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Type 1 diabetes (T1D) is characterized by autoimmune destruction of insulin producing

β-cells. The time from onset of islet autoimmunity to manifest clinical disease can vary

widely in length, and it is fairly uncharacterized both clinically and immunologically. In the

current study, peripheral blood mononuclear cells from autoantibody-positive children

with high risk for T1D, and from age-matched healthy individuals, were analyzed by

mass cytometry using a panel of 32 antibodies. Surface markers were chosen to identify

multiple cell types including T, B, NK, monocytes, and DC, and antibodies specific for

identification of differentiation, activation and functional markers were also included in

the panel. By applying dimensional reduction and computational unsupervised clustering

approaches, we delineated in an unbiased fashion 132 phenotypically distinct subsets

within the major immune cell populations. We were able to identify an effector memory

Treg subset expressing HLA-DR, CCR4, CCR6, CXCR3, and GATA3 that was increased

in the high-risk group. In addition, two subsets of NK cells defined by CD16+ CD8+

CXCR3+ and CD16+ CD8+ CXCR3+ CD11c+ were also higher in the same subjects.

High-risk individuals did not show impaired glucose tolerance at the time of sampling,

suggesting that the changes observed were not the result of metabolic imbalance, and

might be potential biomarkers predictive of T1D.

Keywords: type 1 diabetes (T1D), high-risk for T1D, autoantibody-positive children, mass cytometry (CyTOF),

regulatory T cells, NK cells

INTRODUCTION

Type 1 diabetes (T1D) is characterized by autoimmune destruction of insulin producing β-cells.
The time from onset of islet autoimmunity to manifest clinical disease can vary widely in length
(1) but the pre-diabetic period is fairly uncharacterized both clinically and immunologically. Since
several genes are involved in disease susceptibility, one common approach to identify individuals
at risk for T1D is to assess the genetic risk (2). However, HLA-typing is a poor prognostic tool
considering that 10–30% of the general Caucasian population, depending on criteria, carry HLA
alleles that confer susceptibility for T1D (3). More accurate disease prediction can be achieved by
assessment of autoantibodies directed toward β-cell antigens like the 65 kD isoform of glutamic
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acid decarboxylase (GAD65) (4), protein tyrosine phosphatase-
like islet antigen (IA)-2, insulin (IA) (5) and zinc transporter
(ZnT)-8 (6). Presence of autoantibodies in serum indicates
ongoing islet autoimmunity, and the risk for development of
overt diabetes is especially high when multiple autoantibodies
are present (7, 8). Increasing knowledge on the period preceding
disease onset indicates a heterogeneous disease process, best
characterized by the combination of disease-related risk genes,
autoantibody profile and glucose homeostasis. However, much of
what is known about the pre-diabetic period comes from studies
with first- or second-degree relatives of T1D patients.

T1D is often viewed as a T cell-driven autoimmune disease,
particularly for the more prevalent and aggressive type of
T1D that develops in children and adolescents vs. adults (9–
13). Immune system deviations such as islet antigen specific
autoreactive CD8+ and CD4+ T cells have been detected in
peripheral blood of T1D patients, in some at-risk individuals
and occasionally in healthy individuals (14). Although T cells are
largely considered to be responsible for β-cell destruction in T1D,
increasing evidence points toward a role for B cells in the disease
pathogenesis (15).

The recent introduction of mass cytometry has transformed
the understanding of the complexity and function of the immune
system (16, 17).Mass cytometry overcomes themain limitation of
conventional fluorescence-based flow cytometry, expanding the
number of immune features that can be simultaneouslymeasured
at the single-cell level. The high-dimensional datasets generated
by mass cytometry are not well-suited for manual gating
strategies. Thus, novel computational data analysis approaches
have been developed (18–21), changing the way originated data
are handled (22). In the current study, we took advantage of
the increased parameterization offered by mass cytometry to
simultaneously interrogate immune subsets across all major
lineages in human PBMC from children with high risk for
T1D, positive for multiple autoantibody, and from age-matched
healthy individuals.

