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Following the approval, in recent years, of the first immune checkpoint inhibitor, there

has been an explosion in the development of immuno-modulating pharmacological

modalities for the treatment of various cancers. From the discovery phase to

late-stage clinical testing and regulatory approval, challenges in the development

of immuno-oncology (IO) drugs are multi-fold and complex. In the preclinical

setting, the multiplicity of potential drug targets around immune checkpoints, the

growing list of immuno-modulatory molecular and cellular forces in the tumor

microenvironment—with additional opportunities for IO drug targets, the emergence of

exploratory biomarkers, and the unleashed potential of modality combinations all have

necessitated the development of quantitative, mechanistically-oriented systems models

which incorporate key biology and patho-physiology aspects of immuno-oncology and

the pharmacokinetics of IO-modulating agents. In the clinical setting, the qualification

of surrogate biomarkers predictive of IO treatment efficacy or outcome, and the

corresponding optimization of IO trial design have become major challenges. This

mini-review focuses on the evolution and state-of-the-art of quantitative systems models

describing the tumor vs. immune system interplay, and their merging with quantitative

pharmacology models of IO-modulating agents, as companion tools to support the

addressing of these challenges.

Keywords: immuno-oncology, mechanistic models, tumor vs. immune system, systems pharmacology,

pharmacokinetics, pharmacodynamics, molecular and cellular biomarkers

INTRODUCTION

Immunotherapy of cancer has had a long history of development, starting from pioneering efforts
in using coley toxins to treat patients—a therapeutic approach named after Dr. William Coley (1).
Even though these earlier efforts never turned into a standard treatment, further investigations on
the relationships between tumor cells and the immune system led to discoveries which unveiled
fundamental principles underlying cancer progression, such as immune surveillance (2, 3), cancer
dormancy (4), cancer immuno-editing (5), and the cancer immunity cycle (6). These discoveries
were foundational for clinical successes and corresponding regulatory approvals in recent years,
of therapies targeting the CTLA-4, PD-1, and PD-L1 immune checkpoints. In the wake of these
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successes, there has been an explosion in the development of
immuno-modulating, anti-cancer pharmacological modalities,
leading to the initiation of, literally, thousands of clinical trials
(7, 8). However, from the discovery phase to late-stage clinical
testing and regulatory approval, challenges in the development
of immuno-oncology (IO) drugs are multi-fold and complex
(9), with related complexities in the design of clinical trials;
if unaddressed, these may lead to a decreased probability of
success (10). Some of these challenges can be mapped to an
incomplete mechanistic understanding of immune response
dynamics and the interplay of such immune responses with
tumor infiltration processes and tumor cell growth (11). These
quantitative knowledge gaps hinder: (i) effective translation
of novel promising therapeutic approaches into the clinic,
(ii) identification of predictive response biomarkers, and (iii)
search of therapeutic drug combinations which may overcome
intrinsic or acquired resistance to existing standards of care
(12). This mini-review focuses on quantitative, mechanistically-
oriented modeling approaches which have been sought in IO,
to address, at least partially, the abovementioned challenges and
knowledge gaps.

EVOLUTION OF QUANTITATIVE,
MECHANISTICALLY-ORIENTED IO
SYSTEMS MODELING

Application of mathematical modeling in support of preclinical
and clinical research, as well as decision-making in Oncology,
has a long-standing history covering multiple problems and
addressing a variety of research questions—today often referred
to as computational oncology (13–15). Historical milestones
include adaptations of the Gompertz model for treatment
outcomes in breast cancer (16). These earlier efforts started
from models with a simplistic empirical structure, based on
an ordinary differential equation (ODE) describing tumor
size growth using an exponential or sigmoidal function (17).
Such a model, however, would not adequately describe the
interplay between tumor cells and tissue vs. the immune
system, since it entirely ignores the immune component (18).
It is nevertheless valuable to mathematically describe treatment
response effects following various chemotherapies, which are
adequately captured by generalized Gompertzian kinetics (19). In
fact, such modeling results provided a basis for the use of specific
“dose-dense” chemotherapeutic regimens, which subsequently
showed favorable outcomes in the treatment of breast cancer
(20). Additionally, such empirical considerations allowed for a
gradual evolution of modeling concepts, which today can be
grounded in mechanistically-oriented principles, including for
tumor vs. immune system interactions (Figure 1).

