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Allogeneic hematopoietic cell transplantation (allo-HCT) is performed with curative intent

for high- risk blood cancers and bone marrow failure syndromes; yet the development

of acute and chronic graft-vs.-host disease (GVHD) remain preeminent causes of death

and morbidity. The IL-12 family of cytokines is comprised of IL-12, IL-23, IL-27, IL-35,

and IL-39. This family of cytokines is biologically distinct in that they are composed of

functional heterodimers, which bind to cognate heterodimeric receptor chains expressed

on T cells. Of these, IL-12 and IL-23 share a common β cytokine subunit, p40, as well as

a receptor chain: IL-12Rβ1. IL-12 and IL-23 have been documented as proinflammatory

mediators of GVHD, responsible for T helper 1 (Th1) differentiation and T helper 17 (Th17)

stabilization, respectively. The role of IL-27 is less defined, seemingly immune suppressive

via IL-10 secretion by Type 1 regulatory (Tr1) cells yet promoting inflammation through

impairing CD4+ T regulatory (Treg) development and/or enhancing Th1 differentiation.

More recently, IL-35 was described as a potent anti-inflammatory agent produced by

regulatory B and T cells. The role of the newest member, IL-39, has been implicated

in proinflammatory B cell responses but has not been explored in the context of

allo-HCT. This review is directed at discussing the current literature relevant to each

IL-12-family cytokine and cognate receptor engagement, as well as the consequential

downstream signaling implications, during GVHD pathogenesis. Additionally, we will

provide an overview of translational strategies targeting the IL-12 family cytokines, their

receptors, and subsequent signal transduction to control GVHD.

Keywords: GVHD, signal transduction, GVT, cytokine receptor, cytokine, IL-12 cytokines, IL-12 family cytokine

receptors, HCT

ALLOGENEIC HEMATOPOIETIC STEM CELL TRANSPLANTATION

Allogeneic hematopoietic cell transplantation (allo-HCT) is performed with curative
intent for high-risk blood cancers and bone marrow failure syndromes. The efficacy of
allo-HCT lies in the ability of donor T cells to mediate a potent anti-tumor response
in transplant recipients, known as the graft-vs.-tumor (GVT) effect, coupled with the
benefit derived from pre-transplant conditioning (1, 2). The success of allo-HCT is
compromised by the development of graft-vs.-host-disease (GVHD), a complication
mediated by mature donor T cells present in the graft against normal host tissue. The
incidence of acute GVHD (aGVHD), a significant cause of mortality after allo-HCT, has
been significantly reduced over the past decade. Transplant-related mortality has declined
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with the implementation of reduced intensity conditioning
(RIC) regimens, new GVHD prophylaxis strategies, and the
development of molecular methods aiding in early detection of
viral and fungal infections in concert withmodern anti-infectious
agents (3–5). However, aGVHD still affects 20 to 70% of allo-
HCT patients (6). Current clinical regimens for GVHD patients
are primarily based on non-specific immunosuppressants for
prophylaxis and treatment, such as calcineurin inhibitors
or glucocorticosteroids, respectively (7). These broadly-acting
agents fail to induce immune tolerance, increase susceptibility
to opportunistic infections, and compromise GVT activity (8).
Research in the field is focused on reducing GVHD without
compromising the GVT effect. The current consensus on the
initiation of GVHD pathophysiology can be divided into three
primary phases:

1) Host tissue injury caused by conditioning regimens leads
to the release of proinflammatory cytokines. Tissue damage
from pre- transplant conditioning regimens results in a
prolonged (up to 12 weeks post allo-HCT) increase of various
cytokines; these include interleukin 1β (IL-1β), interleukin 6
(IL-6), interleukin 8 (IL-8), interleukin 10 (IL-10), interleukin
12 (IL-12), interleukin 21 (IL-21), interleukin 23 (IL-23),
transforming growth factor β (TGFβ), and tumor necrosis
factor α (TNFα) (9–11). These cytokines are primarily
produced by activated dendritic cells (DCs) in response to
tissue damage and microbe exposure, in concert with release
of damage associated molecular patterns (DAMPs), including
high mobility group protein B1 (HMGB-1) and adenosine
triphosphate (ATP), as well as pathogen associated molecular
patterns (PAMPs), which include lipopolysaccharide (LPS)
and peptidoglycan. Both DAMPs and PAMPs can activate
APCs, such as DCs and macrophages.

2) Donor T cell activation by activated APCs leads to
differentiation into effector T cells, such as T helper type
1 (Th1) and T helper type 17 (Th17), both of which
are pathogenic and associated with GVHD severity and
mortality (12).

3) Effector T cell migration and target tissue destruction by
activated donor T cells results in the initiation of GVHD
(12, 13).

A myriad of cytokines, chemokines, receptors, and transcription
factors are associated with T cell activation and associated
inflammation, hence playing a central role in the development
of GVHD. Classically, Th1 cells are believed to play a critical role
in the induction of GVHD; although our group and others have
demonstrated that Th17 cells also contribute (15). By targeting
Th1 and Th17 specific transcription factors, T-box transcription
factor TBX21 (T-bet) and Retinoic acid- related orphan receptor
gamma (RORγt), respectively, it was observed that both Th1
and Th17 subsets contribute to GVHD development; yet either
lineage alone is sufficient to induce GVHD (14, 15). Thus,
both lineages must to be blocked in order to control GVHD.
Efficacy of targeting these T cell differentiation pathways at the
cytokine level are under investigation in clinical trials. Strategies
for protecting/promoting prompt repair of target tissuesmay also
reduce GVHD severity.