MATERIALS AND METHODS

Subject Characteristics
Children with high risk for T1D were identified, regardless
of genetic background, through autoantibody screening in the
general population in the All Babies in Southeast Sweden (ABIS)
birth-cohort study. The ABIS study consisted of 17,055 children
from the general Swedish population (23) and provided the
opportunity to identify and prospectively follow children with
increased risk of T1D. Children positive for multiple diabetes-
related autoantibodies on at least two screening occasions (at
age 1, 2.5–3, 5–6, 8, and 11–12) were considered at high risk
for T1D development. The high-risk individuals participated in
a 2 year prospective follow-up study involving blood sampling
every 6 months for measurement of fasting blood glucose,
autoantibodies, C-peptide, HbA1c, and for HLA-genotyping, and
an oral glucose tolerance test (OGTT) once every year (24).The
risk individuals included in the present study (n = 9, Table 1)
all developed T1D during or after the follow-up period, and the
samples for the study were drawn on the last visit before clinical

disease onset (average 13 months pre-onset, range 5–26 months).
The healthy age-matched controls (n = 9, Table 1) were also
selected among ABIS participants. They were all negative for islet
autoantibodies, had no diabetes type 1 or 2, or any autoimmune
disorder, no asthma, eczema or allergies, and no first-degree
relatives with diabetes or autoimmune disorders.

Sample Preparation
Peripheral blood mononuclear cells (PBMC) were separated by
density gradient centrifugation in Leucosep tubes (Greiner Bio
One) according tomanufacturer’s instructions and cryopreserved
in medium containing 10% DMSO/FCS.

Cell Staining
The antibody panel, stimulation conditions and intracellular
staining used for mass cytometry in this study were optimized
and validated by flow cytometry using BD FACSAria III.
Details of antibodies used are listed in Supplementary Table 1.
When indicated, purified carrier-free antibodies were purchased
from the companies listed and conjugated with metal isotopes
using Maxpar antibody labeling kit (Fluidigm) according to the
manufacturer’s instructions.

Cryopreserved PBMC were thawed and washed with pre-
warmed RPMI 1640 medium supplemented with 10% FCS,
and rested overnight at 37◦C. Then, cells were washed, and
samples were split into two tubes and then stained at 37◦C
with anti-CD4-144Nd. The addition of this antibody prior to
stimulation improves the staining of anti-CD4 upon stimulation,
as shown previously (25). Cells were left untreated or stimulated
for 4 h with 100 ng/ml phorbol-12-myristate-13-acetate (PMA)
and 1µg/ml ionomycin in the presence of 3µg/ml Brefeldin A
(eBioscience) and 2µMmonensin (eBioscience).

After incubation, cells were washed twice in PBS, and
then stained for dead cell discrimination with 2.5µM cisplatin
(Fluidigm) for 5min at room temperature and quenched with
RPMI+10% FCS. Cells were then washed in cell staining buffer
(CSM, Fluidigm), and stained for surface markers with a cocktail
of metal-conjugated antibodies (Supplementary Table 1) for
30min at 4◦C. Cells were washed twice in CSM and resuspended
in FOXP3 fixation/permeabilization buffer (eBioscience). After
40min, samples were washed twice with permeabilization buffer
(eBioscience) and stained with the intracellular antibody cocktail
(Supplementary Table 1). After 45min, cells were washed twice
with permeabilization buffer, once with CSM, and then fixed in
PBS with 2% paraformaldehyde (PFA) overnight at 4◦C.

Sample Barcoding and Data Acquisition
To reduce data collection variability, samples were processed
in batches of 5, including similar number of samples from
each group, and barcoded with combinations of three unique
palladium isotopes (26). Barcoding was performed after
antibody staining, as PFA-based fixation used during barcoding
resulted in drastic reduction in transcription factor staining
when used before the FOXP3 fixation/permeabilization buffer
(Supplementary Figure 1).

Cells were barcoded using Cell-ID 20-plex Pd-barcoding kit
(Fluidigm) according to the manufacturer’s instructions. Briefly,
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cells were washed twice with Maxpar barcode perm buffer
(Fluidigm), and a different barcode set was added to each sample
for 30min at room temperature. After washing the samples twice
with CSM, all samples were combined into one tube. Finally,
cells were stained with 125 nM Ir191/193 DNA intercalator (Cell-
ID Intercalator-Ir, Fluidigm) for 20min, washed in Di water,
filtered through a 35µm nylon mesh and resuspended to 0.5
× 106 cells/ml with 0.1% EQ four element calibration beads
(Fludigm). Data acquisition was done with a CyTOF 2 mass
cytometer (Fluidigm) at an event rate of 300–500 cells/s. After
data acquisition,.fcs files were concatenated, normalized using
mass bead signal (27) and debarcoded using the CyTOF 2
software prior to analysis.