Earlier efforts to describe tumor vs. immune system
relationships via a general mathematical description appeared
in the 1980’s, following the pioneering IO work that introduced
the concept of immune surveillance (2, 3). These mathematical
models considered the addition of a second variable describing
the dynamics of cytotoxic immune cells, which are able to attack
tumor cells (22–24). The resultant “two-ODE” model actually

follows a typical “predator-prey” model introduced by Alfred
Lotka and Vito Volterra, in much earlier days, at the turn of the
20th century. In such a model, tumor cells may be interpreted
as the “prey,” whereas cytotoxic immune cells may be viewed as
the “predator”: their dynamic interplay may result in one possible
system behavior reflective of cancer dormancy (4). Given the
relative simplicity of such a “two-ODE” model and since the
behavior of such a model could be assessed analytically, it gained
immense popularity within the oncology modeling community
and led to several theoretical hypotheses underlying fundamental
principles of cancer progression. For example, it was shown,
through modeling, that key parameters controlling tumor re-
growth under steady-state conditions of cancer dormancy were
those relating to activities of the immune system (25). A corollary
result was that it is a reduction in the probability of achieving
tumor cell kill, rather than a reduction in the probability of tumor
cells being recognized by cytotoxic cells, which best explained
immune evasion by tumor cells (26). Interestingly, this key result,
derived theoretically at the time, has recently been supported
by elegant modeling work linking high-level immunological and
epidemiological data, which suggests that age-related decline in T
cell output correlates better with risk of cancer diagnosis vs. age-
related accumulation of somatic mutations in tumor cells (27).

With the explosive growth of experimental data surrounding
the complexity of tumor vs. immune system interplay,
“two-ODE” models experienced a further evolution with
additional biological entities and mechanisms being taken into
mathematical consideration. At this point and looking forward,
many biological candidates were tested as the “third modeling
variable,” representing either specific immune cells or cytokines
that modulate cytotoxic T lymphocyte (CTL) function (28). Such
models were initially focused on including IL-2 function and
effects, reflective of the potential importance of this cytokine
and its associated dynamics in long-term tumor relapse (29). In
further work, de Pillis et al. used a “three-ODE” model to reveal
a difference between the dynamics of CD8+ CTLs vs. natural
killer cells, which supported the importance of considering
multiple cell types in the overall anti-tumor immune activity
(30). More recently, CD4+ T helper cells were considered as the
third component, in a quantitative, model-based investigation of
adoptive cellular immunotherapy (31).

“Three-ODE” models, however, exhibit one significant
structural limitation, namely they completely lack (an) immuno-
suppressive component(s), which would be crucial when
considering immune evasion mechanisms (32). Therefore,
embedding a fourth variable into such models, to describe
immuno-suppression, would seem rather natural; however,
choices for the most appropriate candidate in this role are multi-
fold. Several types of immuno-suppressive cells or molecules
could be suitable candidates, including regulatory T cells (Tregs),
myeloid-derived suppressor cells (MDSCs), or Type 2 tumor-
associated macrophages, as well as cytokines such as TGFβ or
IL-10. Thus, Arciero et al. chose TGFβ as the fourth model
variable (33), while de Pillis et al. used Tregs as the principal
immuno-suppressive component in their model (34). While
these two modeling examples focused on immuno-suppressive
effectors, other “four-ODE” models abound, declining a vast
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FIGURE 1 | Evaluation of mathematical models which describe tumor vs. immune system interactions. “One-ODE” approach, simplistic description of tumor growth

kinetics; “Two-ODE” approach, a typical “Predator-Prey” model, incorporating a basic description of tumor vs. immune system interactions; “Three-ODE” approach,

incorporating additional immuno-modulating factor(s); “Four-ODE” approach, including considerations for immuno-suppression; mechanistic multi-compartmental

model, taking into account essential biological principles underlying the IO cycle concept (21); TV, tumor volume; CTL, cytotoxic T lymphocytes; IMF,

immuno-modulating factor; ISF, immuno-suppressive factor; mDC, level of mature dendritic cells; nTeff, non-differentiated T effectors cells; dTeff, differentiated T

effectors cells; Treg, regulatory T cells; PD-L1, level of PD-L1 expression; Agsys, level of systemic antigen; IAR, immuno-activation rate function; green line, positive

regulation, red line negative, regulation; back line, variable turnover.

variety of immune players or tumor cell clones (35–41). Such
a variety in potential key immuno-modulating factors made
the generalization of any “three-ODE” or “four-ODE” model
an overly difficult process, since any one of the models cited
above can be challenged with newly generated experimental data
featuring the importance of one vs. another immune factor.
This may also explain, at least partially, the relatively minimal
recognition, to date, of quantitative modeling approaches by
immuno-oncologists (28, 42, 43).

