and TGF-β,
and CD16+ monocytes display higher phagocytic capacity and
can secrete both pro- and anti-inflammatory cytokines upon
LPS stimulation thus resembling both Ly6Clow and Ly6Chigh

monocytes/macrophages in mice. Of note, CD16+ but not
CD16− monocytes can directly activate humanHSC (47). Rodent
models also lack the highly-crosslinked scar tissue observed for
patients with advanced fibrosis, and as a result macrophage-
mediated resolution of fibrosis is accelerated in murine models
compared to humans. Therefore, further research is warranted to
better define disease-specific characteristics of hepatic monocyte
and macrophage subsets in human diseases. Despite these
differences there are some striking parallels between mice and
humans. For example, the CCL2/CCR2 axis plays a similar role
in fibrosis and macrophage infiltration to the inflamed liver in
mice and humans, and TREM-1 is emerging as an additional
shared marker.

MALIGNANCY

Myeloid cell subsets are linked to virtually all steps in the
natural course of tumor formation and spreading in the
liver. Extensive research has shown a prominent role for
tumor associated macrophages (TAM) and MDSC in the
development of hepatocellular carcinoma (HCC), an archetypical
inflammatory tumor in which chronic inflammation drives liver
cancer pathogenesis, invasion, and metastasis (226). In the
context of liver carcinogenesis monocytes/macrophages exert
dualistic functions in a stage-dependent manner with CCR2+

CCL2-responsive monocytes promoting tumor surveillance
through the elimination of senescent premalignant hepatocytes
in healthy livers (Figure 4), whereas in established tumors
monocytes/macrophages are reprogrammed to silence NK
cells resulting in tumor growth (227, 228). Tumor associated
macrophages derived from infiltratingmonocytes are a dominant
cellular component of human tumor stroma with increased
density of TAMs in peritumoral margins being closely linked to
poor prognosis (229, 230). Consistent with this the absence of
macrophages correlated with improved patient survival (231). In
both humans and murine models TAMs drive tumorigenesis by
sustaining inflammatory pathways mediated through secretion
of cytokines such as TNF-α and IL-6 that suppress hepatocyte
apoptosis and induce proliferation in response to tissue damage
(232–234). The surface receptor TREM-1 expressed on myeloid
cells governs the secretion of proinflammatory mediators and
engagement of TREM-1 in hepatic macrophages has been shown
to trigger carcinogenesis (235).Trem1-deficientmice treated with
diethylnitrosamine (DEN) were protected from malignancy due
to attenuation of cytokine secretion (e.g., IL-6, IL-1β, TNF, CCL2)
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FIGURE 4 | Myeloid cells in hepatic malignancy. Tumor associated macrophages promote cancer cell proliferation and neoangiogenesis, and act in concert with

myeloid-derived suppressor cells to dampen T-cell immunosurveillance. Conversely recruitment of monocytes into the tumor microenvironment driven by CCL2

produced by hepatocytes and hepatic stellate cells, and interactions with tumor associated neutrophils promotes apoptosis and clearance of pre-cancerous

hepatocytes to prevent HCC.

and ablation of inflammatory signaling pathways (p38, ERK1/2,
JNK, MAPK, and NF-κB) in KC (235).

The inflammatory environment present in chronic liver
injury facilitates the recruitment and retention of monocyte-
derived TAMs which promote tumorigenesis in a MMP2/MMP9
dependent fashion. This was demonstrated by comparing
the seeding of injected HCC cells in healthy livers with
CCl4 preconditioned livers where an alternatively-activated
macrophage population (M2-like) were enriched in the
tumor environment (236). Infiltrating TAMs are frequently
reported to resemble alternatively-activated macrophages
(237–239) although the dichotomous approach of M1/M2
polarization does not fully reflect the entire spectrum and
heterogeneity of tissue macrophages. Nevertheless, reversal
of M2-like polarization in experimental HCC has yielded
promising results in containing tumor progression (240)
with TIM-3 and Wnt ligands identified as critical drivers of
alternative activation of TAMs and HCC growth (239, 241).
In patients, total immune cell infiltration into HCC correlated
with M1-like macrophage populations and a more favorable
prognosis (242).

The CCL2/CCR2 axis is a promising novel target in HCC
therapy. Antagonism of CCR2 by the compound RDC018 not
only reduced TAM infiltration but also restored anti-tumor
immune response and ameliorated HCC outcome in murine
models of HCC (243). Tumor associated neutrophils (TAN)
provide an important source of CCL2 in HCC and can act
synergistically with TAM to support liver tumor progression
(244). In humans neutrophil extracellular traps can also promote
inflammation and development of HCC on the background of
NASH, driven by the presence of free fatty acids (245); however
our understanding of the precise role played by neutrophils

in liver cancer remains elusive. One striking feature of TAM
is the induction of an immune suppressive microenvironment
that disrupts anti-tumor immunity. For example, release of
regulatory cytokines such as TGF-β and IL-10 by TAM impair
Th1 and cytotoxic T-cells but promote regulatory T cells and
Th2 activity all of which facilitate tumor growth. TAMs also
express high levels of PDL1, galectin-9, and indoleamine-
pyrrole 2,3-dioxygenase (IDO) that foster T-cell exhaustion and
prevent effective anti-tumor immune response (241). In HCC
the expression of PDL1 by TAMs correlated with increased
tumor burden and the intensity of the protein was associated
with high mortality and reduced survival (246). MDSC share
many mechanisms with TAM to protect from HCC-targeted
T-cell activity, and the net effect of MDSCs in HCC nodules
and peritumoral stroma is progression of the tumor (241).
Furthermore, MDSC reduce the tissue availability of arginine
and cysteine, which are essential for T-cell proliferation and
impede NK cell cytotoxicity and development via NKp30
receptor (241).

