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Fc receptor (FcR) genes collectively have copy number and allelic polymorphisms

that have been implicated in multiple inflammatory and autoimmune diseases. This

variation might also be involved in etiology of infectious diseases. The protective role

of Fc-mediated antibody-function in HIV-1 immunity has led to the investigation of

specific polymorphisms in FcR genes on acquisition, disease progression, and vaccine

efficacy in natural history cohorts. The purpose of this review is not only to explore

these known HIV-1 host genetic associations, but also to re-evaluate them in the

context of genome-wide data. In the current era of effective anti-retroviral therapy, the

potential impact of such variation on post-treatment cohorts cannot go unheeded and

is discussed here in the light of current findings. Specific polymorphisms associating

with HIV-1 pathogenesis have previously been genotyped by assays that captured

only the single-nucleotide polymorphism (SNP) of interest without relative information of

neighboring variants. With recent technological advances, variation within these genes

can now be characterized using next-generation sequencing, allowing precise annotation

of the whole chromosomal region. We herein also discuss updates in the annotation of

common FcR variants that have been previously associated with HIV-1 pathogenesis.

Keywords: next-generation sequencing, polymorphism, disease association, Fc receptors, HIV-1

INTRODUCTION

Fc receptors comprise a class of cell surface receptors expressed on various hematopoietic cells that
bind to the Fc portion of antibodies to form immune complexes and recruit the complement and/or
effector system to defend the body against pathogens. The Fc receptors are classified based on their
binding to the Fc domain of immunoglobulin (Ig). The most abundant Ig in serum is IgG which
can bind to different classes of FcγR. Other types of FcR including FcεR, Fcα/µR, and FcαR1 are
receptors for other Ig classes such as IgE, IgM, and IgA.

More recently vaccine studies in infectious diseases point to a critical role of non-neutralizing
antibody functions, which is the ability of an antibody to interact with other immune
components and effector cells via their Fc portions to mediate killing or control of the pathogen.
These mechanisms include, but are not limited to, antibody dependent cellular cytotoxicity
(ADCC), antibody-dependent cell-mediated virus inhibition (ADCVI), antibody dependent
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cellular phagocytosis (ADCP), and antibody dependent
complement deposition (ADCD) (1, 2). These functions are
mediated by three distinct classes of FcγRs that are expressed
on most human immune cells, with varying levels of expression
dependent on cell type such as monocytes, macrophages, natural
killer cells, eosinophils, neutrophils, B cells but not on T cells (3).
These receptors include FcγRI (CD64), FcγRIIa/b/c (CD32), and
FcγRIIIa/b (CD16), which bind the different IgG subclasses with
varying proficiency, and can cause either activation or inhibition
of the effector cell.

Polymorphisms in the FcγR have been shown to affect binding
affinity to the Fc region of IgG and can trigger a range of
effector and immunoregulatory functions. Such variation has
been shown to play a crucial role in the pathogenesis of
a range of chronic inflammatory and autoimmune diseases,
as well as susceptibility to infectious pathogens (4, 5). An
overview of FcγR biology has been recently summarized and
so our focus for this review will be to evaluate the effect of
genetic variation in the human Fcγ receptors and their role
specifically in HIV-1 disease pathogenesis (6). Although there
is evidence that the neonatal Fc receptor (FcRn), an MHC class
I-related molecule expressed on many cells, functions in HIV-1
vaccination and infection (7, 8), no significant genetic variation
has been identified for this locus, and we have not included it in
this review.