Regulatory T Cell Sorting and Expansion
PBMC were stained with Pacific Blue conjugated anti-CD4,
FITC-conjugated anti-CD127, and APC-conjugated anti-
CD25, and regulatory T cells (Tregs) were sorted based on
the expression of CD4+CD25hiCD127lo. After sorting (BD
FACSAria III) cells were pelleted by centrifugation at 400 g
for 10min, resuspended in AIM-V 10% human serum (HS)
and allowed to rest for 2 h at 37◦C, 5% CO2 before expansion.
Aliquots of sorted cells were re-acquired to assess purity,
showing an average of contamination of 0.1%. Sorted Treg were
distributed at 4 × 104 cells per well into round-bottom 96-well
plates containing 125 µl AIM-V 10% HS, and then stimulated
with anti-CD3/CD28 Dynabeads (Life Technologies) at a 1:1
bead-to-cell ratio. Culture volume was doubled the following
day and 300 U/ml of recombinant human IL-2 (R&D Systems)
was added. Cells were washed and supplemented with fresh
IL-2 every 2 days and re-stimulated as above on the ninth day
of culture.

Suppression Assays
Suppression assays were performed by flow cytometry
as described previously (28). Briefly, carboxyfluorescein
succinimidyl ester (CFSE)-labeled Teff were cultured in the
presence of either Tregs or control cells stained with CellTrace
Violet at different ratios. Cultures were stimulated with anti-
CD3/CD28 coated beads at a ratio of 1:20 (bead:cell). Teff
proliferation was calculated as Division Index after 72 h of
culture. For accurate cell counting in each cell division, equal
amounts of reference beads were added immediately prior
to acquisition.

Data Analysis and Statistics
Manual gating of.fcs files was performed using Cytobank (29).
Calibration beads and cell aggregates were first excluded by
gating on 140Ce events and using 193Ir/191Ir DNA signal
vs. event length, as previously described (30). For the t-
Distributed Stochastic Neighbor Embedding (t-SNE) analysis
shown in Figure 1, live (195Pt−) CD45+ cells from each sample
were gated, exported and analyzed with version 1.10.4 of the
“cytofkit” R package (31), using cytofAsinh transformation
and t-SNE visualization. Only lineage markers (CD markers)
were used for this analysis. The 2-dimensional t-SNE maps
and the marker expression heatmaps were visualized using

R package “Shiny,” and plots were colored according to the
expression of lineage markers. For subset identification, exported
events from each population were imported into cytofkit
and analyzed with Phenograph with the following settings:
merge: ceil, transformation: cytofAsinh, cluster: RPhenograph,
visualization: t-SNE. Resulting cluster.fcs files were imported into
Cytobank for further examination and detection of spurious
clusters. All the markers (CDmarkers, chemokines, transcription
factors and cytokines) were used for the generation of t-
SNE maps for each population. Median arcsinh expression
heatmaps were created in Cytobank. For cytokine expression,
differential expression between un-stimulated and stimulated
samples was calculated. All subsets generated with Phenograph
were analyzed for statistical significance between groups in
GraphPad Prism v7 using a Mann-Whitney U-Test. p < 0.05 was
considered significant.

Citrus algorithm analysis was performed using version 0.08
in R. Live (195Pt−) CD45+ cells were imported and down-
sampled to 10,000 events per file. TheNearest Shrunken Centroid
association model was applied with 0.5% minimum cluster size
and 5 cross-validation fold. Model error rate was used to evaluate
model fit.

RESULTS

We developed a panel of 33 metal-labeled monoclonal antibodies
for the high-dimensional analysis of multiple cell types
within PBMC. Surface markers were chosen to identify T
and B lymphocytes, natural killers (NK), monocytes and
dendritic cells (DC), and antibodies specific for differentiation,
activation and function were also included in the panel
(Supplementary Table 1). Samples from individuals with high
risk for T1D (n = 9) and healthy controls (n = 9) were included
in this study.

First, to visualize the cellular heterogeneity of PBMC, t-SNE
analysis (32) was applied to similar number of live single CD45+

cells from all the individuals. This approach generates a two-
dimensional map where similar cells are placed at adjacent
points, while cells with different characteristics are separated in
space (Figure 1A). Eight major immune lineages corresponding
to CD4T cells, CD8T cells, double negative (CD4−CD8−) T
cells, B cells, NK cells, monocytes, myeloid dendritic cells (mDC)
and plasmacytoid dendritic cells (pDC) were defined based on
lineage marker expression (Figure 1B). The distribution of these
major populations was similar in the samples from the high-
risk individuals and the healthy control group (Figure 1C). Cell
frequencies obtained through t-SNE analysis were confirmed by
manual gating (Supplementary Figure 2).