On one hand, some of the biological complexities which
compose the IO cycle, as summarized in recent reviews (6, 44, 45)
clearly indicate the limitations of oversimplified models such as
“prey-predator” models, which appear to be too remote from
experimental reality and would not be applicable or of use
for the majority of research relevant questions. On the other
hand, increasing model complexity with additional mechanistic
insights always comes with challenges of model calibration, as
depicted in this famous quote by John von Neumann, “with
four parameters, I can fit an elephant and with five, I can

make him wiggle his trunk” [see in Dyson (46)]—pointing

to the necessity of avoiding overparameterized “metastatic”
models with unreliable extensions and loss of predictive power.
Achieving such a balance in capturing necessary (not over-
simplified) yet sufficient (not over-developed) features, and as
constrained by the available data, is arguably one of the most
difficult challenges in fit-for-purpose, parsimonious mechanistic
model building and calibration. Overparameterization can easily
negate all benefits brought forward by the incorporation of
exquisite biological details of the system under consideration
(47); models which attempt to explain everything may in fact
not be useful, their predictive power remaining a question
mark (48).

To address this challenge, part of the solution may reside in
the combining of modeling methodologies developed previously
and in other disciplines (49). This would result in a repository of
prior information and knowledge validated elsewhere, to build
mechanistic models in immuno-oncology which, on one hand,
incorporate increasing system complexity and, on the other
hand, avoid overparameterization based on newly generated
data—thereby resulting, using terminology of a Bayesian
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mindset, in a posterior model based on existing, established
quantitative priors (50).

If so, the question then becomes, “where to find such
established prior models?” One obvious domain is quantitative
immunology (51, 52), where the use of various modeling
techniques by experimentalists has already gotten significantly
more traction, arguably, than in other fundamental biological
disciplines (53). For example, modeling has provided
quantitative “inference frameworks” for immunology basics
and fundamentals such as T cell activation, homeostasis
or self / non-self recognition (54–57), immune receptor
signaling (58), and understanding of T cell immunological
memory (59). Prior models from quantitative immunology
may then be combined with prior models from quantitative
pharmacology (60–62), another field where modeling has
provided quantitative “inference frameworks” (63) In the next
section, we will discuss selected works which considered the
combining of modeling methodologies, in attempts to develop
pharmacologically-modulated posterior models, which were
then used to prospectively address questions in the development
of IO therapies (Table 1).

MECHANISTIC MODELING IN SUPPORT
OF IO THERAPY DEVELOPMENT

Applications of mechanistic modeling in support of preclinical
and clinical research, commonly referred to as pharmacokinetic
(PK)/pharmacodynamic (PD) modeling, are traditionally
centered around the optimization of treatment dosing and
scheduling—the “dose” representing a critical component
of any drug development program (82). Such modeling
approaches have thus been used in the development of IO
agents such as PD-1 and PD-L1 inhibitors (83–85). In particular,
mechanistic PKPD modeling has been applied in support
of first-in-human dose selection of pembrolizumab, an anti
PD-1 agent (65); this resulted in a seamless clinical trial
design with a model-informed dose justification, which the
US FDA accepted in the process of an accelerated regulatory
review (86). Label updates with flat dosing schedules were
subsequently granted, for both nivolumab and pembrolizumab,
strongly supported by model-based simulations (87, 88).
PKPD modeling has also been used in the translation of
preclinical data for a conjugated IL-2 therapy, in particular to
gain a better understanding of such a therapy’s downstream
effects (89). PKPD modeling has been further used in the
development of bispecific biologics. Chen et al. used it for
the estimation of the minimally anticipated biological effect
level (MABEL) of a bispecific antibody targeting CD3 and
p-cadherin (66), while Ribba et al. used it for guided dose
escalation study design of cergutuzumab amunaleukin, a fusion
protein consisting of IL-2 and a carcinoembryonic antigen
(CEA) human monoclonal antibody (64). Such models are
great examples of a “fit-for-purpose” quantitative approach,
focused on addressing a specific pharmacological question.
However, they do not take into account details of the tumor
vs. immune system interactions, which would be critical to

gain a better understanding of mechanisms of action (MoA)
of immunotherapies.