PATHOGENESIS OF ACUTE AND CHRONIC
GVHD

Acute GVHD (aGVHD) is manifested by a strong inflammatory
component resulting from robust donor T cell activation and
expansion. Prior to transplant, conditioning regimens involving
chemotherapy and/or irradiation cause damage to host epithelial
tissues, and subsequent release of danger signals such as
chemokines and cytokines. The inflammatory milieu is then
amplified by an activated innate immune response, consisting
of APCs, natural killer cells (NK cells), neutrophils, and
macrophages (13). Donor CD4 and CD8T cell recognition of
major orminor histocompatibility antigens, directly or indirectly,
by host and donor APCs in conjunction with activation of the
innate immune response creates a “cytokine storm” consisting
of such components as interferon gamma (IFNγ), TNFα, IL-
6, IL-12, and IL-23, among others (8, 16). The aforementioned
combination of inflammatory factors culminates in T cell
infiltration and subsequent destruction of host tissues, namely
the skin, lung, liver, and gastrointestinal tract (GI tract) (16–19).

Chronic GVHD (cGVHD) is widely systemic and can affect
essentially any of the major organ systems (8, 20). While
largely undefined, the origin of cGVHD pathogenesis has been
linked to thymic damage caused by conditioning, resulting in
aberrant selection and subsequent release of allo/autoreactive
T cells (21). Older patients receiving RIC have also been
observed with cGVHD, which is potentially due to reduced
thymic reserve/function (22, 23). The activation of these T cells
results in cytokine production and consequential activation of
macrophages and fibroblasts. Chronically stimulated donor T
cells interact with bone marrow-derived B cells and produce
additional factors contributing to fibroblast proliferation and
activation (21, 24). In particular, T follicular helper (Tfh)
cells interact with B cells via CD40L-CD40 to promote B cell
proliferation, differentiation, and antibody isotype switching
(25). These Tfh-B cell interactions subsequently lead to germinal
center formation in which antibody diversification and affinity
maturation occur, ultimately leading to an adaptive immune
response (21, 24, 25). The resultant autoantibody production and
tissue fibrosis lead to end organ damage (26).

THE IL-12 FAMILY OF CYTOKINES AND
THEIR RECEPTORS

The IL-12 family of cytokines can direct the donor immune
response to execute a range of proinflammatory and
immunosuppressive functions that are relevant in GVHD
(Figure 1). They are primarily secreted by cells of myeloid
origin in response to inflammatory stimuli, such as microbial
products or fungal infections (49). While part of the type 1
hematopoietin family of cytokines, IL-12 family members are
unique in that each member is comprised of two different
subunits, or heterodimers, in which either the α or β subunit
is shared among the others (46). The α-subunits include p19
(IL-23/IL-39), IL-27p28 (IL-27), and p35 (IL12/IL-35). The β-
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FIGURE 1 | The IL-12 family: cytokines, receptors, JAK-STAT signaling, influence on CD4+ T cell differentiation and subsequent effect on GVHD severity after

allo-HCT (“+” and “–“ denote increase or decrease in GVHD severity, respectively. Listed from top to bottom) IL-12 is a heterodimer composed of p35 and p40 (27).

Upon ligation, IL-12 signals through IL-12Rβ1 and IL-12Rβ2, which form the receptor complex for IL-12 (IL-12R), subsequently leading to JAK2-STAT4 signal

transduction and a positive feedback loop for Th1 differentiation (28–31). While its role in Th1 differentiation and IFNγ production has been shown to drive GVHD, there

are conflicting reports concerning the specific requirement of IL-12 (32, 33); p35 can also associate with EBI3 to form IL-35, and p40 is the shared subunit with IL-23

(+). IL-23 is a heterodimer composed of p19 and p40 (34). IL-23Rα associates with JAK2 to induce primarily STAT3 phosphorylation but also STAT4 to a lesser

degree (14, 35–37). IL-23 signaling results in stabilization cues for Th17 cells and has also been implicated exacerbation of intestinal GVHD (++) (38–42). IL-27,

composed of p28 and EBI3, ligation to IL-27Rα/gp130 promotes IL-10 production by Tr1 cells via STAT1 at early time points post- BMT and plays a role in hindering

GVHD- induced inflammation (43). However, IL-27 also inhibits Treg generation and may promote Th1 differentiation and function (+/-) (44, 45). IL-35 is composed of

p35 and EBI3. IL-35 can signal through any combination of IL-12Rβ2 and gp130 was recently described as a potent immunoregulatory cytokine secreted by both T

and B regulatory cells (46–48). IL-35 has been reported to suppress GVHD development. IL-39 is the most recent addition to the family and is composed of p19 and

EBI3, which signal through STAT3 and STAT1. There are no reports of its function in the context of allo-HCT. *reported to promote GVHD through increased Th1 and

decreased Treg differentiation; via dampen GVHD severity via Tr1 during induction phase.

