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Myeloid cells are crucial for the host control of a Mycobacterium tuberculosis (M.tb)

infection, however the adverse role of specific myeloid subsets has increasingly

been appreciated. The relevance of such cells in therapeutic strategies and

predictive/prognostic algorithms is to promote interest in regulatory myeloid cells

in tuberculosis (TB). Myeloid-derived suppressor cells (MDSC) are a heterogeneous

collection of phagocytes comprised of monocytic- and polymorphonuclear cells that

exhibit a potent suppression of innate- and adaptive immune responses. Accumulation of

MDSC under pathological conditions associated with chronic inflammation, most notably

cancer, has been well-described. Evidence supporting the involvement of MDSC in TB is

increasing, yet their significance in this infection continues to be viewed with skepticism,

primarily due to their complex nature and the lack of genetic evidence unequivocally

discriminating these cells from other terminally differentiated myeloid populations. Here

we highlight recent advances in MDSC characterization and summarize findings on

the TB-induced hematopoietic shift associated with MDSC expansion. Lastly, the

mechanisms of MDSC-mediated disease progression and future research avenues in

the context of TB therapy and prophylaxis are discussed.

Keywords: myeloid-derived suppressor cells, Mycobacterium tuberculosis, infectious disease,

immunosuppression, innate immunity

INTRODUCTION

Tuberculosis (TB) remains a leading cause of global mortality (1, 2). Insufficient understanding
of TB disease mechanisms represents a major factor impeding its elimination (3). A recent
paradigm describes TB as a continuous spectrum of processes, rather than a binary distribution
between asymptomatic latent infection and active disease (3–6). This underscores the complex
pathophysiology of TB, including multiple cellular effectors, regulators, and checkpoints. Myeloid
cells, including neutrophils and monocytes, function both as initial effectors and during the lag
phase of T-cell responses to restrict M.tb burden and limit disease progression by activating
pro-inflammatory signaling pathways, recruiting additional phagocytes, ingesting bacilli, up-
regulating bactericidal mechanisms and inducing antigen-specific adaptive immunity (7–9). Even
so, myeloid cells can switch from facilitating protective immunity, to aiding pathological processes,
by enhancing TB progression via immunosuppression and dysregulated inflammation (8). Chronic
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mycobacterial infection triggers the generation of
immunosuppressive/tolerogenic myeloid cells, which were
initially referred to as “innate natural suppressor cells” (10–
12). Subsequent studies have coined these as myeloid-derived
suppressor cells (MDSC) (13, 14).

MYCOBACTERIA-INDUCED NATURAL
SUPPRESSOR CELLS

Early reports on regulatory myeloid cells in mycobacterial
infection came from in vivo and in vitro studies with
Mycobacterium bovis Bacillus Calmette-Guerin (BCG) (11, 15–
17).In these studies it was indicated that, systemic delivery
of mycobacteria induce expansion of hematopoietic progenitor
cells in the bone marrow, with the subsequent migration of
these cells to the peritoneal cavity and their activation in
the spleen (11, 18). It was further reported that BCG could
induce the expansion of bone-marrow derived and splenic
natural suppressor cells and that these cells could inhibit
cell-mediated immunity, notably by suppressing the migratory
capacity and proliferation of helper and cytotoxic T-cells (15, 16).
T-cell immunosuppression was attributed to the presence of
macrophage-like natural suppressor cells, the production of high
levels of IL-1 and soluble suppressive factors (16, 19). Natural
suppressor cells were later linked to MDSC. Natural suppressor
cells from mice exposed to mycobacterial products in Complete
Freud’s adjuvant (CFA), shared similar phenotypic and functional
features with MDSC (10). These cells highly expressed the
markers of myeloid origin and differentiation, Gr-1 and CD11b,
and inhibition of T-cell proliferation and IFN-γ production was
linked to NO production in splenocytes (10). Subsequent studies
validated the presence of MDSC during BCG infection (13) and
in patients with active TB (14). Thus, initial observations of
natural suppressor cells were during mycobacterial insult and
established that the generation of these cells was driven by the
mycobacterial products.