Progressively adding components of tumor vs. immune
system interactions into such PKPDmodels may well support the
addressing of questions around pharmacologically-modulated
IO biology, a topic of paramount importance in, for example,
the search for therapeutic IO drug combinations (90). Such a
systems approach may become an indispensable quantitative
tool supporting “go/no-go” decisions in development
programs, especially if sufficient biological knowledge for
viable generalization is considered in the model (91). This
prior knowledge is generally derived from two sources: (i)
connectivity information to determine the system structure,
e.g., molecular & cellular interactions, and their integration
into patho-physiological processes; and (ii) quantitative data,
for the calibration of model parameters. As discussed in the
previous section, an imbalance in structural vs. quantitative
information will in one way or another complicate integration
into, and practical use of a mathematical model. For example, Lai
and Friedman developed an elegant, yet complex model which
includes a high number of biological elements, and considered
their dynamics in space and time using partial differential
equations (PDEs), to better understand the potential synergy
between PD-(L)1 antagonists and either a GVAX vaccination or
BRAFi/MEKi targeted therapies (72, 73). However, assessing the
predictive power of such a model is impractical, given insufficient
experimental data for model validation. Serre et al. provided
another example of an elegant, yet insufficiently validated
mathematical model describing the potential synergy between
radiotherapy (RT) and immune checkpoint blockade (70).

One obvious way to improve model validation and hence
model predictive power is to use rich experimental data,
to rigorously constrain model parameters. This, however,
requires the use of adequate statistical methods to properly
quantify uncertainty and variability, which are inherent to
any experimental biomedical and life sciences dataset (49, 92).
In oncology drug development, quantitative data supporting
MoA elucidation are typically generated at the preclinical stage.
Parra-Guillen et al. for example, used a nonlinear mixed-effects
(NLME) model and experimental data from syngeneic tumor
models, to reveal the most influential immuno-adjuvant capable
of boosting anti-tumor vaccination effects (21, 67). Such a
modeling approach, which combines mechanistic features and
mixed effects, allows one to incorporate individual-level data
into the model, which may then describe not only mean trends,
but also the full range of individual biomarker dynamics (93).
A similar, combined mechanistic and mixed-effects approach
was used to develop a model describing synergistic effects
between RT and PD-(L)1 blockade in mice (68). This model,
in fact, synthesizes a fit-for-purpose, yet sufficiently detailed
mathematical description of the IO cycle, together with adequate
model validation based on data from multiple experiments.
As a result, this model can be used as a simulation tool for
experimental study design, and is also adequate for determining
optimal schedule and sequencing of RT + IO, and IO + IO
treatment combinations (68, 69). Interestingly, despite the well-
known challenges in translating oncology preclinical results into
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TABLE 1 | Mechanistic models in support of IO therapy development.

Descriptiona Applicationa Limitationsa References

Cergutuzumab amunaleukin (CEA

mAb-IL2v fusion protein) PK/PD

described using a population NLME

modeling approach

Model was used to identify

optimal dosing regimen and

support design of the clinical

dose escalation study

Since mechanisms of tumor vs. immune system

interactions have not been considered, the model cannot

be generalized to other MoAs nor their combinations

(64)

Pembrolisumab (αPD-1 mAb) PK/PD

described using a population NLME

modeling approach

Model was used to estimate

MABEL dose and was applied,

accordingly, for FIH dose

selection

1. Since mechanisms of tumor vs. immune system

interactions have not been considered, the model cannot

be generalized to other MoAs nor their combinations

2. Model is based on preclinical data only

(65)

DART against CD3 and P-cadherin

PK/PD was described using a simple

ODE modeling framework

1. Model was used to estimate

MABEL dose and was applied,

accordingly, for FIH

dose selection 2. Model was

further applied for

identification/better

characterization of PK/PD

relationship and MoA

1. Since mechanisms of tumor vs. immune system

interactions have not been considered, the model cannot

be generalized to other MoAs nor their combinations

2. Model is based on preclinical data only and does not

take into account variability

(66)