High Dimensional Analysis Reveals
Heterogenicity Within the PBMC Cells
Based on the expression of all analysis parameters, we assessed
next the complexity of each major population individually.
Automatic subset identification was done with t-SNE and the
Phenograph clustering algorithm. Cluster analysis identified
a total of 154 phenotypically distinct subsets (Figure 2A).
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FIGURE 1 | t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis of CD45+ cells. (A) Two-dimensional map where cells (dots) are plotted according to their

expression of all markers. (B) Immune cell populations are annotated based on the intensity of expression of lineage antigens. CD4+ (CD3+CD4+),

CD8+ (CD3+CD8+), CD4−CD8− (CD3+CD4−CD8−) T cells, B cells (CD19+), monocytes (CD14+), NK cells (lineage−, CD56+), mDC (lineage−CD11c+CD123−),

pDC (lineage−, CD11c−CD123+). The arrow indicates the position of the mDC. (C) Percentage of CD4+ T, CD8+ T, CD4−CD8− T, B and NK cells, monocytes, and

myeloid and plasmacytoid dendritic cells within peripheral mononuclear cells (PBMC) in individuals with high-risk for type 1 diabetes (n = 9, white circles) and controls

(n = 9, black triangles). Dots represent individual samples. Differences between groups were tested using Mann-Whitney U-test. No significant differences were found.

Among them, 22 were excluded as they expressed markers
that were not specific for any lineage population, and/or
contained low number of cells. The exclusion was decided
after manual analysis of the data (.fcs files) extracted from
each cluster.

The phenotypic characteristics of the clusters,
ordered according to their lineage and the median
expression of every marker, are displayed in a heatmap
(Figure 2B).

Using the Phenograph algorithm, we were able to identify a
relatively large number of clusters within the T cell populations,
likely explained by a greater number of markers that are
differentially expressed on T cells in our panel. For instance,
the expression of activation markers, chemokine receptors,
transcription factors and cytokines revealed a high degree

of heterogeneity within CD4T cells, and 20 distinct subsets
across naïve (CD45RA+CD45RO−CCR7+, 11 clusters),
central memory (CD45RA−CD45RO+CCR7+, 4 clusters),
and effector memory (CD45RA−CD45RO+CCR7−, 5
clusters) subpopulations were identified (Figure 2B and
Supplementary Table 2). Among the memory clusters,
we identified classical subsets like CXCR3+CCR4−Tbet+

(Th1 cells) and CXCR3−CCR4+GATA3+ (Th2 cells). The
clustering algorithm also revealed unexpected distribution
of the Th2 and Th17-associated chemokine receptors,
CCR4 and CCR6, that were co-expressed in several
subsets. We also detected a Th2-like Treg population
co-expressing FOXP3 and GATA3. In addition, a Th17
cluster expressing predominantly IL-17 also expressed
lower levels of IL-2 and IFNγ upon PMA stimulation.
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FIGURE 2 | Subset identification within the major immune populations in peripheral mononuclear cells from high-risk (n = 9) and control individuals (n = 9).

(A) Phenotypically distinct subsets were identified with t-SNE combined with Phenograph analysis of each lineage population (colored areas) (B) Heatmap showing

median expression of the markers expressed by the cell subsets identified in (A). Subsets of CD4+ (11,18,19,22,25), CD8+ (15, 20, and 22), CD4-CD8- (11,16), B

(9,10,13,15,16) NK (6,9,13,15,20), mDC (2,7,8) and pDC (5) were excluded from the heatmap. Cytokine (IL-2, IFNγ, IL-17A, IL-10, and IL-4) expression is shown as

subtraction of the expression on un-stimulated PBMC from samples stimulated with PMA+ ionomycin. Values were transformed using arcsinh function in a cofactor of

5.
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The analysis of CD8+ T cells identified 22 phenotypically
distinct clusters (Figure 2B and Supplementary Table 3).
Among them, 9 clusters were CD8+ naïve T cells
(CD45RA+CD45RO−CCR7+) that were distinguished
by different expression of CD127, CXCR3, HLA-DR and
CD69. Most of the cells with central memory phenotype
(CD45RA-CCR7+) were spread within effector CD8+
T cells (CD45RA-CCR7- and CD45RA+CCR7-) that
expressed Tbet and were differentiated by the expression
of various activation and/or trafficking markers and the
production of IFNγ. However, we identified a defined
subset of central memory CD8+ T cells characterized
by the expression of CCR4, CD25, and GATA3. It was
interesting that despite their Tc2 phenotype, this cluster did not
express IL-4.