FCγ RECEPTOR GENETIC DIVERSITY

The Fcγ receptors are encoded by the FCGR genes located
on chromosome 1 in humans, including five FCGRs in a
tandem arrangement within ∼200 kb of genomic sequence
(Figure 1A). A sixth gene, FCGR1A, is located ∼12Mb distant
from the five gene cluster. Genetic variation at the FCGR
gene cluster bears similarity to the Killer Ig-like receptor (KIR)
region which is shown in comparison to emphasize both
the types and extent of copy number and allelic variation
(Figures 1A,B) (9). Like KIR, the genes in the FCGR cluster
are arranged in haplotypes containing both invariant framework
and copy number variant genes. An examination of total
nucleotide variation in FCGR from a recent genome build
indicates extensive depths of SNP variation, similar in overall
extent to KIR and the vast majority of which has not been
functionally characterized (Figures 1B,C). Both gene families
encode receptors for other central components of the immune
response (KIR and MHC class I; FCGR and IgG constant
domains) placing them in distinct roles but perhaps of equivalent
importance in investigations of host genetics and its relationship
to immune function. Given the parallels in significance and the
similar physical characteristics of both copy number variation
and allelic polymorphism, a major difference is that the
allelic variations for FCGR genes have been less examined,
curated and annotated. This review in part is attempting to
address this deficit as an organizing framework of characterized
variation possibly guided by established methods for structural
and allelic annotation as currently employed for the KIR
system (10).

In the FCGR family of six genes, several nonsynonymous
single nucleotide polymorphisms (SNP), SNPs encoding altered
splice sites, and copy number variants (CNVs) encoding
addition, or deletion of one or more gene have been functionally
characterized (Figure 1, Table 1). Variation in the FCGR1 gene
is limited, with the most frequent minor allele characterized
at <4%, but there is considerable diversity in the other FCGR
genes. The most studied SNPs in the FCGR genes over the past
two decades have centered on nonsynonymous substitutions that
contribute to differential binding affinity for subclasses of IgG.
FCGR2A has two allele variants encoding arginine or histidine at
amino acid position 166 (rs1801274), with the latter resulting in a
higher affinity for IgG1, and IgG2 (11–13). FCGR3A also has two
common allele variants differing by a single SNP, altering codon
176 from phenylalanine to valine (rs396991) resulting in a higher
affinity for IgG1, IgG2, IgG3, and IgG4 for the 176V variant
(11, 12, 14). This stronger binding affinity is associated with
functional capacity of the receptor in different experimental and
clinical contexts (15–17). Two adjacent nonsynonymous SNPs in
FCGR2A (together altering codon 63 fromQ toW; rs201218628)
have been studied, although their functional consequence is
less clear, and their frequency is rare (18). FCGR2B has an
isoleucine to threonine change at position 232 (rs1050501), which
alters the transmembrane region, with the 232T allele inhibiting
the association of FCGR2B with lipid rafts in a human B cell
line measuring downstream function (19). The frequency of
this alteration is low at ∼1% in Caucasians, and while more
prevalent among African Americans and Asians (5–11%) has
been less studied.

A major studied polymorphism in the FCGR2C gene is a
SNP in exon 3 (rs759550223) that encodes a glutamine or a
stop codon resulting in the presence or absence of protein
expression (20–22). The frequency of the minor allele varies
between populations, and studies have suggested it is expressed
on NK cells and is capable of inducing ADCC after receptor
cross-linking on purified NK cells as measured by their ability
to lyse the target P815 cell line (20, 23). In addition, both alleles
have been associated with both null and surface expression on
NK cells as measured by anti-FCGR2B/C specific mAb 2B6 (22).
However, there may be some confusion regarding this SNP as
it is identical to rs10917661, which is assigned to FCGR2B, in
a reference SNP identification (rs id) segment where the two
genes have identical sequences except at the variant position.
Sequence identity between FCGR2B and FCGR2C may lead to
incorrect assignment of SNPs to these two loci. Also, rs759550223
has a very low minor allele frequency defined in the SNP
database (dbSNP), and the minor allele assigned is identical to
the FCGR2B-derived sequence, suggesting the possibility that the
SNP has been falsely generated by a combination of variants
between two distinct loci. FCGR2C has been previously reported
to have arisen from an unequal recombination between the
FCGR2A and FCGR2B genes, and encoded a functional molecule
that exhibited differential expression in natural killer cells (21, 24,
25). However, FCGR2C is also classified as a gene/pseudogene in
the NCBI gene database. These inconsistencies further emphasize
the need of validation of the FCGR genes by a combination of
methods such as next generation sequencing (NGS) technologies
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FIGURE 1 | Structure and polymorphism of the FCGR genes. (A) Approximate chromosomal locations of the FCGR gene complex containing 5 FCGR genes and the