subunits include p40 (IL-12/IL-23) and Epstein-Barr virus-
induced gene 3 (EBI3) (IL-27/IL-35/IL-39) (50). Further, each
cytokine signals through a distinct heterodimeric receptor that
is associated with its cognate subunits: IL-12R (IL-12Rβ2/IL-
12Rβ1), IL-23R (IL-23Rα/IL-12Rβ1), IL-27R (IL-27Rα/gp130),
IL-39R (IL-23Rα/gp130), and IL-35R (IL-12Rβ2/gp130) (46, 50).
The functionality of each respective cytokine and receptor
combination ranges from proinflammatory to immune

suppressive in a host of pathological and physiological
conditions. Yet, similar subunits and receptors involved in
proinflammatory functions can also form suppressive complexes,
as in the case of IL-12Rβ2, involved in IL-12 and IL-35 signaling.
Therefore, deciphering the contributions of each cytokine/
receptor subunit combination is critical to understanding
the immune response as a whole; the context of allo-HCT is
no exception.
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IL-12/IL-12R
Overview of IL-12/IL-12R Signaling
IL-12 consists of p35 and p40, and acts primarily on NK cells and
T cells (23, 27). IL-12Rβ1 binds to IL-12Rβ2 to form the receptor
for IL-12 (IL-12R) (27, 51). Upon ligation, IL-12Rβ1 binds to
Tyrosine kinase 2 (Tyk2) while IL-12Rβ2 binds to Janus Kinase
2 (JAK2). Tyk2 and JAK2 then phosphorylate tyrosine residues
primarily on signal transducer and activator of transcription 4
(STAT4). Ultimately, the STAT4 complex trans locates to the
nucleus and binds to the IFNγ promoter; Jun oncogene (c-Jun)
is also recruited to the IFNγ promoter via STAT4 (28, 29, 52),
potentiating IFNγ transcription, and Th1 differentiation. In a
STAT4 -dependent manner, IL-12 also promotes expression of
Interferon regulatory factor 1 (IRF1) and 4 (IRF4), transcription
factors required for Th1 differentiation (53, 54). Notwithstanding
the contribution of IL-12 to Th1 differentiation, IL-12/IL-
12R also promotes T-cell proliferation and adhesion during
activation. It has been reported that IL-12 contributes to
expression of Interleukin 2 receptor α (IL-2Rα) by recruiting
STAT4 and c-Jun to the promoter of IL-2R, thereby enhancing T
cell proliferation (55, 56). IL-12 -induced STAT4 activation also
culminates in P-selectin ligand formation, which augments T cell
adhesion during differentiation (57–60). Furthermore, activation
of IL-12/IL-12R signaling induces both positive and negative
feedback queues which can either strengthen or reduce IL-12
signaling, respectively. For instance, STAT4 activation fosters
transcription of IL-12Rβ2 and Interleukin 18 receptor 1 (IL-
18R1), which cooperate to amplify IL-12 signaling and Th1 cell
differentiation.While IL-12R signaling can promote proliferation
via STAT5-JAK2 interactions, evidence exists that STAT5A can
suppress IL-12 -induced Th1 cell differentiation through the
induction of Suppressor of cytokine signaling 3 (SOCS3) (35).
However, this report demonstrated that SOCS3 activity inhibits
IL-12 signaling by binding to the STAT4 docking site of the IL-
12Rβ2 subunit (61, 62). Hence, IL-12 is predominately associated
with Th1 differentiation, yet may simultaneously hinder this
effect through mobilization of STAT5A depending on the context
of disease or environment.

IL-12 in T Cell Responses and GVHD
IL-12 promotes the differentiation of primed CD4+ T cells
into Th1 cells, which express Tbet, produce IFNγ, and play a
critical role in driving GVHD (15, 51). On the other hand,
IL-12 negatively regulates T helper type 2 (Th2) transcription
factors and associated cytokine production (63). As such, IL-
12Rβ2 expression is absent on Th2 cells but upregulated in Th1;
an increase in Th2 differentiation is associated with reduced acute
GVHD yet can exacerbate chronic GVHD (64, 65). In addition,
CD40-CD40L interactions between T cells and APCs can fuel
IL-12 production by APCs, which amplify innate immune cell
responses through IFNγ production (66). With regards to the
IL-12 cytokine itself, the pool of available data is somewhat
contradictory in the context of aGVHD. IL-12 has been reported
to drive GVHD due to its stimulatory effect on Th1 cells (67, 68).
IL-12 serum levels in aGVHD patients are increased compared to
healthy controls, yet no correlation between higher grade GVHD
(II-IV) and IL-12 has been observed (69) (Table 1). Conversely,

TABLE 1 | Expression levels of IL-12 family cytokines in aGVHD patients.

aGVHD grade 0–1 2–4 References

IL-12 ↑ ↑ (69)

IL-23 ↑ ↑↑ (40)

IL-27 ↓ ↓ (70)

IL-35 ↓ ↓↓ (71)

Representative table of IL-12, IL-23, IL-27, and IL-35 levels detected in the serum of

patients with aGVHD. Upward arrows indicate increases compared to healthy donors,

while downward arrows indicate decreases.

exogenous IL-12 administration was suggested to be protective in
GVHD via an IFNγ-dependentmechanism (72). Previous studies
observed that a single injection of IL-12 at the time of allo-HCT
stifles GVHD in myeloablative-conditioned recipients (32, 33,
72). The protective or pathogenic role of IL-12 seemingly relies
on the dose and timing IL-12 injection, and irradiation type for
the recipient conditioning regimen in murine BMT models (73).
In NK cells, IL-12 induces cytotoxic events through STAT4 and
subsequent activation of the Perforin 1 (perforin) gene promoter
(74). A recent report a describes IL-12/IL-18 activated donor NK
cells mitigate GVHD but enhance GVT activity (75).