Clustering of double negative CD4−CD8− cells within
the CD3+ population identified 22 cell subsets (Figure 2B
and Supplementary Table 4), that were predominantly
memory/effector CCR7− cells, all of them displaying a Th1-like
phenotype (CXCR3+Tbet+). After PMA stimulation, 4 subsets
expressed IFNγ at higher levels than those observed in CD8+

T cells.
The cluster analysis of B cells, NK cells, monocytes, mDC

and pDC showed a smaller number of phenotypically distinct
clusters (Figure 2B and Supplementary Tables 5–9). However,
very interesting populations like the intriguing Tbet+CD11c+

B cell and the CD8+CD11c+ NK cell subsets were observed.
One interesting finding within NK cells was that GATA3
expression was lost only in the 3 subsets producing IFNγ

upon stimulation.

Treg and NK Cell Subsets Increased in
High-Risk Individuals
To search for differences between individuals with high risk
for T1D and healthy controls, we compared the profile of all
the t-SNE maps generated during clustering analysis, stratified
for the two groups. Using the combination of Phenograph and
t-SNE analysis, we found that although the maps for each
major cell population were similar in shape and number of
clusters, the groups displayed distinct cellular densities, showing
subsets that appeared to be differentially abundant. The statistical
analysis of the frequencies of all cell subsets revealed differences
only in clusters within CD4+ T and NK cells, that were
more abundant in individuals at high risk for T1D. Two of
these subsets were located in a clearly delimited area within
CD4+ cells and had a Treg phenotype, (cluster ID: t4#3 and
t4#4), defined by the expression of FOXP3 and CD25 and
the absence of CD127 (Figure 3A). The subset t4#4 displayed
an effector memory phenotype (CD45RA−CCR7−CD45RO+)
and expressed the transcription factor GATA3 together with
HLA-DR, CCR4 and CCR6. The other subset, t4#3, had a
naïve phenotype (CD45RA+CCR7+CD45RO−), and cells in
this cluster did not express GATA3, CCR4, CCR6, or HLA-
DR (Figure 3B). Higher cell density of the subset t4#4 in
high-risk individuals was clearly observed in the density maps
generated by t-SNE (Figure 3C). Moreover, this subset was

significantly more abundant in the high-risk group (p = 0.0025,
Figure 3D).

Our analysis also identified two subsets within the NK cell
compartment (cluster ID: nk#4 and nk#2), that were clustered
in an area defined by the expression of CD8 and low expression
of CD16 and CXCR3 (Figure 4A). These two clusters were
distinguished from each other by the expression of CD11c,
present in the nk#4 subset but absent in nk#2 (Figure 4B). These
populations were both more abundant in high-risk individuals
than in the control group (nk#4: p = 0.005; nk#2: p = 0.05,
Figures 4C,D).

Cell density t-SNE maps of both CD4+ T and NK cells
presented additional areas of different densities between high-
risk and control groups. Subsets included in these areas showed
high inter-individual variation and were not statistical different
between the groups (Supplementary Figure 3).

Treg and NK Subsets Were Also Identified
by Citrus Algorithm and Manual Gating
To assess the validity of the findings detected with t-SNE
analysis combined with Phenograph, we applied next the
Citrus algorithm (33). This analysis merges cells across all
samples, performs hierarchical clustering, and then selects the
features best distinguishing different experimental groups. We
applied the nearest shrunken centroid predictive model on
CD45+ live cells, and identified two clusters, with identical
phenotypic characteristics as those detected by Phenograph.
One of them was the memory-like Treg subset expressing
GATA3, CCR4, HLA-DR, and CCR6 (cluster t4#4, Figure 3E)
and the other was the NK cell subset expressing CD8,
CD16, CXCR3, and CD11c (cluster nk#2/nk#4, Figure 4E),
both more abundant in the high-risk group than in the
control individuals.

We further confirmed the presence of Treg and
NK cell subsets increased in high-risk individuals by
manual analysis of the data based on the expression
of the markers identified by Phenograph and citrus
(Supplementary Figure 4).