MDSC CHARACTERIZATION IN
MYCOBACTERIAL INFECTIONS

Identification of MDSC requires a combination of assays
comprising of immunophenotyping, enzyme measurements,
and suppressive tests (20). Markers employed for detection
of human MDSC allow, to some extent, their differentiation
from monocytes and neutrophils, although this is cumbersome
in mice (21). At present, three commonly reported MDSC
subsets identified in human TB include early stage MDSC
(e-MDSC), polymorphonuclear-MDSC (PMN-MDSC), and
monocytic-MDSC (M-MDSC) (14, 22, 23). Immunosuppressive
eosinophilic MDSC have recently been described during
chronic Staphylococcus aureus infection in vivo but require
validation in other diseases (24). MDSC enriched in TB
patients, according to recent recommendations using a
ficoll density-gradient (22, 23), have been classified as e-
MDSC (LIN1−HLA-DR−/loCD11b+CD33+), PMN-MDSC

(HLA-DR−/loCD11b+CD14−CD15+CD33+/dim) and M-
MDSC (HLA-DR−/lowCD11b+CD14+CD15−CD33+) (20).
Instead of a specific subset, M-MDSC population has been
described as a heterogenous population of cells, in different
maturation stages (20). Since there are no specific markers for
MDSC, ambiguity with other myeloid cells that have similar
phenotypic characteristics and functional properties exists,
especially after pathogen exposure. For instance, infection of
monocytes with Candida albicans fungal cells and exposure
to fungal components subverts monocyte differentiation to
immunosuppressive dendritic cells. The phenotype of the
subverted DC is characterized by the expression of CD14 with
a lack of CD1a molecule, presence of CD83 and CD86 but a
relatively low expression of MHC class II and CD80. These cells
produce IL-12 but are associated with the release of IL-10 and
IL-6 (25). Similarly our group has demonstrated that CD14+
M-MDSC production of IL-10 and IL-6 is associated with
either absent, or relatively low levels of HLA-DR and CD80
(14, 26). Thus, an unequivocal marker that is able to distinguish
myeloid cell population and subsets in biological samples such
as whole blood culture and tissue is required. Whilst there is
no specific marker for M-MDSC yet, utilization of LOX-1 as a
unique PMN-MDSCmarker has been proposed but (27) requires
validation in TB patients.

In murine TB, PMN-MDSC are phenotypically
Gr-1+CD11b+Ly6G+Ly6Clo/int and M-MDSC Gr-
1+CD11b+Ly6G−/l0Ly6Chi, yet functional assays are essential
for their classification (28–30).

Morphological characterization has been used as a
confirmatory tool to distinguish MDSC from other myeloid
cells in TB samples (22, 28). Immature myeloid cells identified
as PMN-MDSC share similar morphological characteristics
with neutrophils, as they show ring-shaped or band nuclei.
This nuclear shape can, however, be present in neutrophil
progenitors and young neutrophils. Utilization of CD10 for
human specimens (21) along with suppressive assays may
help distinguish PMN-MDSC from non-suppressive immature
neutrophils. MDSC likely encompass cells at different maturation
stages with a distinct activation status and functional role. For
instance, expansion of MDSC with the phenotype Lin−/l0HLA-
DR−/loCD11b+CD14+CD33+CD80+, was described in patients
with active TB and their frequency correlated with disease
progression (14). CD80 up-regulation upon successful TB
chemotherapy was associated with MDSC differentiation into
macrophages and dendritic cells (14). In mice, accumulation
of an immature, heterogeneous population of Gr1dimCD11b+

cells with un-segmented nuclei, which also expresses progenitor
markers (CD117+CD135+), was observed during the advanced
disease in TB prone animals (28).