Apart from advocating Th1 responses, IL-12 plays a critical
role in T follicular helper cell (Tfh) differentiation and function
through STAT4 and Tbet (76, 77). Consistent with the crucial role
of Tfh cells in cGVHD pathogenesis, administration of anti-p40
mAb in recipient mice significantly reduced Tfh generation and
scleroderma manifestations of cGVHD after allo-HCT57. Thus,
targeting one or more of the IL-12 cytokine/receptor subunits
represents a promising therapeutic strategy to reduce cGVHD.

IL-23/IL-23R
Overview of IL-23/IL-23R Signaling
IL-23 consists of p19 and p40. The IL-23R is a heterodimer
comprised of IL-12Rβ1 and IL-23Rα. IL-23R associates with
JAK2 and, in a ligand-dependent manner, with STAT3. IL-
23- induced activation of STAT3 leads to direct binding of
phosphorylated STAT3 to IL-17A and IL-17F promoters. STAT3
up-regulates the expression of RORγt, the master transcription
factor of Th17, which is critical for the expression of two
members of the Interleukin-17 family, IL-17A and IL-17F (78–
80). SOCS3 inhibits JAK2 activity, hence decreasing IL-17A and
IL-17F expression (78).

IL-23 signaling regulates Th17 cells. IL-23 plays an important
role in expanding and maintaining the Th17 cell population,
a T cell subset involved in homeostatic antimicrobial immune
responses as well as in the propagation of many autoimmune
diseases (81). IL-23 is an indispensable factor for promoting
pathogenicity of Th17 cells, yet is not required for initial
differentiation (82–85). IL-23 has been shown to control Th17
responses through regulating T cell metabolism. TCR stimulation
induces GLUT-1 surface expression and subsequent lactate
production, promoting glucose uptake (86, 87). T cells under
Th17 polarizing conditions undergo a HIF1-α- dependent
metabolic switch to glycolysis, and data indicates that IL-23might
contribute to this effect via PKM2 and HIF1-α (88). Notably,
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allogeneic T cells were shown to depend on glycolysis for effector
function during GVHD development, yet a connection to IL-23
and glycolysis has not been demonstrated. HIF1-α induction has
also been associated with IL-23 production in dendritic cells; this
link between HIF1-α and PKM2 has been previously established
in cancer cells (89–91). Therefore, PKM2 may possess more than
one function in addition to its role in glycolysis manifested by
transcriptional activation as a protein kinase (92). Taken together,
IL-23 signaling through PKM2/STAT3 may directly contribute
to the metabolism of Th17 cells and, in concert with IL-6,
could represent an essential factor for lineage commitment (93).
Glucocorticoid-induced protein kinase 1 (SGK1) is critical for
IL-23R expression through deactivating murine Foxo1, which
directly represses IL-23R expression (94). SGK1 is essential
for the induction of pathogenic Th17 cells and implicates
environmental factors, such as a high-salt diet, as triggers to
Th17 development and subsequent tissue inflammation (95).
Lastly, while Blimp-1 IL-23-dependent Blimp-1 enhances Th17
pathogenic factors such as GM-CSF and IFNγ, and co-localizes
with RORγt and STAT-3 at Il23r, Il17a, and Csf2 enhancer
sites (96).

IL-23 Signaling in Autoimmune Diseases
Studies show IL-23 signaling contributes to the pathogenesis
of various autoimmune diseases. In mice, it was demonstrated
that bacteria-driven innate colitis is associated with an increased
production of IL-17A and IFNγ in the colon. Stimulation of
intestinal leukocytes with IL-23 induced the production of IL-17
and IFNγ exclusively by innate lymphoid cells expressing IL-
23R, which were demonstrated to accumulate in the inflamed
colon. These results identified a previously unrecognized IL-23-
responsive innate lymphoid population that mediates intestinal
immune pathology and may therefore represent a target in
inflammatory bowel disease (97–99). Intestinal IL-23-responsive
innate cells are also a feature of T cell-dependentmodels of colitis,
which resembles many of the features seen in intestinal GVHD
with respect to T cell infiltration resulting in inflammation
and gut injury. The transcription factor RORγt controls IL-
23R expression, as it was shown that Rag/Rorc-null mice failed
to develop innate colitis which is dependent on IL-23 (98). In
addition, expression of IL-23 and IL-23R was increased in the
tissues of patients with psoriasis (100). Injection of a neutralizing
monoclonal antibody to IL-23p19 in a xenotransplant mouse
model showed IL-23-dependent inhibition of psoriasis (100).