Cytokine Secretion by Treg and NK
Subsets
We next analyzed the intracellular cytokine profile of the
Treg and NK cell subsets that differed between high-risk and
healthy children. Stimulation with PMA and ionomycin did
not affect the identification of the Treg subsets (t#3 and t#4).
CD4+ T cells producing IFNγ, IL-2, IL-4, and IL-17 were
clustered outside the Treg area (Supplementary Figure 5A and
Supplementary Table 2). Although IL-10 secreting cells did
not form a cluster within stimulated T cells, manual gating
revealed small number of scattered IL-10+ Tregs, equally
disseminated within the two Treg subsets. The frequency of this
IL-10+ Tregs was not significantly different between the groups
(Supplementary Figure 5B).

Cytokine secretion in NK cells was limited to IFNγ.
Producing cells clustered in 2 subsets of CD8– cells and
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FIGURE 3 | Regulatory T cell phenotyping. (A) Clustering analysis on CD4+ T cells, high expression of FOXP3 and CD25, and absence of CD127 delineated a Treg

area with two Treg subsets, t4#3 and t4#4, highlighted as orange and blue, respectively on the t-SNE map. (B) Median expression of relevant phenotype markers that

identified Treg subsets t4#3 and t4#4. (C) t-SNE plots illustrating cellular density in individuals with high risk for type 1 diabetes and controls. (D) Percentage of t4#3

and t4#4 subset within total CD4T cells in high-risk individuals (white circles) and controls (black triangles). (E) Citrus-generated histograms showing distribution of

phenotype markers expressed by cluster t4#4 (red) in relation to the background expression (blue). Background was determined by all the cells that do not belong to

clusters significantly different between the groups, i.e., whole PBMC. Dots represent individual samples. Error bars show median ± interquartile range. Median

expression values were transformed using arcsinh function in a cofactor of 5. p-values for differences between groups were determined using Mann-Whitney U-test. p
< 0.05 was considered significant.

a smaller subset of CD8+ cells that were similar in high-
risk and control individuals (Supplementary Figure 5C and
Supplementary Table 6). The expression of CD16, CXCR3 and
GATA3 was down-regulated in stimulated NK cells, and thus
we were not able to identify the NK cell subsets nk#2 and

nk#4 by Phenograph as independent clusters. Manual analysis
confirmed that IFNγ production was mainly located in CD8-
CD11c+ and CD8-CD11c– NK cells. The proportion of IFNγ+

cells sharing phenotypic features with the subsets nk#2 and
nk#4 (CD8+CD11c– and CD8+CD11c+cells, respectively) was
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FIGURE 4 | NK cell phenotyping. (A) Clustering analysis on NK cells expressing CD8, CD16, CD11c, and CXCR3 characterized two NK subsets, nk#2 (yellow) and

nk#4 (green), highlighted on the t-SNE map (B) Median expression of relevant markers used for the identification of NK subsets nk#2 and t4#4. (C) t-SNE plots

illustrating cellular density in individuals with high risk for type 1 diabetes and controls. (D) Percentage of nk#4 and nk#2 subsets within total NK cells in high-risk

individuals (n = 9, white circles) and controls (n = 9, black triangles). (E) Citrus-generated histograms showing marker distribution in cluster nk#2/nk#4 (red) in relation

to background expression (blue). Background was determined by all the cells that don not belong to the clusters significantly different between the groups, i.e., whole

PBMC. Dots represent individual samples. Error bars show median ± interquartile range. Median expression values were transformed using arcsinh function in a

cofactor of 5. p-values for differences between groups were determined using Mann-Whitney U-test. p < 0.05 was considered significant.

not significantly different between the high-risk and control
groups (Supplementary Figure 5D).

Treg Expansion and Suppressive Capacity
We next set out to determine whether Treg from high-risk and
healthy individuals were able to suppress Teff to a similar extent.
Sorted CD4+ CD25hiCD127lo Tregs were expanded in presence
of anti-CD3/CD28 antibodies and high-dose IL-2 for 2 weeks.We
observed that fold-increase of the Tregs from both groups was
similar (Figure 5A).

To assess the suppressive capacity of expanded Tregs, we
analyzed the proliferation of autologous CFSE-labeled Teff in the
presence of Tregs at different Treg/Teff ratios. Results from the
suppression experiments showed that the suppressive activity of
Tregs from both groups was similar (Figure 5B).