TISSUE COMPARTMENTALIZATION AND
DYNAMICS OF MDSC IN TB

In murine models MDSC were detected in the blood during
BCG vaccination (13). In adults and children suffering from
TB, MDSC frequencies in the periphery were comparable to
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those found in cancer patients (14). All MDSC subsets have
been identified in the blood of TB patients, yet relative ratios,
within different biological samples/fluids, differ in various studies
(14, 22, 23). For instance, PMN-MDSC are enriched in the
lung, specifically in bronchoalveolar lavage (BAL) samples of
pulmonary TB patients (22) whilst the prevalence of a M-
MDSC subset has been described in pleural effusions (14).
Compartmentalization of the different MDSC subsets during
TB in humans may be site-specific and likely dependent on
the disease stage. Such an assumption is supported by findings
from experimental TB. In naïve mice, MDSC can be detected
at very low frequencies primarily in bone marrow. During
acute TB, MDSC mildly accumulates in the lung and upon
disease progression their numbers dramatically increase in all
aforementioned organs and are also detected in the blood
(28). High levels of MDSC in bone-marrow suggests that their
genesis occurs primarily via medullary hematopoiesis. A pro-
inflammatory environment, abundant in IL-6/G-CSF/PROK-2
may promote myelo- and granulopoiesis, whereas recruitment
of MDSC to the lung could be directed by abundant S100-
proteins/MMP-9/G-CSF (20, 29). Accumulation of MDSC in
the lung parenchyma parallels TB progression in susceptible
mice (29, 30). In M.tb-infected-necrosis prone mice, M-MDSC
accumulate at the edges of necrotic granulomas (30). A recent
study further strengthened the case for MDSC as regulators of
granuloma biology. Human ex vivo generatedM-MDSC promote
mycobacterial replication in in vitro established granulomas, in a
process dependent on abundant release of IL-10 (26).

Dynamics of MDSC subsets through-out the course of the TB
disease spectrum (31) are relevant for disease pathophysiology.
In TB patients, MDSC abundances have not yet been clearly
linked with the extent of disease, e.g., by establishing a correlation
between their frequencies and lung radiological involvement,
smear grading or bacterial burden. Community controls from a
high-exposure region and also individuals with remote exposure
to M.tb, display very low levels of circulating MDSC, yet
frequencies of MDSC increase in recently exposed house hold
contacts (HHC) of TB patients (19). MDSC presumably emerge
in incipient TB with their increased frequency associated with
disease progression. TB-resistant mice that are devoid of necrotic
granulomas have minimal levels of MDSC, whilst necrotic
prone mouse strains NOS2−/− (knock-out), C3HeB/FeJ, 129S2
(immunocompetent) exhibit higher frequencies with the highest
levels observed in immunodeficient (RAG2−/−) animals (29,
30). The accumulation of MDSC in necrotic granulomas has
been associated with the inability to control M.tb infection
and lung pathology (28, 29). Pulmonary tuberculosis manifests
differently than pleural tuberculosis andMDSC biology in pleural
cavities still needs further characterization. In TB patients,
MDSC are present in pleural effusions and blood and the
immunosuppressive potential of MDSC from individuals with a
long term infection exceeds the suppression of cells isolated from
people with recent M.tb exposure, which also affects CD8 T-cell
responsiveness (14). Upon a successful cure, MDSC frequencies
decrease to levels observed in healthy controls (14). In children,
completion of standard TB treatment was not accompanied by
a MDSC decline, likely reflecting the more complex disease

presentation of pediatric TB and possibly the polarization of
the immune response which may be different to adult immune
response (32).

MDSC DIRECTLY INTERACT WITH
MYCOBACTERIA

Lung-residing M-MDSC harbor M.tb and promote bacterial
growth through mechanisms involving IL-4/IL4Rα signaling
(29). Despite the production of nitric oxide (NO), a potent
anti-mycobacterial molecule, MDSC are inefficient at controlling
mycobacterial growth (13). Although ex vivo generated human
MDSC are not able to provide a niche for fast replication ofM.tb
when compared to macrophages, they do however exert a potent
suppressive activity against T-cells upon infection (26).Recent
reports indicate that myeloid cell ontogeny affects their capacity
to support mycobacterial growth. Interstitial macrophages,
supposedly originating from circulating monocytes, allow lower
M.tb. replication rates as compared to fetal germline derived
alveolar macrophages (AM). This phenomenon has been linked
to the dramatically different metabolic states of AM and
interstitial macrophages, with highly up-regulated fatty acid
uptake and β-oxidation vs. high glycolytic activity, respectively
(33). Pre-existing metabolic bias of myeloid cells controls M.tb
growth (33). Of note, tumor-infiltrating MDSC preferentially
use fatty acid-β-oxidation (FAO) as a primary energy source,
display up-regulation in FAO genes and increases the oxygen
consumption rate (34). We, and others have previously
shown that MDSC are capable of mycobacterial internalization,
however, they display poor microbicidal activity (13, 26).
Considering that M.tb uses host fatty acids and cholesterol,
the metabolic status of MDSC likely offers a nutritional niche
supportingM.tbmaintenance (35, 36).Whether FAO affectsM.tb
survival within MDSC remains to be validated. In the same vein,
the metabolic state of M.tb as well as its subcellular localization
within MDSC are largely unknown and should be defined.