IL-23 Signaling in GVHD
Our group has demonstrated both Th1 and Th17 subsets are
required to induce GVHD (15). Pharmacological inhibition of
IL-23p19 results in reduced GVHD, and recent evidence suggests
that IL-23R drives GVHD pathogenesis (38–41). These studies
show that a CD4+CD11c+IL-23R+ T cell population induces
colonic inflammation during GVHD, indicating a key role for
IL-23R expression on donor T cells in mediating damage to
the gut after allo-HCT. Consistently, the gene expression levels
of IL-23 and IL-23R were upregulated in murine colons after
allo-HCT (38). These studies demonstrate that the colon is
specifically protected via IL-23p19 signaling blockade, and that

GVL activity is maintained. In a patient cohort, Liu et al.
observed IL-23 mRNA expressions in patients with aGVHD
were significantly higher than those in healthy donors, and IL-
23 and IL-23R expression were positively correlated with IL-
17 expression (101). These studies additionally showed that IL-
23 serum levels were elevated during the onset of aGVHD,
yet decreased during disease remission (Table 1). In aGVHD,
two out of three independent studies in patients found that a
single nucleotide polymorphism (rs11209026) in IL-23R of donor
origin reduced incidence of GVHD; the third study did not
observe any effect (19, 102). Hence, blocking either p19 or p40
reduces aGVHD and IL-23R deficiency in donor T cells results
in abrogated GVHD. These results indicate IL-23 also plays a key
role in GVHD pathogenesis. Albeit, a recent paper demonstrated
genetic inactivation of IL-23R, or the transcription factor RORγt,
within donor T cells similarly ablated Th17 cell formation in vivo
but preserved the T cells’ ability to induce intestinal GVHD in an
indistinguishable manner compared to wild-type controls (103).

Developing New Strategies to Target IL-23R
The crystal structure of IL-23Rα was recently reported (104).
Hence, development of pharmaceutical compounds capable of
specifically binding/inhibiting the IL-23R has been stagnant
since its discovery in 2002. It appears that IL-23 binds IL-
23R with an affinity of 44 nM, while binding IL-12Rβ1 with an
affinity of 2µM; nonetheless, the affinity of the IL-23:IL-23R
complex for IL-12Rβ1 has been described as 25 nM, despite no
apparent interaction of IL-23R with IL-12Rβ1, implying that
there is a cooperative effect which is likely to be due to a
conformational change of IL-23 upon binding IL-23R, which
is indeed observed crystallographically (104–108). In a recent
publication, hydrogen–deuterium exchange mass spectrometry
(HDX-MS) was used to demonstrate IL-23 binding to the
N-terminal immunoglobulin domain of IL-23R in both the
solid state as well as under more physiologically relevant
conditions. This data allowed specific identification of a binding
epitope using a macrocyclic small molecule against IL-23R for
the first time (106). However, IL-23R antagonism is not a
new concept, as a peptide antagonist was shown to reduce
inflammation in different models of autoimmune disease (109).
The aforementioned data presents exciting new possibilities for
future studies, yet efficacy of such prototype molecules requires
vigorous testing in preclinical models.

Interplay Between IL-12 and IL-23
Recent findings have emphasized the need to develop
therapeutics methods that enable targeting of IL-12 and IL-
23 signaling. Interestingly, not only do the cytokines IL-12 and
IL-23 share the same cytokine subunit, p40, but also the cognate
receptor, IL-12Rβ1. Thus, these shared motifs provided the
rationale for blocking Th1 and Th17 responses simultaneously
through targeting p40/IL-12Rβ1. However, p40 itself has a
diverse set of functions. For example, p40 has a chemo attractant
role for macrophages mediated by IL-12Rβ1 alone, which is
dependent on the intracellular domain of IL-12Rβ1 to signal;
these reports were published with regard to IL-12Rβ1 signal
transduction in response to a p40 homodimer (110, 111).
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With respect to alloreactive T cells, this p40 homodimer was
demonstrated to have antagonistic activity for CD4+ IFNγ

production, yet could amplify IFNγ production by CD8+ T cells
(112). Hence, targeting p40 in the context of GVHD may result
in enhanced Th1 responses and potentially hinder CD8mediated
GVT responses (113). IL-12Rβ1 promiscuity among the IL-12
family has both assisted in the development of pharmaceuticals to
target both pathways (as in the case of p40), yet also illuminated
their complexity. Th1 and Th17 differentiation and stability
converge at IL-12 and IL-23 signaling, respectively, as both
signaling motifs share p40 at the cytokine level and IL-12Rβ1 for
downstream signal transmission. Supported by studies done in
mice and men, IL-12 is documented to induce IFNγ production
by Th17 cells with respect to cytokines in the milieu, in vivo
and in vitro, respectively (114, 115). This Th1/Th17 subset was
shown in Crohns disease (114).

p40 and GVHD
Targeting p40, a shared subunit of IL-12 and IL-23 cytokines,
consistently mitigates GVHD in clinical and preclinical studies.
Our group and others have demonstrated that neutralization of
the p40, using genetically deficient mice and pharmacological
inhibition, alleviated acute and chronic GVHD inmurine models
through reducing Th1 and Th17 differentiation (116, 117).
Recent data from Pidala et al. demonstrates in vivo IL-12/IL-
23p40 neutralization with ustekinumab blocks the Th1/Th17
response and improves overall survival in patients after allo-HCT
(118). Notably, in other models of autoimmunity, in which Th17
is the major mediator of diseases, much of the originally allocated
inflammatory actions of IL-12 have since been shown to be
influenced by IL-23, as many studies prior to IL-23 identification
were conducted via targeting p40 (84, 119). Therefore, future
studies should focus on the biological differences of IL-12 and
IL-23 in order to determine why IL-12 can exacerbate GVHD
in some contexts yet suppress it in others, yet pharmacologically
targeting p40 can be efficacious in reducing GVHD severity in
experimental and clinical settings.