RATIONAL DESIGN OF THERAPEUTIC
STRATEGIES TARGETING MYELOID
POPULATIONS

There is a major unmet need for effective therapies to prevent
or reverse liver fibrosis particularly in the context of a major
increase in fatty liver disease and the continuing high prevalence
of alcoholic cirrhosis (247). Macrophages have the dual potential
to serve as therapeutic targets and as treatment vehicles for
inflammation-induced liver fibrosis and carcinogenesis (248).
In principle, macrophages can be targeted at different stages
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FIGURE 5 | Myeloid cells as therapeutic targets. Approaches that have been adopted to enhance or diminish the role of myeloid cells in liver disease include

disruption of the recruitment cascade or inflammatory signaling pathways, and augmented pro-resolution responses through cellular infusions of stem cells or the

provision of agonists driving macrophage polarization.

of disease and different subsets of monocyte macrophages can
be targeted. Such strategies include (i) attenuation of Kupffer
cell activation by anti-inflammatory compounds; (ii) inhibition
of macrophage precursor cell (i.e., monocyte) recruitment to
the injured liver; (iii) manipulation of macrophage polarization
and differentiation to facilitate transition toward a restorative
reparative phenotype (iv) infusion of beneficial pro-restorative
macrophages (248) (Figure 5). Interference with chemokine
pathways to restrict influx of inflammatory monocytes is one of
themost advanced approaches. As stated earlier, the CCR2/CCR5
antagonist Cenicriviroc has entered phase 2b clinical trials
with promising results reported after 12 months treatment of
NASH-related fibrosis (212). The current options in targeting
macrophages in the context of liver disease have recently been
comprehensively summarized (248). Adoptive cell therapy using
hematopoietic stem cells or macrophages is an approach that
is attracting increasing interest. The first studies reporting
efficacy of bone marrow cell transfer in murine models of liver
fibrosis were published almost 15 years ago when injection
of bone marrow cells was shown to cause MMP9-dependent
reduction in ECM deposition in response to CCl4 (249).
In a study by Thomas et al. in 2011 bone-marrow derived
macrophages (BMM) were prepared in vitro by stimulation
with CSF-1 and subsequently injected into the portal vein
of mice with long-term CCl4 induced fibrosis. The infused
cells did not conform to the M1/M2 paradigm but expressed
IL-10, TWEAK, and MMP13, which are known to suppress
inflammation and to promote cell regeneration and fibrolysis.
Treatment significantly reduced liver scarring by promoting
myofibroblasts apoptosis, MMP-induced degradation of ECM

and by stimulating liver regeneration. In contradistinction,
non-purified whole bone marrow cells increased liver fiber
content (250). Similar results were obtained in another study
showing that IL-10 producing CD11b+Gr1+ myeloid cells
account for the tissue remodeling effect of bone marrow
transplantation in liver fibrosis (251). BMM also ameliorate
oxidative stress and reduce production of the potent profibrotic
cytokine IL-13 (252). Interestingly, macrophages derived from
pluripotent embryonic stem cells exhibit comparable antifibrotic
effects to BMM though these cells tend to resemble resident
Kupffer cells rather than infiltrating macrophages (253). A
contributing factor to the success of bone marrow derived
macrophage transplantation in liver fibrosis could be activation
of the sphingosine-1-phosphate receptor (S1PR) that critically
controls BMM motility (254). Mice treated with FTY720 which
triggers S1PR internalization retained infused c-kit+/sca1+/lin−

hematopoietic stem cells in the liver due to a failure of the
cells to egress into the draining lymph. This was associated with
reduced scarring in methionine-choline-deficient diet fed and
CCl4 treated mice (255). Further studies are needed to dissect
whether S1P/S1PR antagonism also augments the antifibrotic
effects of transplanted BMM.Despite the promising experimental
findings human cell therapy trials in advanced clinical cirrhosis
have so far proven disappointing. The REALISTIC trial tested
the efficacy of G-CSF mobilized and autologous infusions of
CD133+ stem cell therapy in cirrhosis but failed to show
any improvement in liver function with more complications
in the treatment group (256). This is perhaps unsurprising
given that resolution will only occur if the right cells are
infused into the right microenvironment at the right disease
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stage. This requires the design of more sophisticated precision
medicine trials. Such studies are underway (257, 258) but we
are only at the start of understanding macrophage therapy for
liver diseases.
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