Multiple MoAs including vaccination

(CyaA-E7), TLR9 agonist (CpG),

chemotherapy (cyclophosphamide),

and IL-12 administration were

incorporated using a NLME modeling

approach

Model was applied for a better

understanding of synergistic

effects in combination treatment

1. Due to the simple description of tumor vs. immune

system interactions, the model cannot be generalized to

other MoAs

2. Model is based on preclinical data only

(21, 67)

Multiple MoAs including αPD-1 and

αPD-L1, αCTLA4 mAb, OX40

agonists, CXCR2 inhibitors, and RT

were incorporated using a population

NLME modeling approach

1. Model was applied for a better

understanding of synergistic

effects in combination treatment

and identification of

predictive biomarkers 2. Based

on the model simulations, an

optimal sequencing schedule

was proposed for the

combination treatment

1. Model is based on preclinical data only (68, 69)

RT and αCTLA4 mAb were described

using a simple ODE modeling

framework

Model was applied to guide

optimal combination treatment

doses and schedules

1. Due to the simple description of tumor vs. immune

system interactions, pharmacological interventions and

limited validation with experimental data, the model

cannot be generalized to other MoAs nor used for

clinically relevant simulations

2. Model is based on preclinical data only and does not

take into account variability

(70)

Mechanistic physiologically-based

description of clinically-relevant

immune cell fluxes and RT

1. Model was applied for a better

understanding of ICD

systemic effects 2. Optimal RT

administration sites for

metastatic solid tumors

were identified

1. Limited validation with clinical data was performed

during model development stage

2. Model does not take into account variability

(71)

Multiple MoAs including αPD-L1,

BRAF and MEK inhibitors and

vaccination (GVAX) were incorporated

using a simple PDE modeling

framework, to account for spatial

immune species distribution within

the tumor compartment

Model was applied for a better

understanding of synergistic

effects

1. Due to the simple description of tumor vs. immune

system interactions, pharmacological interventions and

limited validation with experimental data, the model

cannot be generalized to other MoAs nor used for

clinically relevant simulations

2. Model is based on preclinical data only and does not

take into account variability

(72, 73)

Multiple MoAs including vaccination

(UV-8101-RE), IL-2 neutralization,

Treg cell depletion, androgen

deprivation therapy and castration

were incorporated using a simple

ODE modeling framework

Model was applied to guide

optimal combination treatment

schemes

1. Due to the simple description of tumor vs. immune

system interactions, pharmacological interventions and

limited validation with experimental data, the model

cannot be generalized to other MoAs nor used for

clinically relevant simulations;

2. Model is based on the preclinical data only and does

not take into account variability

(74)

Alloreactive cytotoxic-T-lymphocytes

transfer was described using a simple

ODE modeling framework

Model was applied for the

identification of predictive

biomarkers

1. Model does not take into account variability

2. Limited validation with clinical data was performed

(75)

(Continued)
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TABLE 1 | Continued

Descriptiona Applicationa Limitationsa References

IL-21 administration was described

using a simple ODE modeling

framework

Model was applied for a better

MoA understanding and the

identification of predictive

biomarkers

1. Model is based on preclinical data only and does not

take into account variability

2. Limited validation with clinical data was performed

(76)

Prostate cancer vaccination effects

were described using a simple ODE

modeling framework

Model was applied for an

evaluation of personalized

treatment strategies

1. Limited validation with clinical data was performed (77)

Multiple MoAs including αPD-L1

mAb, BTK inhibitor (ibrutinib), and

vaccination were incorporated using a

simple ODE modeling framework

Model was applied for guiding

optimal combination treatment

schemes

1. Due to the simple description of tumor vs. immune

system interactions, pharmacological interventions and

limited validation with experimental data model cannot

be generalized to other MoAs nor used for clinically

relevant simulations;

2. Model is based on preclinical data only and does not

take into account variability

(78)

αPD-L1 mAb clinical effects were

described using a 3D ABM framework

Model was applied for an

evaluation of personalized

treatment strategies

1. Limited validation with clinical was performed

2. Systemic treatment effects were not considered

(79)

Generalized effects of adaptive

immunity stimulation and stromal cell

depletion were described using a 2D

and 3D ABM framework

Model was applied for guiding

optimal combination treatment

schemes

1. Generic representation of treatment effects (80, 81)

aMoA, Mechanism of action; CEA, carcinoembryonic antigen; mAb, monoclonal antibody; NLME, nonlinear mixed effects; IO, immuno-oncology; PK, pharmacokinetics; PD,

pharmacodynamics; MABEL, minimally anticipated biological effect level; FIH, first-in-human; RT, radiotherapy; ICD, immunologic cell death; ODE, ordinary differential equations; PDE,

partial differential equation; ABM, agent-based modeling.