IL-12Rβ1 Deficiency in Human Diseases
IL-12Rβ1 was identified in 1994 by Chua et al. as a member
of the hemopoietin receptor superfamily, an amino acid
type I transmembrane protein that resembled the IL-6 signal
transducer, gp130 (120). It was not until 1996 that IL-12Rβ2
was identified, which subsequently led to the identification of
a high affinity IL-12 receptor complex when IL-12Rβ1 and IL-
12Rβ2 were coexpressed (27). Notably, the existing data with
respect to IL-12Rβ1 in murine models of GVHD is sparse,
although there is an abundance regarding its role in conferring
immunity to mycobacteria and other infections (121–123) in
human. However, given that deficiency of IL-12Rβ1 is relevant
in patients, there are a plethora of case studies documenting
related T cell responses (124). The IL12Rβ1 promoter, when
deficient of the −265 to −104 region, suggested the existence
of an important regulatory element. Furthermore, the −111A/T
substitution appeared to cause decreased gene transcriptional
activity, such that cells from−111A/A individuals were observed
to have increased IL12Rβ1 mRNA levels compared with those

from−111T allele carriers. Thus, in individuals with the−111T/T
genotype, reduced IL12Rβ1 expression may lead to augmented
Th2 cytokine production in the skin, and subsequently contribute
to the development of atopic dermatitis and other associated
allergic diseases (125).

Of particular interest is the role of IL-12/IL-12Rβ1 pathway
in the induction of highly suppressive antigen-specific Th1-like
Tregs from naïve Tregs (126). It was recently described that,
in two patients with IL-12Rβ1 deficiency, features of systemic
autoimmunity, and photosensitivity were observed (127). These
features are similar to transgenic mice deficient for IL-12Rβ2,
which develop an autoimmune syndrome consisting of anti-DNA
positivity, immunocomplex glomerulonephritis, and multiorgan
lymphoid infiltrates with features of vasculitis. However, IL-
12Rβ1 deficient patients displayed substantially less circulating
memory Tfh and memory B cells than healthy controls (77). In
humans, TGFβ cooperates with IL-12 and IL-23 for expression
of Tfh molecules: CXCR5, ICOS, IL-21, and the transcriptional
regulator Bcl6 (128). Hence, data taken from studies in IL-
12Rβ1 deficient patients suggests a regulatory role for IL-12,
perhaps derived from Treg function, which may explain the
contradictory results observed in murine models. Albeit, the role
of IL-12 in Tfh/B cell axis seems at baseline consistent among
experimental and clinical studies. While the aforementioned
discrepancies are preliminary in comparison to the mass of
studies documenting proinflammatory roles of IL-12, there is still
much to learn in terms of IL-12 function; especially with respect
to differences vs. IL-23.

IL-27/IL-27R
IL-27 is comprised of IL-27p28 and EBI3, binds to IL-
27Rα/gp130, and is the only member of the family that is
not secreted as a functional dimer (129). In fact, IL-27p28
is also known as IL-30. As such, the biological mechanisms
associated with the role of IL-27 vs. IL-30 in the immune
response are ambiguous, displaying both proinflammatory and
suppressive functions that seem to be dependent on the
disease model. IL-30 was previously reported to antagonize IL-
27-mediated proinflammatory responses (130). Further, IL-30
inhibited activity by IL-6, IL-11, and IL-27 in the absence of EBI3
through gp130 binding (131). These findings support a role for
IL-30 in hindering proinflammatory effects by such cytokines
as IL-6. Yet, a recent report demonstrates that pharmacological
blockade of IL-27p28 alleviates GVHD in mice, and resulted
in augmented Treg responses (45). Consistently, our group
found that IL-27Rα expression promotes T cell pathogenicity
during GVHD induction, and was attributable to augmented
Th1 effector function (44). However, a report by Zhang et al.
elegantly demonstrated the function and prevalence of Tr1 early
after allo-BMT; noting a significant role in IL-10 production
which could ameliorate GVHD and which was dependent on
IL-27 (43). Tr1 cells differentiate in the presence of IL-27 and
are the central cell type implicated in IL-27- related suppressive
activity, producing IFNγ, and IL-10 simultaneously. Of note,
experiments performed in the aforementioned report depleted
Tregs in donor grafts before transplantation, and therefore may
be the reason they saw no difference compared to similar models
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used in studies by Belle et al and those by our group. These
studies can be connected in such a way that IL-27 promotes
Tr1 cells early after BMT and can decrease GVHD independent
of Tregs; yet in later stages IL-27 inhibits iTregs and Th2 cells
and promotes Th1 differentiation; this ambiguous pattern is
very similar to that seen in models of autoimmunity. Clinically,
a study by Odile et al. demonstrated that membrane IL-27Rα

existed in a soluble form (sIL-27Rα), functioning as a natural
antagonist of IL-27, in healthy human serum, as well as in the
serum of patients with Crohn’s disease, suggesting that sIL-
27Rα may play an immunoregulatory role in normal as well
as pathological conditions (132). In extended studies by Liu
et al. sIL-27Rα was identified as a potential biomarker for the
development of aGVHD (70). However, IL-27 levels have only
been shown to positively correlate with sIL-27R, which Liu et al.
suggested was protective in GVHD. Higher levels of serum sIL-
27Rα correlated with lower grade aGVHD, however, did not
show any correlation for the prediction of cGVHD (70). In
future investigations, studies should focus on how IL-27 blockade
modulates established GVHD, which is characterized by Th1–
mediated inflammation in the skin, gut, and liver. Additionally,
it remains to be determined whether Treg cells deprived of Tbet
induction by IL-27 will possess the transcriptional machinery
sufficient to infiltrate into active GVHD sites. It will also
be critical to determine the effects of IL-27 blockade on the
GVT effect.