FCGR1A gene located at ∼12Mb centromeric to the FCGR cluster. In comparison, the KIR gene family is illustrated immediately to the right including adjacent genes

(FCAR) and gene clusters. For both FCGR and KIR, alternative haplotypes identified in populations are illustrated with the colored bars depicting genes present in a

subset of haplotypes and shaded bars depicting genes present in all haplotypes (framework genes). Figure depicting KIR has been reproduced with permission from

the Oxford University Press (9). (B) The plots show the abundance of SNPs at each position of the indicated regions from chr1 and chr19, using data derived from the

UCSC genome browser. (C) Approximate number of SNPs in both regions are listed including a summary from all chromosomes for comparison.

as discussed below, in addition to precise curating of allelic
variation and flow cytometry phenotyping.

A triallelic nonsynonymous SNP at codon 66 (66R, 66L,
66H; rs10127939) of the FCGR3A gene has also been found to
affect affinity for immune complexes (ICs), with the FCGR3A-
66R and 66H alleles exhibiting higher affinity (26). Other
nonsynonymous SNPs have been identified but none have been
characterized functionally or in association analyses. FCRG3B
polymorphisms were first described as the human neutrophil
antigen (HNA)-1 system (27, 28). The three major HNA-1
variants have differential affinity for IgG1 and IgG3, with the
higher affinity HNA-1a and lower affinity HNA-1b differing at
4 nonsynonymous codon positions (rs2290834, rs200688856,
rs448740, rs147574249). Consistent with this differential affinity,
phagocytosis was lower with HNA-1b through analysis of
antibacterial IgG subclass antibodies and with IgG1 and IgG3
anti-Rhesus D (29, 30). A third isoform, termed HNA-1c, of

unknown function is identical to the HNA-1b isoform except at
the rs5030738 polymorphic site, where it encodes an asparagine
rather than alanine residue (31). Other variants of the HNA-
1 antigen system have also been described but to date no
functional or association studies interrogating them have been
reported (32, 33).

CNV is a hallmark of multicopy gene family genomic
regions, including notably among them, those encoding immune
response genes (34). In the FCGR region, CNVs include at
least five haplotypes with varying combinations of deletions and
duplications of the FCGR2C, FCGR3A, and FCGR3B genes,
flanked by the invariant framework FCGR2A and FCGR2B genes
(Figure 1A, left) (34–36). FCGR-H1 forms the most common
among these haplotypes, containing the five loci, with FCGR-H2
being the most commonly observed CNV [equivalent to CNR1
in Nederer et al. (36)] and FCGR-H3 less prevalent (equivalent
to CNR2 or CNR3). Although variants FCGR-H4 and -H5 have
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not been explicitly described, they form predicted reciprocal
structures of the H2 and H3 deletion variants (34). Individuals
with FCGR gene copy numbers that may be consistent with those
structures have been described (22, 34–38). As discussed above,
older genotyping methods focusing on specific regions of the
genes may have misassigned SNPs, and the lack of a standard
nomenclature of common FGCR coding variants may lead to
misinterpretation when comparing different studies. Newer NGS
technologies have allowed for updated annotation of the FCGR
genes as per the current Human genome database reference
hg38. SNPs with a minor allele frequency >0.01 are shown
in Table 1.