DISCUSSION

In this study, we performed high-dimensional single-cell
profiling of human PBMC from children at high risk for T1D
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FIGURE 5 | Treg expansion and function. (A) Fold expansion of Treg from

high-risk individuals (n = 9, white circles) and controls (n = 9, black triangles)

after 2 weeks expansion. Dots represent individual samples. Error bars show

median ± interquartile range (B) Suppression exerted by Tregs on autologous

Teff from high-risk individuals (white circles) and controls (black triangles) at

different Treg/Teff ratios. Data are presented as median ± interquartile range.

p-values for differences between groups were determined using

Mann-Whitney U-test. No significant differences were found.

and age-matched healthy individuals. We took advantage of
the increased parameterization offered by mass cytometry to
perform a comprehensive profile of the samples. By applying
dimensional reduction and computational unsupervised
clustering approaches we delineated 132 phenotypically distinct
subsets within the major immune cell populations in an unbiased
fashion. We were able to identify an effector memory Treg subset
expressing HLA-DR, CCR4, CCR6, CXCR3, and GATA3 that
was increased in the high-risk group. In addition, two subsets of
NK cells defined by CD16+ CD8+ CXCR3+ and CD16+ CD8+

CXCR3+ CD11c+ were also higher in the same samples.
The role of Tregs in T1D has been studied extensively

over the last years, and there has been a consensus that the
frequency of Tregs in T1D is not altered but rather their
function seems to be impaired (34–37). Studies including
individuals at risk to develop T1D identified by the detection of
multiple autoantibodies are limited. It has recently been shown
that the proportion of peripheral blood Treg in autoantibody
positive high-risk individuals was not altered (38), but Treg
phenotyping in the study was limited to the expression of
CD4, CD25, and FOXP3. We interrogated the human PBMC
compartment with an extensive antibody panel, including
differential expression of transcription factors, chemokine
receptors and activation markers. Using mass cytometry, we
were able to combine several markers that otherwise are
not commonly analyzed together. In line with a previous
study performing deep phenotyping of PBMC with the same
methodology (39), we identified two well-defined clusters within
the CD25hiFOXP3+CD127− area of CD4+ T cells, displaying
memory and naïve phenotype, respectively. We observed that
the majority of Tregs corresponded to the cluster with naïve
phenotype, and they were similarly abundant in high-risk and
control individuals. Interestingly, the Treg subset increased in
the high-risk group consisted of effector memory cells, and they
were predominantly CCR4+ CCR6+ GATA3+. A similar subset

of Th2-like Tregs has also been previously identified by mass
cytometry (40). A fundamental role of GATA3 controlling Treg
physiology has been shown in mice, where GATA3 was required
for the maintenance of high levels of FOXP3 expression, and
GATA3 promoted Tregs accumulation at inflamed sites (41).
Thus, higher levels of effector memory Tregs expressing GATA3
in high-risk individuals might be explained by cell activation
as result of the ongoing autoimmunity preceding disease onset.
Sorted Tregs from the high-risk group had a similar expansion
degree and suppressive capacity to the healthy group, confirming
results from a previous study in children at high risk for T1D
(38). As Tregs were sorted based only on the expression of
CD25 and CD127, our findings raise the question whether subtle
changes in specific Treg subpopulations, and not the whole Treg
compartment are triggered as part of the regulatory process.

We were not able to detect Th1-like Tregs, in agreement
with previous results from a study also defining Tregs by mass
cytometry with a broad panel of antibodies (40). While we
observed that some cells among CCR4+ GATA3+ Tregs were
also CXCR3+, they were scarce and did not form a defined
cluster. As we analyzed Tregs by the simultaneous expression
of intracellular and extracellular markers at single cell level,
methodological differences when defining Tregs may explain
differences between our and previous findings. A study in
humans defined populations of Th1, Th2, and Th17-like Tregs
using mass cytometry, but key transcription factors like FOXP3,
GATA3 and Tbet were not included (42). Another study used a
combination of different approaches for Th1, Th2, and Th17 Treg
definition, but Tregs were previously sorted and simultaneous
expression of all the markers was not analyzed (43).