the clinic, simulation results from this preclinical modeling
exercise were recently supported, in a qualitative sense, with
clinical data and a corresponding meta-analysis (94, 95). For a
quantitative translation, the Kosinsky et al. model would require
adjustments for multiple quantitative differences that exist
between mouse vs. human immune systems, e.g., appropriate
expressions of immune checkpoints and turnover of specific T
cells (96). Another modeling approach aimed at supporting the
development of such an RT + IO combination therapy was
proposed by Poleszczuk et al. who developed a physiologically-
based model which considered a detailed incorporation of T
cell trafficking and was used for the identification of an optimal
site for RT administration, to maximally increase the probability
of incremental anti-tumor immune effects (71). Predictions
from such a comprehensive modeling effort were also recently
supported by clinical results, which showed that RT administered
to liver metastases triggered a higher immunological response
(97). A mechanistic model has also been proposed by Peng
et al. in the search of an optimal combination strategy against
castration-resistant prostate cancer (74).

The modeling applications discussed to this point emphasize
the importance of addressing multi-pronged questions, e.g., not
only around dose finding, but also on the identification of an
adequate time window for maximizing therapeutic benefits (98).
This problem is particularly challenging in the development of
combination therapies, where multiple options around which
cancer indication, which combination agents, which scheduling
per agent, and which sequencing of the agents make trial design
enormously complex (99, 100). In recent years, platform design
of clinical studies, driven by one master protocol, has gained

momentum (101, 102)—a format which, in fact, benefits even
further from a supportive quantitative mechanistic modeling
approach (103).

MECHANISTIC MODELING IN SUPPORT
OF IO BIOMARKER IDENTIFICATION

A third problem which is highly relevant in the development
of IO therapies is the identification of predictive biomarkers.
Indeed, there still is a lot of room for improving numbers of
responder patients in pivotal IO trials, even in immunologically-
active indications (104). Several computational models focusing
on the identification of predictive biomarkers, with applications
to personalized treatment against glioblastoma and prostate
cancer have been developed (75, 77). These approaches have yet
to find a general use in clinical practice. Part of the challenge
arises from the biological complexity in the IO field, although
there also are significant limitations from an experimental
standpoint, such as differences in fresh vs. archived samples,
difficulties in obtaining multiple biopsies per patient, with related
risk and cost issues (105). One approach to alleviate some of these
problems is the development of novel combinatorial biomarkers
(“signatures”) which may relate multiple, routinely measured
markers with clinically meaningful biological phenotypes (106).
In fact, such a consensus approach, “Immunoscore,” has
recently been validated in a large international study of colon
cancer (107).

Another complicating factor in the development and
interpretation of mechanistic modeling of IO data is the
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tremendous heterogeneity in tumor cell clones and elements
of the surrounding immune microenvironment (108). A rapid
development of novel experimental techniques may overcome
this challenge, at least partially. Thus, the identification of
specific gene expression signatures may help in further validating
existing immunoscores and related biomarkers, even increasing
their discriminatory ability (109), as recently shown with a PD-
L1 expression signature which outperformed a standard PD-
L1 immunohistochemistry (IHC) assay (110). Multiple immune
signatures have now been identified, which allow for a better
characterization of various aspects of anti-tumor immunity (111–
116). Recent technological breakthroughs such as cytometry
by time-of-flight (CyTOF) and single-cell mRNA sequencing
(scRNA-seq) may further advance the utility and robustness
of these immune signatures (117, 118); these techniques may
allow for a deeper, more granular profiling of tumor and
immune cell phenotypes involved in response or resistance
to immunotherapies, in multiple indications (119–123). The
importance in using quantitative models toward the selection
and qualification (within the chain of events, from dosing to
patient response) of IO biomarker signatures cannot be over-
emphasized (108): immune biomarkers involve a high number
of molecular and cellular species, and often exhibit complex
temporal and spatial dynamics; these need to be properly framed
in the context of a quantitative model, especially if the purpose
is to relate multi-variate biomarker signatures to IO treatment
effects and clinical endpoints (124). Quantitative modeling may
also support the development of biomarkers in context, by
integrating different data types, and following a model-based
qualification of biomarkers as surrogate measures of efficacy
and response. Such an approach has been proposed, recently,
in the evaluation of neoantigen fitness as a surrogate measure
of immunogenic quality of the existing neoantigen pool (125,
126). The progressive integration of such consensus, multi-
variate combinatorial biomarkers into a unified, quantitative and
mechanistic modeling framework will help overcome some of the
limitations in the clinical use of IO biomarkers (127, 128).