FCGR VARIATION AND HIV-1 DISEASE
PATHOGENESIS

The first report of the effect of polymorphisms in the FCGR
genes on HIV-1 disease progression was in two natural history
HIV-1 cohorts consisting of anti-retroviral therapy (ART) naïve
individuals (39). Since then, functional SNPs in the FCGR2A
(rs1801274) and FCGR3A (rs396991) genes that affect binding
affinity to the Fc domain of IgG have been evaluated in the
context of HIV-1 acquisition, disease progression, and vaccine
efficacy. Now that most HIV-1 infected individuals are on ART,
there is an opportunity to evaluate disease outcomes after ART
initiation. With increased high-throughput sequencing, targeted
SNP genotyping is being replaced by whole gene and genome
sequencing. This gives the opportunity to evaluate previous host
genetic findings in the light of genome wide findings and also
examine other SNPs in nearby genes. We will discuss the effects
of genetic polymorphisms in the FCGR genes and their impact
on HIV-1 disease progression, acquisition, post-ART and vaccine
outcomes in the next sections.

FCGR Polymorphisms and HIV-1 Disease
Progression
Candidate Gene Studies
Forthal et al. identified an association between the FCGR2A low
binding RR (rs1801274) genotype and a faster rate of CD4+ T
cell decline and progression to AIDS using samples and data
from the Multicenter AIDS Cohort Study (MACS) consisting of
more than 500HIV-1 infectedmales ofmostlyWestern European
ancestry (40). Paradoxically, the same RR genotype was also
found to associate with a decreased risk of Pneumocystis jiroveci
(carinii) pneumonia, an AIDS defining illness, when compared
to the HH genotype in the same cohort. At the functional level,
cells from RR homozygous carriers demonstrated less efficient
phagocytosis of HIV-1/IgG complexes. There was no association
of the FCGR2A genotype with viral load setpoint (spVL), defined
as the number of HIV-1 RNA copies/ml in a plasma sample
collected 18 months after the first seropositive test. The absence
of association of FCGR2A variation with spontaneous viral
load control was also confirmed in an HIV-1 seroconverting
cohort including 253 Kenyan women, in which the associations
with disease progression and CD4+ T cell decline were not
replicated (41).

No association was observed by Forthal et al. in the MACS
cohort between a specific FCGR3A genotype (rs396991) and
spontaneous viral control or disease progression (40). Similarly,
Weis et al. did not identify any significant genetic associations
of FCGR3A variation with disease progression or spVL in the
Kenyan’s women cohort (41). There is one report of the VV
genotype of FCGR3A being overrepresented in 43 untreated
controllers compared to 59 HIV positive progressors on ART
(42). However, since the HIV positive progressors were on ART,
analyses with measures of spVL or CD4+ T cell counts could not
be performed and this finding remains inconclusive.

A more consistent finding has been reported by two
independent groups showing the association between the
FCGR3A FF genotype and decreased risk of Kaposi’s sarcoma
(KS) (39, 40). In the first study, FCGR3A genotyping was
performed in two small cohorts consisting of 119 and 131 HIV-
1 infected males of Western European ancestry. A significant
association with protection was identified in each cohort
independently and in the combined analysis. Forthal et al.
replicated this finding in the MACS cohort. KS is the most
frequent malignant condition associated with HIV-1 related
immunosuppression, and alterations in the cytokine balance
have been suggested to play a critical role in its pathogenesis.
Differences in genotype have been shown to alter IgG binding
that could influence cytokine levels, with the V allele having
higher affinity than the F. The authors concluded that FF
homozygous individuals might be at lower risk of KS because of
a less vigorous proinflammatory response. The VV genotype has
been associated with an increased risk of cryptococcal disease in
164 HIV-1 infected men, again in theMACS cohort (43). Of note,
this observation extends beyondHIV-1 infection, because the VV
genotype was previously associated with cryptococcal disease in
non-HIV-infected individuals in a separate study (44).

Genome-Wide Testing
The associations with HIV-1 natural history described above
were tested using a candidate gene study design in cohorts with
relatively small sample size. The current availability of genome-
wide genotyping and sequencing data provides an opportunity
to reassess the potential involvement of FCGR variation in
HIV-1 disease in larger cohorts, by applying more stringent
standards for significance level and including robust population
stratification (45). We therefore accessed previously published
data generated from cohorts and studies that contributed to the
International Collaboration for the Genomics of HIV (ICGH)
(46–48) and assessed genetic associations with HIV-1 disease
outcomes in the FCGR2A and FCGR3A regions.