MEDIATORS OF MDSC EXPANSION AND
ACTIVATION IN TB

Expansion and activation of MDSC is mediated by chronic,
low-grade inflammation, resulting in the pathological activation
of myeloid cells (37). Currently, it is difficult to discriminate
signals mediating MDSC expansion from those mediating
MDSC activation. Recent findings support a two-step process
involving cellular expansion, licensing, and activation (37,
38). First, chronic exposure to GM-CSF, IL-6, prostaglandins,
and alarmins such as S100A8/9 (38, 39) promote “emergency
myelopoiesis,” impede on terminal maturation of myeloid
progenitors. The second phase involves activation of these
“licensed” myeloid cells, through the panoply of inflammatory
cytokines (e.g., IFN-γ, IL-1β, IL- 6, TNF-α, IL-4), DAMPs
(e.g., HMGB1), and likely also PAMPs (e.g., LPS) to obtain
suppressive functions (37–39). Such factors are produced during
TB and enriched in TB-susceptible mice accumulating MDSC
(Figure 1A) (29). Additional molecules detected in TB lesions,
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FIGURE 1 | (A) Mediators of MDSC expansion and activation in a

mycobacterial environment. A schematic depicting mediators associated with

the proposed “two-signal” MDSC expansion and activation process, in a

mycobacterial environment. These include cytokines, chemokines,

calcium-binding proteins, and matrix metalloproteinases. (B) MDSC cellular

interaction and mediators of immunosuppression in a mycobacterial

environment. Examples of the known and suggested interactions of MDSC

with other immune cells in the mycobacterial setting, including the soluble

mediators associated with their immunosuppressive activity.

including prokineticin 2 (PROK 2) and MMP9, which promote
MDSC accumulation in target organs, may also regulate MDSC
expansion (29). Recent reports indicate that transmembrane
TNF-alpha regulates the activation and expansion of PMN-
MDSC and M-MDSC in the pleural cavity of BCG infected
mice (40). In mycobacterial infections, M-MDSC are induced
regardless of key virulence factors, as M.tb, M.smeg, and BCG
have proven to induce MDSC (13). Consequently, due their

immunosuppressive activity and high frequency during disease
progression, MDSC have been identified as one of the factors that
may contribute to a low BCG vaccine efficacy (41). Other factors
may include geographical location, helminthic co-infection,
route of BCG administration and mycobacterial strain (42). It
is important to note that the robust cytokine response often
observed following BCG vaccination, contradicts the MDSC
functions described above. We suspect that this perceived
discrepancy, could be ascribed to the requirement of a 2nd
activation signal or the mycobacterial strain-specific differences
on MDSC function. Alternatively, the MDSC suppressive
function might stretch beyond T-cell immunity and affect
other cell subsets which are rarely evaluated following BCG
vaccination, with the route of the vaccination and the age of the
vaccine, also contributing to the outcome. The role of live bacteria
in regions from which MDSC originate, such as immature bone
marrow cells, still need to be investigated.

Mycobacterial glycolipids contained in CFA promote the
expansion of the MDSC (10). A comprehensive comparison
of “licensed” monocytes, M-MDSC and additional monocytic
subsets present in the M.tb infected lung is necessary to
distinguish pathways driving MDSC genesis. Advanced
techniques such as quantitative shotgun proteomics, RNASeq
and chromatin ATAC mapping should provide insights into
potentially discriminating markers and differentiation pathways.