The potential role of NK cells in T1D has been investigated
both in mice and humans (44–47), but the mechanisms of
action and phenotypic characteristics in relation to the disease
are still poorly understood. NKs have been long considered a
homogenous population of innate lymphocytes, but multiple
lineages of NK cells with unique phenotypic characteristics have
been described (48). Lower frequency of NK cells has been
detected at the onset of T1D using a limited phenotypic definition
with CD16+CD56+ (41). Although phenotyping of NK cells in
our study included lower number of markers than those used for
the definition of T cells, a large number of clusters within NK cells
was identified, highlighting the advantage of simultaneous multi-
parametric analysis. Indeed, we found two NK subsets that were
increased in high-risk individuals. They both expressed CXCR3,
a chemokine receptor that is commonly expressed on cells during
migration to inflamed areas (49, 50). Infiltration of NK cells to the
islets has been reported inNODmice (44), and islet inflammation
mediated mainly by NK cells has also been reported in human
T1D (47). It was interesting that one of the NK subsets that
were increased in the high-risk group expressed CD11c, a marker
mostly expressed by myeloid cells. It has been suggested that
expression of CD11c on NK cells may represent an activation-
induced change that was related to disease exacerbation in
multiple sclerosis (51). Thus, it is tempting to speculate that
higher levels of NK cells expressing this marker might reflect
activation due to the ongoing autoimmune process. Interestingly,
the increment in this subset was not accompanied by increased
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proportion of IFNγ-producing CD8+CD11c+ NK cells. Further
functional studies on sorted cells from other cohorts may clarify
whether these cells represent mainly a subset with lytic activity.

One of the main challenges when processing the large
amounts of data generated with mass cytometry is the
computational analysis. Boolean gating is limited by the number
of comparisons and is not well-suited for analyzing a vast
number of immune features within subsets. Dimensionality
reduction approaches such as t-SNE are becoming the standard
analysis for mass cytometry data, as they allow simultaneous
profiling of high-dimensional datasets in an unbiased fashion.
The analysis of our large dataset was performed using two
different computational methods. First, a combination of t-
SNE visualization with the Phenograph clustering algorithm
was applied. This approach stratified the events plotted in two-
dimensional maps into clusters, providing an insight of the
complexity of the major immune populations and the phenotypic
characteristics of all subsets. Second, Citrus algorithm was
used to create a classification model able to identify stratifying
immune features that best predict differences between high-risk
individuals and healthy controls. Using this multidimensional
single-cell approach, we were able to study differentiation,
activation and functional markers in major cell types including T,
B, NK, monocytes, and DC. One interesting finding was the high
degree of heterogenicity observed within the subpopulations. For
instance, we confirmed results from previous studies showing
a large differentiation degree of naïve T cell subsets (21,
25), in contrast to the previous idea that these cells are a
homogenous population. In addition, the combination of a
broad range of markers revealed the presence of rare cell
subsets like B cells expressing Tbet and CD11c, NK cells
expressing CD8 and CD11c and FOXP3+ Tregs expressing
GATA3. Comparison between high-risk and control individuals
did not reveal further differences than those detected in
Tregs and NK cells. Although the presence of multiple β-cell
autoantibodies is a strong predictor of T1D, we observed no
alterations within the B cell compartment in agreement with
other studies (52, 53). The extensive number of markers in
our panel made it possible to simultaneously phenotype several
cell types, but deeper characterization of B cells, monocytes
and DC might require the inclusion of additional markers
able to further delineate subsets within them. The development
of the CyTOF novel platform, along with improvements in
reagent availability will offer that possibility in the near future.
Our results in this study might constitute a starting point for
designing panels that might identify novel populations, disease-
associated immune signatures, and predictors for response
to treatment.

The pre-diabetic phase preceding T1D onset is still poorly
characterized, and so far, there are no good biomarkers for
progression from autoantibody positivity to clinical diabetes.
Indeed, many of the results from studies with high-risk
individuals show rather an association of pre-diabetic features
to glycemic status. For instance, we have shown in a previous
study that serum miRNAs in autoantibody positive children
appeared to reflect glycemic status (54). A recent study
including autoantibody positive high-risk individuals described

activated circulating follicular helper T cells appearing close
to the clinical manifestation of T1D, and correlation of
these cells with the activity of the disease was observed
only in children with impaired glucose tolerance (53). High-
risk individuals in the present study did not show impaired
glucose tolerance at the time of sampling, suggesting that
the changes observed were not the result of metabolic
imbalance, and might be potential biomarkers predictive
of T1D.

In conclusion, we show that subpopulations of Treg
and NK cells were increased in individuals positive for
multiple autoantibodies before disease onset. To our knowledge,
these are the first results showing alterations of a subset
of Tregs and NK cells in individuals with high risk for
T1D. Using a multidimensional phenotyping and unbiased
clustering approach we were able to identify cell populations
expressing markers which are not often analyzed in a
conventional flow cytometry panel. This approach made it
possible to find differences that otherwise would not have been
detected. Our data provides new insight into disease-related
immune signatures.
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