The potential associations between FCGR2A or FCGR3A
variants and spVL were evaluated using a fixed-effect inverse-
variance weighted meta-analysis across cohorts, including a
total of 7,266 HIV positive patients of Western European
ancestry. We tested all common polymorphisms (minor allele
frequency >5%) in a 50 kb window around the gene. In line
with previous studies, no significant association with spVL was
observed. An additional analysis was performed in a subset of
ICGH, consisting of 467 long-term non-progressors (individuals
with CD4+ T cell counts consistently above 500 cells/mm (3)
for >10 years without treatment) and 517 rapid progressors
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(individuals with two or more CD4+ T cell counts below 300
cells/mm (3) within 3 years after the last seronegative test
result). We were unable to replicate findings by Forthal et al.
and did not observe associations with HIV-1 progression (40).
These analyses included the FCGR2A rs1801274 polymorphism;
however, the FCGR3A polymorphism rs396991 was not available
from the ICGH meta-analysis as it is not directly genotyped
on most genotyping arrays and could not be reliably imputed.
Thus, in order to evaluate its association with HIV-1 spVL, we
reassessed a standard genome-wide association study (GWAS)
using exome sequencing data from 395 individuals of European
descent in the Swiss HIV Cohort Study (SHCS), following the
procedures described in McLaren et al. (48). This analysis did
not show any association between rs396991 and HIV-1 spVL
(p = 0.21). Additionally, the rs1801274 did not show any
association with spVL (p = 0.54) in the same cohort (Figure 2).
The inability to replicate previous findings could be attributed to
differences in sample size, clinical definition and statistical rigor
employed. Globally, these new analyses confirm the previous
findings that common human genetic variants in FCGR2A or
FCGR3A are not associated with spontaneous control of HIV-
1 infection.

Influence of FCGR Diversity on HIV-1
Acquisition
There are no conclusive studies reporting associations of
FCGR polymorphisms with HIV-1 acquisition. Two independent

mother-to-child transmission cohorts reported contrasting
findings of FCGR2A genotypes associating with increased
infection risk in children with the high-affinity HH (rs1801274)
genotype (49, 50).

Here again, we evaluated potential associations between
FCGR2A and FCGR3A variants and susceptibility to HIV-1
infection by accessing the results of a previous GWAS of HIV-
1 acquisition that compared 6,300 HIV-1 infected individuals
and 7,200 controls of European ancestry (46). The rs1801274
polymorphism did not show any sign of association with HIV-
1 acquisition (p = 0.81), and all other tested polymorphisms
in a 50 kb window around both FCGR2A and FCGR3A were
also non-significant after correction for multiple testing. The
FCGR3A SNP (rs396991) was not included on the genotyping
chip and could not be reliably imputed and so was not tested
directly. This analysis in the largest acquisition cohort published
to date adds substantial evidence to the lack of involvement
of common FCGR2A and FCGR3A polymorphisms in HIV-
1 acquisition.

Role of FCGR Polymorphisms on Outcomes After

ART Initiation
Variation in genotype and expression of host genes is
well established to impact HIV-1 susceptibility and disease
progression in ART- naïve individuals (47). Initiation of ART in
acute HIV-1 infection can limit establishment of viral reservoirs
and induces post-treatment control in some individuals (51, 52).

FIGURE 2 | No association between FCGR2A or FCGR3A polymorphisms on HIV-1 set point viral load. Regional association plot highlighting the association between

the FCGR2A (rs1801274) and FCGR3A (rs396991) polymorphisms and HIV-1 spVL across 395 exome sequenced patients (48). Color intensities represent the linkage

disequilibrium (r2) of other SNPs in the region with rs1801287 and rs396991, respectively. The blue line indicates the estimated recombination rate in cM/Mb from The

International HapMap Consortium (2007).
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FIGURE 3 | Polymorphism in FCGR2A (CD32a) does not associate with reservoir size. The rs1801274 SNP variant did not associate with levels of total or integrated

HIV DNA, determined in N = 93 and N = 78 of the patients, respectively (55, 56).