MDSC IMMUNOSUPPRESSIVE
MECHANISMS DURING TB INFECTION

MDSC exert their immunosuppressive activity through
mechanisms that involve soluble factors, cell membrane
molecules and the modulation of local concentrations off of
metabolites and amino acid (20, 43). Most studies focus on
T-cell suppression (ref), however MDSC also interact with
macrophages and dendritic cells, and induce regulatory B- and
T-cells (44–46). Such interactions have not yet been considered
in TB (Figure 1B). The interaction of MDSC with T-cells
has been established in TB patients, though the effects on
antigen-specific responder lymphocytes still await clarification.
Suppression of polyclonal stimulated CD4 and CD8 T-cells
involves the inhibition of cytokine production, T-cell activation
and modulation of T-cell trafficking (14). Whereas, PMN-
MDSC expansion correlates with abundant plasma NO (22),
phenotypically resemblingMDSC present abundant indoleamine
2,3-dioxygenase (IDO) and arginase-1 (ARG-1) (32). In BCG
vaccinated mice, iNOS-mediated tendency of MDSC to dampen
T-cell priming, suppress polyclonal T-cell proliferation and IFN-
γ release (13). iNOS mediates the suppression of lymphocytes
also in murine TB, though in situ co-expression of ARG1
and iNOS has been detected in lung lesions (29).Cell surface
molecules involved in the regulation of MDSC functions
have been identified in experimental TB studies. In mice with
mycobacterial pleurisy, tmTNF-α regulates MDSC activity
through the cell-to-cell interaction between tmTNF-α expressing
MDSC and TNFR2 expressing CD4 T-cells (40). Human MDSC
up-regulate PD-L1 upon in vitromycobacterial infection (26) and
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employ this check-point molecule to restrict T-cell proliferation
(26, 47). IFN-γ counteracts PD-L1 induced suppression (47)
and this may explain the profound immunosuppression in end
stage TB patients. Relevance of additional enzymes enriched
in MDSC purified from cancer patients, such as NADPH and
COX2 (20), as well as roles of autophagy molecules (48), remain
to be established in TB. Of paramount importance will be the
deciphering of interactions between MDSC and macrophages,
as those cells harbor and aid restricting bacillary replication.
The capacity of MDSC to modulate Treg dynamics, induce Breg
and alter NK activity in TB is also unknown. High dimensional
analyses, e.g., mass cytometry and histo-cytometry could
establish effects on MDSC on various immune cells and facilitate
the in-depth functional characterization of these cells. MDSC
may further contribute to TB reactivation by exacerbating the
immunosuppressive effects of immunotherapy such as anti-TNF
agents, absence of TNF-alpha has been associated with an
increased bacterial load and T-cell immunosuppression (49, 50).

MDSC AND TB CO-MORBIDITIES

Diseases promoting TB development are typically linked
to immunosuppression or dysregulation of immunity and
encompass HIV (51, 52) and diabetes (53, 54). In addition,
undernourishment, alcoholism, and smoking are considered risk
factors for TB. Currently, the precise role of MDSC in these
conditions and subsequent implications for TB are not clear.
MDSC have been reported in HIV infection, but a prevalence
of distinct subsets during co-infection has not been unanimously
established. Some studies report high frequencies of the PMN-
MDSC subset (52, 55–57) whilst others describe increased M-
MDSC populations in AIDS patients (58–61). MDSC frequencies
correlate with AIDS progression and viral load (51, 59),
while anti-retroviral therapy (ART) reduces systemic MDSC
frequencies (44, 62, 63). Even HIV exposed uninfected children
display abundant circulating MDSC (32). MDSC activity in
an HIV environment involves enhanced IL-10 production,
induction of CD4+CD25+FoxP3+Tregs and suppression of
T-cell responses, notably inhibition of IFN-gamma release by
autologous T-cells (52, 60). Such effects may contribute to
development of TB in LTBI people infected with HIV, however
further studies are required to elucidate the precise role of HIV-
induced MDSC in TB reactivation. Very few reports focus on
MDSC in diabetes. Recent trials suggest a beneficial effect with
MDSC protecting against the development of type-2 diabetes
(T2DM) in humans (64). Interestingly, the anti-diabetic drug
metformin, showing efficacy as an adjunct therapy in TB (65),
causes reduction of MDSC in cancer patients (66). Metformin’s
effect on MDSC in TB patients has not been evaluated. Smoking
is regarded as a predisposing factor that can accelerate TB
progression. Although smoking has been associated with MDSC
expansion and generation in COPD patients (67, 68), the role of
these cells in TB is not clear and should be clarified. Obesity-
driven chronic, low-grade inflammation and leptin interaction
has also shown to induce MDSC that, although protective against
some metabolic dysfunctions, appear to be detrimental to tumor
progression (69). At the other end of the spectrum, malnutrition
has also been correlated to MDSC induction, suggesting a link