OTHER MECHANISTIC MODELING
APPROACHES WITH RELEVANCE TO IO

The above sections focused on traditional deterministic models,
which make use of ODEs and PDEs for the description of IO
systems dynamics. Other modeling techniques can be used to
describe tumor vs. immune interactions. For example, cellular
automata and agent-based models (ABMs) (129), as well as
various hybrid models which link continuous and discrete
modeling elements have been developed (130). Such models
may be useful in raising new hypotheses, which may arise from
emergent properties of the system based on existing data, rather
than generating bona fide forward predictions. For example, a
lattice gas automata technique has been used to gain a better
understanding of a vaccination treatment mechanism and its
corresponding anti-tumor immune response dynamics (131,
132). ABMs also represent a popular modeling technique, since
they are well-suited to describe stochastic processes which do

occur at various stages of the IO cycle. For example, Gong
et al. developed an ABM to reveal spatio-temporal characteristics
of PD-L1 blockade (79). In another publication, Kather et al.
presented an elegant 2D ABM framework for an improved
understanding of the role of stromal cells in colorectal cancer
(CRC) (80). These authors determined that malignant cells
hiding in the stroma cannot be eradicated completely, while
stromal cells, at the same time, would not allow for rapid
tumor progression. Consequently, simulations of an immuno-
therapy illustrated how stroma permeabilization, concomitantly
with immune activation, were able to markedly increase response
to therapy in silico. Additionally, it was shown that a stroma-
targeted therapy with insufficient activation of tumor-specific
CTLs can lead to rapid tumor escape and hyper-progression (80).
More recently, this model has been extended and generalized
to a 3D spatial description, incorporating macrophage effects; it
accurately reproduced the tissue architecture typically observed
in CRC and can be used, similarly to ODE systems models, for
the identification of effective IO therapeutic combinations (81).

CONCLUDING REMARKS

Following the approval, in recent years, of the first immune
checkpoint inhibitors, the landscape of cancer treatment has
changed dramatically and has shifted to a deep reconsideration
of the role of the immune system in cancer progression and
treatment. This led to an unprecedented number of clinical
trials and generation of clinical data in the IO field. Clinical
success rates, however, while improving significantly, are still
relatively low. The observed imbalance, between the amount of
biological and clinical data being generated vs. probability of trial
success is not uncommon in biomedical disciplines, and calls
for the development and updating of a companion, integrative,
quantitative modeling framework with predictive value forMoAs
and simulation value for study design purposes. As described by
Sidney Brenner in his “Sequences and Consequences” landmark
paper: “We should welcome with open arms everything that
modern technology has to offer us but we must learn to use it
in new ways. Biology urgently needs a theoretical basis to unify
it and it is only theory that will allow us to convert data to
knowledge” (133). We propose that quantitative, mechanistically-
oriented modeling represents a means toward the establishment
of such a “theoretical basis,” pending proper integration of prior
knowledge gained from biology and clinical research. One of the
main factors limiting a wider application of quantitative systems
modeling is its demand for rich experimental data necessary
for precise parameter estimation. Historically, generation of
such datasets in oncology research has been challenging, due
to translational limitations of experimental preclinical models
and sparse collection of tissue samples in clinical settings. Also,
in the IO field, another challenge is the lack of predictive
power for univariate biomarkers (e.g., PD-L1 IHC status or
tumor mutational burden taken in isolation), which may
unequivocally link immunologically-driven therapeutic effects
to clinical response; a multi-variate approach is clearly needed
(128). Recent developments in multi-modality biomarkers

Frontiers in Immunology | www.frontiersin.org 7 April 2019 | Volume 10 | Article 924

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Peskov et al. Modeling in Immuno-Oncology Drug Development

and associated molecular signatures, together with innovative
pharmacologies and clinical design under platform trials (134)
will help in the progressive build-out and qualification of
such a unified quantitative modeling framework, which in
turn may help in predicting patient responses based on a
given pharmacological intervention choice and multi-variate
biomarker signatures.
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