Host variation that influences viral reservoir size or reactivation
during ART has not been definitively studied and has potential
to significantly advance HIV cure research. There is at least
one report indicating that broadly neutralizing antibodies
(bNAbs) can interfere with establishment of a silent reservoir
by Fc-FcR mediated mechanisms in humanized mice when
administered early in the infection (53). Recently, Descours
et al. identified CD32a (FCGR2A) as a marker of latently
infected CD4T cells (54). Given the previous associations of
FCGR2A with HIV-1 disease pathogenesis, we hypothesized
that polymorphisms in this gene might affect the size of the
viral reservoir in patients that went on ART early in acute
infection (55, 56).We examined genetic variation in the FCGR2A
gene, characterizing polymorphisms in 436 ART-suppressed
patients from the RV254 cohort. We screened for 18 variants
in the extracellular domains of FCGR2A including rs1801274
and did not find associations with total or integrated HIV
DNA (p > 0.05) (Figure 3). Surprisingly, recent reports from
several independent groups confirm that they were unable to
replicate the original findings from the Descours et al. study,
showing that associations with post-ART control continue to be
elusive (57–60).

Effect of FCGR Variation on HIV-1 Vaccine
Efficacy
Variation in host genes can impact vaccine outcomes, and
other than HLA, the only other gene to impact HIV-1 vaccine
efficacy was in the FCGR locus (61–63). Two studies of
HIV-1 vaccine efficacy revealed a remarkable coincidence of
FCGR polymorphism associated with opposing directions for
efficacy, suggesting that the effect of FCGR genetic variation
may be specific to vaccine regimens. The FCGR2C association
study of Li et al. (62), used a direct sequencing approach to
identify FCGR2C SNPs that associated with vaccine efficacy (VE)
against HIV-1 in the RV144 vaccine trial, that showed modest
efficacy (64). Individuals with at least one minor allele of three
FCGR2C SNPs (rs114945036, rs138747765, and rs78603008) had
a vaccine efficacy of 64% against any HIV-1 subtype and 91%

against the CRF01-AE subtype with the protective 169K HIV-
1 variant identified previously by sieve analysis (65). Although
the functional mechanisms underlying the association were
not revealed in this study, a subsequent examination of the
FCGR2C SNPs showed rs114945036 correlated with expression
levels of FCGR2A/C (66). This effect was found across different
populations and was specific to the rs114945036 SNP located
in the intron. Further, rs114945036 also associated with the
expression of the Fc receptor-like A (FCRLA) gene, an FCGR
related gene located within a gene cluster adjacent to FCGR (see
Figure 1A). These results suggest that the FCGR expression is
either influenced by this SNP through an undefined mechanism,
or is in linkage with other causal variants that directly affect
expression levels.

In the second study, four FCGR2C SNPs significantly
modified the hazard ratio in the HVTN505 trial that did not
show protection against HIV-1 acquisition (62). Three of the
SNPs were commonwith those previously identified in RV144. In
contrast to the RV144 study, in HVTN505 among the recipients
carrying the FCGR2C minor alleles, HIV-1 acquisition risk
was higher in the vaccine group than in the placebo group,
in precisely the opposite direction of that observed in RV144
(efficacy against HIV-1 acquisition hazard ratios (HR) of 9.79
(p = 0.035) and 0.36 (p = 0.04), respectively). It is not clear
how polymorphisms in a pseudogene functions during HIV-1
vaccination and their associations with FCGR expression may
provide a novel avenue for further investigation.