with diseases characterized by wasting and malnutrition, such as
TB (70). It is tempting to speculate that enhancedMDSC levels in
diseases and conditions causing alterations in immune reactivity
may contribute to TB reactivation, however this remains to
be tested.

THERAPEUTIC STRATEGIES TARGETING
MDSC IN TB

Shortly after identification of MDSC in TB patients and murine
models, these cells emerged as promising targets for adjunct host-
directed therapy (HDT) approaches (8, 41, 71). The focus of such
strategies has been to reverse the impact of MDSC on T-cell
immunity in TB by implementing host modulating therapeutic
strategies such as those blocking MDSC induction or activation,
inhibiting MDSC function or reversing their suppressive
function. These strategies have been recently reviewed elsewhere
(71). More recently, denileukin diftitox, an anti-neoplastic agent
comprised of IL-2 and Diphtheria toxin, potentiates standard
TB treatment in a mouse model through the elimination of
MDSC and Treg (72). Similarly, combined immunotherapy
consisting of ATRA and alpha galactosylceramide as an adjunct
immunotherapy improved standard TB treatment (73). Other
studies on ATRA have reported the reduction of MDSC and
increase in T-cell number with an impact on bacillary loads
and lung pathology (13, 29). Tasquinimod (TSQ), a quinoline-
3-carboxyamide analog, targets S100A9, a molecule which
has been implicated in MDSC accumulation and function.
TSQ is in clinical development for the treatment of various
cancers and has recently shown to significantly enhance the
antitumor effects of immunotherapeutics in cancer mouse
models, by inhibiting the suppressive function of MDSC and
tumor-associated macrophages (TAM) (74). More recently, TSQ
treatment in an acute mouse model of TB, enhanced M.tb
clearance, reduced Treg and MDSC frequencies and enhanced
the efficacy of the standard treatment regimen (75).

Cytokines indirectly affect MDSC accumulation/function and
a recent study has shown that IFN-γ decreases the suppressive
function of MDSC by reducing the arginase activity suppressing
PD-1/PD-L1 (47). Although not yet tested in TB, a combination
treatment of IL-17R and IFN-γ has shown potential in cancer,
by reducing the levels of MDSC and increasing T-cells (76).
Other MDSC targeting agents tested in cancer, which have
shown potential in TB, but with unknown effects on MDSC,
include metformin, tyrosine kinase inhibitors (imatinib), PDE-
5 inhibitors, and arginase inhibitors (71). The COX-2 inhibitor,
etoricoxib, is currently evaluated as HDT for TB and its effect on
MDSC levels will be considered in the trial (NCT02503839).

CONCLUSION

The MDSC arena has experienced several research advances
in the context of infectious diseases. Nonetheless, the complex
and protracted nature of M.tb infection along with challenges
in biology of MDSC research have delayed comprehensive
investigations on MDSC in the TB field. Ultimately, MDSC
research in TB would be insignificant without an eventual
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tangible contribution to the clinical benefit of patients.
Development of immunotherapies targeting MDSC is
undergoing a slow but steady progress, however many TB
HDT trials fail to consider the impact of these treatments
on MDSC function and frequency. The lack of compounds
targeting MDSC specifically, contributes to this problem. The
safety, efficacy, dose, and timing of interventions targeting
MDSC in TB, will also require careful evaluation, and so too will
the effect of novel neonatal vaccines and adult re-vaccination
strategies on MDSC genesis. Greater focus on these and other
MDSC knowledge gaps is expected to accelerate the discovery
of effective TB immunotherapies, thereby contributing to an
increased TB cure rate, more durable clinical responses and
superior control of drug-resistantM.tb strains.
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