IL-35/IL-35R
IL-35 consists of p35 and EBI3, and functions as a regulatory
cytokine released by CD4+Foxp3+ T regulatory cells (Tregs),
as well as regulatory B cells (Bregs), to suppress inflammation,
and subsequently reduce the severity of autoimmune diseases
(50, 133). Interestingly, IL-35 signaling in Tregs was transduced
via receptor combinations of IL-12Rβ2/gp130, IL-12Rβ2/IL-
12Rβ2, or gp130/gp130, none of which could be clearly
identified as the high affinity receptor (71). Currently, the
suppressive effect of IL-35 in mouse models of aGVHD have
been established by Zhang et al. (134) and Liu et al. (47).
Importantly, IL-35 levels in the serum of aGVHD patients
was significantly decreased in higher grade GVHD (II-IV)
compared to lower grade (0-I) (47) (Table 1). Liu et al. (47)
Collectively, these studies demonstrate that IL-35 is associated
with higher frequencies of Tregs, reduced Th1 differentiation,
reduced GVHD when combined with rapamycin, and evidence
indicating maintenance of GVL activity (47, 134). However,
IL-35 within the tumor microenvironment may oppose T cell
responses required for GVT response by inducing effector
exhaustion (135). Given the potential regulatory effects mediated
by IL-35, we speculate the cytokine may be relevant in
controlling cGVHD. Further, a recent publication by Yin
et al. demonstrated that IL-35 administration skewed T cell
differentiation from Th17 to Treg in islet cell transplantation
models (136). IL-35 is clearly immunoregulatory and potentially
useful in GVHD prevention, but a better understanding of
its impact on T cell anti-tumor responses is needed prior to
clinical translation.

IL-39/IL-39R
IL-39 has been proposed to consist of p19 and EBI3, and
is the most recent addition to the family (137). Wang et al.
published the first report describing the function of an additional
heterodimer that involves p19 complexed with a subunit other
than p40. IL-39 is secreted by activated B cells and was
demonstrated to be significantly elevated in lupus models
compared to other IL-12 members using MRL/lpr mice (137).
The receptor for IL-39 was determined to be formed by
dimerization of IL-23R and gp130 and signal through STAT1
and 3. While associated with neutrophil differentiation and
expansion, the proinflammatory effects of IL-39 have yet to
be fully defined. In a different report by Ramnath et al. IL-39
was shown to be secreted by keratinocytes and contribute to
wound healing (138). While the function of IL-39 may be context
dependent, these disparate reports indicate that IL-39 may also
act on a broad range of cell types. Hence, further clarification
regarding the general role of IL-39 in immunity is required in
order to determine its effect in GVHD.

INTERPLAY BETWEEN IL-6 AND IL-12
SUPER FAMILIES

While promiscuity among IL-12 cytokine and/or receptor family
is a common theme, the degree of association with glycoprotein
130 (gp130), better known for its role in IL-6 signaling, has
become an intriguing area of research. Gp130 forms the link
between “IL-6R/IL-12R” families, which collectively include
Leukemia Inhibitory Factor Receptor (LIF-R), IL-12Rβ1, IL-
12Rβ2, Granulocyte Colony-Stimulating Factor Receptor (GCSF-
R), and Oncostatin-M Receptor (OSM-R); and serves as a shared
signal-transducing subunit for IL-6, IL-11, Leukemia Inhibitory
Factor (LIF), Oncostatin-M (OSM), Cilliary Neurotrophic Factor
(CNTF), Cardiotrophin-1 (CT-1), Cardiotrophin-like cytokine
(CLC), and IL-27(139, 140). Importantly, gp130 is well-
documented for its capacity to transduce signals, especially
for IL-6, a staple cytokine involved in inflammation. The
complex of IL-6 and IL-6R binds to the ubiquitously expressed
receptor subunit gp130, which forms a homodimer and thereby
initiates intracellular signaling via the JAK/STAT and the MAPK
pathways. IL-6R expressing cells can cleave the receptor protein
to generate a soluble IL-6R (sIL-6R), which can still bind IL-6
and can associate with gp130 and induce signaling even on cells,
which do not express IL-6R. This paradigm has been called IL-6
trans-signaling whereas signaling via themembrane bound IL-6R
is referred to as classic signaling (139–141).

TRANSLATIONAL POTENTIAL FOR
TARGETING THE IL-12/IL-12R FAMILY

Targeting IL-12 and IL-23 Cytokines
Regarding clinically translatable approaches targeting the IL-12
family, ustekinumab targets the p40 shared subunit between IL-
23 and IL-12. Ustekinumab added to tacrolimus and rapamycin
was shown to be safe and effective for GVHD prophylaxis
after related or unrelated allo-HCT. In a randomized, blinded,
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placebo-controlled study, ustekinumab significantly improved
overall survival, and CRFS (Conditional Random Fields
Score), a novel composite endpoint including moderate/severe
cGVHD and relapse-free survival (118). Guselkumab and
tildrakizumab, two monoclonal antibodies against p19, approved
for treatment of plaque psoriasis (142, 143). However, these
specific neutralizing antibodies against p19 have yet to be
evaluated in GVHD patients. While inhibiting JAK2 signal
transduction by IL-12 and IL-23 is a promising strategy, the
question pertaining to how the shared or disparate receptors
contribute to signal transduction and the consequential
effect on T cell differentiation in allo-HCT remains unclear.
The advancement of targeted pharmacological compounds
specific for IL-12 or IL-23 signaling will be required to
adequately dissect these scientific questions appropriately
across species.