Two additional studies of outcomes in Vax004, a trial testing
recombinant gp120 vaccination in preventing sexually acquired
HIV infection, also implicated FCGR variation in HIV infection
and vaccine efficacy. Both studies tested the classical FCGR2A or
FCGR3A variants comprised of the FCGR2A-R/H (rs1801274)
and FCGR3A-F/V (rs396991) alleles. The first study found that
lower affinity receptors (FCG2A-RR or HR and FCGR3A-FF)
were associated with higher serum ADCVI activity, which itself
predicted the rate of infection (67). A second study by the same
group, showed the FCGR3A-VV genotype distinguished the
lowest behavioral risk group from the high-risk behavioral group
(68). The low risk group had a higher infection rate than low risk
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vaccinees with one or two F alleles (HR = 3.52; p = 0.002) while
the high-risk group showed no association. Functional studies
may be directed by these findings to interrogate quantitative and
qualitative effects on FCGRs and associated antibody production.
At a minimum, the intersection of these studies suggests that the
impact of FCGR genetic variations on vaccine efficacy should be
further investigated.

FCGR AND IGHG—FUTURE DIRECTIONS
FOR GENETIC ANALYSIS

It is apparent that the genomic complexity of the FCGR region
presents a major challenge for uncovering the underlying causal
FCGR variants. Different FCGR have distinct functions and
mechanisms of regulation but share highly similar sequences.
While FCGR genetic variations are clearly linked to host
defense against infectious diseases and other important immune
functions as discussed, current approaches measure only a
small portion of the existing FCGR variation. The HVTN505
and RV144 studies referenced above were by far the most
comprehensive in that regard, measuring ∼10 kb of the FCGR
region, including functional exons encoding external protein
domains and flanking intron sequences from the five FCGR
genes. However, the complete FCGR region extends over
200 kb leaving open the likelihood of additional causal variation
(Figure 1A). Indeed, the lack of phasing of the over 20,000
SNPs documented in the FCGR region significantly limits
its direct utility for association analysis and the ultimate
goal of identifying causal variants (69). Complete haplotype-
resolved FCGR genomic sequences across human populations by
approaches such as those used for defining variability in the KIR
region may be necessary in order to provide a complete analysis
of these loci (70–72).

When considering FCGR host genetics and its relationship
to HIV-1 susceptibility and vaccine efficacy—or any association
with disease—a natural but not often considered extension
to host genetic association studies interrogating FCGR
variability lies within the human immunoglobulin constant
heavy G chain (IGHG) gene region on chromosomal segment
14q32.3 (73). This region encoding the human IG heavy
constant genes (IGHG3, IGHG1, IGHG2, IGHA2, and the
IGH locus on chromosome 14) provides access to a system
for understanding immunogenicity of the polymorphic IG
chains (74, 75). The evident functional relationship between
FCGR and IgG constant region variability, which itself is
substantial (74), argues strongly for host genetic studies of
FCGR to be paired with analysis of IGHG. Although little
genomic characterization for the IGHG system is available at
present, we anticipate that NGS technologies will rapidly fill
that void. Of course, once provided with high quality and high
resolution data, significant effort will need to be invested in new
sophisticated analytical approaches examining multiple factors
simultaneously to find the causal variation revealing operative
biological mechanisms.

CONCLUDING REMARKS

Disease pathogenesis of HIV-1 has been shown to be modulated
by allelic variants in the FCGR genes. However, such findings
have not always been robust, as they were not replicated
or in some cases were contradictory. There is however
considerable interest in the role of Fc-mediated antiviral
functions such as ADCC, ADCP, ADCD, and ADCVI in
protective immunity against HIV-1 (76). Host genetics of the
Fc receptors that bind to the Fc domain of the IgG antibody
might modulate the functional antiviral antibody responses
to HIV-1 vaccination. ADCC was previously identified as a
correlate of protection in the RV144 human efficacy trial
(64). More recently, ADCP has been shown to correlate with
protection against acquisition of SIV/SHIV/HIV-1 in multiple
preclinical and human efficacy trials (77–80). Given such
associations, it would be critical to investigate association of
host variation in FCGR genes and such Fc-mediated antiviral
functions that are now being generated using technologies
such as systems serology (1). Such findings might shed light
on the role of Fc gene and receptor genotypes on HIV-1
disease pathogenesis.
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