Targeting IL-12 Family and Infection
The use of any immunosuppressive agent carries the theoretical
risk of impairing host defense responses to pathogens and/or
decreased tumor surveillance. Relative risks of targeting IL-
12 and/or IL-23 are well-documented with respect to potential
risk of infections. When challenged with Mycobacterium,
Salmonella or Candida, mice lacking IL-12p35, IL-12p19, and
IL-12/23p40 have phenotypes that generally mirror what has
been observed in humans. As mentioned earlier, studies of IL-
12/23p40 and IL-12Rβ1 deficiencies indicate that human IL-12
and IL-23 are redundant in host defense to many pathogens.
Importantly, allo-HCT recipients treated with ustekinumab
did not experience any increase in opportunistic infections
or reactivation of CMV, EBV, or HHV6 compared to the
placebo arm (118).

DOWNSTREAM SIGNALING BY THE
IL-12/IL-12R FAMILIES AND RELEVANT
TRANSLATIONAL POTENTIAL

Jak2: The Center of IL-12/IL-12R Family
Signaling
Both IL-12R and IL-23R have been demonstrated to signal
via JAK2; JAK2 deficient donor T cells or JAK2 inhibition
with pacritinib were demonstrated to significantly alleviate
GVHD in murine models via spared Treg differentiation
and reductions in Th1 and Th17 differentiation in in mouse
and human T cells (144). This is consistent with reports
describing a common reliance on JAK2 by both IL-12
and IL-23. A key difference in downstream signaling is
that IL-12 phosphorylates primarily STAT4, while IL-23
mainly induces STAT3 phosphorylation. Betts et al. reported
that at 20 days’ post allo-HCT, pSTAT3 was significantly
increased in CD4+ T cells among patients who would
later develop aGVHD; a signaling pathway known to
directly drive the transcription of Th17 lineage-specific
genes (14).

JAK2 signal transduction is implicated in human autoimmune
syndromes and GVHD. IL-6, IL-12, and IL-23 mediate

inflammation and activate T cells via JAK2 (14, 145–
148). Blocking the IL-6 receptor with the monoclonal
antibody tocilizumab has demonstrated efficacy in a phase
II GVHD prevention trial (149). Tocilizumab, however,
does not fully impair pathogenic Th1/Th17 responses (150),
which may be attributed to the IL-12 and IL-23 receptor
signaling-induced JAK2 activation to promote Th1 and
Th17 differentiation, respectively. Neutralization of these
p40 cytokines prevents GVHD in murine models, and may
have activity in treating patients with steroid refractory
GVHD (151).

JAK2 Inhibition in GVHD
JAK2 inhibition is an alternative approach to suppress IL-
6 and p40 receptor signal transduction and induce durable
tolerance to alloantigens. JAK2 inhibitors are clinically efficacious
in myelofibrosis, a hematological disease often driven by
constitutive JAK2 activation (152). The existing evidence
regarding JAK2 as a therapeutic target for acute GVHD
is primarily supported by observations using ruxolitinib, an
equimolar inhibitor of JAK1 and JAK2 (153–156). Ruxolitinib has
been previously demonstrated as efficacious in treating steroid-
refractory GVHD, and is clearly immunosuppressive. In part,
JAK1 mediates the biologic effects of common gamma chain
cytokines, including IL-2 and IL-15. Ruxolitinib suppresses host-
reactive T cells in mice and humans. Although not observed
in murine transplant studies, ruxolitinib treatment reduces the
quantity of Tregs as well as the beneficial effects of NK cells
in myelofibrosis patients (157–159). Therefore, a JAK2 inhibitor
has the potential to prevent GVHD without conceding JAK1-
mediated functions provided by donor lymphocytes. Further
research determining the differential effects of JAK1 and JAK2
is required to resolve these conundrums.

Given the recent discovery of IL-39 (p19/EBI3) and its
cognate receptor (IL-23Ra/gp130), the question pertaining to
the individual requirement for each particular cytokine/receptor
complex becomes much more complex. IL-39R was shown to
signal via STAT1/ STAT3 pathways, which overlaps with IL-27
and IL-23 signaling, respectively. The manner by which IL-39R
and IL-23R on T cells may differentially or similarly impact the T
cell response in allo-HCT requires further investigation.

CONCLUSION

The interplay between IL-6/IL-12 family members pertaining to
T cell differentiation requires further investigation in the field
of allo-HCT. Specific neutralizing antibodies against receptor
subunits, such as IL-23Rα, are in development but have yet to
be evaluated in preclinical models. While inhibiting JAK2 signal
transduction by IL-12 and IL-23 is a promising strategy, the
question pertaining to how the shared or disparate receptors
contribute to signal transduction and the consequential effect
on T cell differentiation in allo-HCT remains unclear. The
advancement of targeted pharmacological compounds specific
for IL-12 or IL-23 signaling will be required to adequately dissect
these scientific questions appropriately across species.
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