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Multiple sclerosis is an autoimmune disease caused by autoreactive immune cell

infiltration into the central nervous system leading to inflammation, demyelination, and

neuronal loss. While myelin-reactive Th1 and Th17 are centrally implicated in multiple

sclerosis pathogenesis, the local CNS microenvironment, which is shaped by both

infiltrated immune cells and central nervous system resident cells, has emerged a key

player in disease onset and progression.We have recently demonstrated that ShcC/Rai is

as a novel astrocytic adaptor whose loss in mice protects from experimental autoimmune

encephalomyelitis. Here, we have explored the mechanisms that underlie the ability of

Rai−/− astrocytes to antagonize T cell-dependent neuroinflammation. We show that

Rai deficiency enhances the ability of astrocytes to upregulate the expression and

activity of the ectonucleotidase CD39, which catalyzes the conversion of extracellular

ATP to the immunosuppressive metabolite adenosine, through both contact-dependent

and–independent mechanisms. As a result, Rai-deficient astrocytes acquire an enhanced

ability to suppress T-cell proliferation, which involves suppression of T cell receptor

signaling and upregulation of the inhibitory receptor CTLA-4. Additionally, Rai-deficient

astrocytes preferentially polarize to the neuroprotective A2 phenotype. These results

identify a new mechanism, to which Rai contributes to a major extent, by which

astrocytes modulate the pathogenic potential of autoreactive T cells.
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INTRODUCTION

Astrocytes are the first CNS resident cells encountered by infiltrating autoreactive T cells inmultiple
sclerosis (1, 2). Astrocytes contribute to neuroinflammation in multiple sclerosis and in the mouse
experimental autoimmune encephalomyelitis (EAE) model by promoting encephalitogenic T-cell
activation through their ability to act as antigen presenting cells (APC) and to upregulate the
T-cell costimulatory molecules B7-1 and B7-2 (3–6). Intriguingly, T-cell suppression by astrocytes
has also been documented, resulting from their ability to promote antigen-independent surface
upregulation of inhibitory molecules on T cells, including the inhibitory receptor CTLA-4 and the
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ectonucleotidases CD39 and CD73 (7, 8). Additionally, astrocytes
actively influence the generation and maintenance of effector T
cells both by modulating CD4+ T-cell polarization to Th1 cells
and by supporting IL-2-dependent Treg cell survival (9, 10). The
finding that different subsets of reactive astrocytes are induced
following CNS injury, of which the A1 is neurotoxic and the
A2 neuroprotective (11), adds further complexity to the role of
astrocytes in CNS diseases.

Astrocytes are themselves targets of infiltrating autoreactive
T cells. Antigen-independent, contact-dependent upregulation
of the integrin ligands VCAM-1 and ICAM-1 on astrocytes
cocultured with activated T cells has been reported (8).
Additionally, infiltrating Th1 and Th17 cells modulate
astrocyte function via contact-independent mechanisms
involving the release of inflammatory mediators that promote
astrocytic secretion of pro-inflammatory cytokines and
chemokines while repressing expression of anti-inflammatory
cytokines (12–15). Interestingly, while both microglia and
astrocytes are targets of Th1-derived soluble factors, Th17-
derived soluble factors preferentially act on astrocytes
(13, 15), highlighting astrocytes as central mediators of T
cell-mediated neuroinflammation.

The concentration of ATP and its metabolite, adenosine,
in the CNS microenvironment has emerged as a central
factor in the modulation of neuroinflammation in multiple
sclerosis/EAE (16). Elevated extracellular ATP (eATP) is sensed
as a danger signal, promoting inflammation, while adenosine
exhibits strong anti-inflammatory and immunosuppressive
activities (17). The ectonucleotidases CD39 and CD73
are responsible for the conversion of ATP to adenosine.
Altered expression and/or function of these enzymes have
been associated to multiple sclerosis (18). Additionally,
activation of the adenosine receptor A2AR has been shown to
attenuate CNS inflammation and EAE severity (19, 20), and
conversely genetic ablation of A2AR to exacerbate the disease
(21), underscoring a key role for adenosine in controlling
disease development. In support of this notion, treatment
of multiple sclerosis patients or EAE mice with inosine,
which similar to adenosine binds to the A1A, A2A, and A3A
receptors, ameliorates disease onset and severity by inhibiting
inflammatory cell entry into the CNS, astroglial activation and
demyelination (22).

We have recently reported that deficiency of ShcC/Rai, a
member of the Shc family of protein adaptors, protects mice from
demyelination and prevents reactive astrogliosis during EAE
notwithstanding enhanced CNS infiltration by encephalitogenic
Th17 cells, due to reduced astrocytic production of pro-
inflammatory molecules in response to T cell-derived factors
(23). Here we have addressed the outcome of Rai deficiency
on the ability of astrocytes to generate a T cell suppressive
microenvironment through eATP degradation. We show that
Rai-deficient astrocytes have an enhanced ectonucleotidase
activity and that they upregulate CD39 expression when
exposed to conditioned media from encephalitogenic T
cells, which results in their enhanced ability to suppress T
cells through inhibition of TCR signaling and upregulation
of CTLA-4.

MATERIALS AND METHODS

Mice
Rai−/− mice in the C57BL/6J background (24, 25) and C57BL/6J
controls were used. Animals were housed in a pathogen-free
and climate-controlled (20 ± 2◦C, relative humidity 55 ± 10%)
animal facility at the University of Siena. Mice were provided
with water and pelleted diet ad libitum. All cages are provided
with environmental enrichment in the form of nesting material
and mouse houses. Procedures and experimentation were carried
out in accordance with the 2010/63/EU Directive and approved
by the Italian Ministry of Health.

Induction of EAE, Isolation of Glial Cells,
and Generation of MOG-Specific T
Cell Lines
EAE was induced in 8- to 10-week-old female mice (three
Rai−/− and three wild-type C57BL/6J mice) by subcutaneous
injection of 200 µg MOG35−55 peptide emulsified in an equal
volume of complete Freund’s adjuvant (CFA) containing 6mg/ml
M. tuberculosis H37Ra (Difco Laboratories, Detroit, MI). Mice,
selected by sex, age and strain, were randomly allocated to
experimental groups and randomly treated. The experimental
unit was single animal.We observed similar variance between the
groups that were compared. On day 0 and 2 mice were injected
i.p. with 300 ng B. pertussis toxin (Calbiochem, Darmstadt,
Germany). Mice were monitored daily by two independent
researchers and clinical scores were assigned according to the
standard 0 to 5 scale (23, 26). Brain and spinal cords were isolated
from EAE mice (15 days post-immunization) and total glial cells
were obtained as described (23).

To generate MOG35−55 specific T cells, splenocytes and
lymph nodes were harvested at day 7 after immunization
with MOG35−55 peptide (three wild-type C57BL/6J mice) and
expanded with 50µg/ml MOG35−55 and 20 U/ml IL-2 in
RPMI1640 with 10% BCS. After 7 days cells were re-stimulated
with autologous bonemarrow-derived dendritic cells, MOG35−55

peptide and IL-2, for 7 days. Cells underwent 2 rounds of
stimulation before being used. The frequency of GM-CSF-,
TNFα-, IFNγ-, or IL-17a- producing cells among MOG-T cells
have been assessed by flow cytometry (% GM-CSF+ = 4.5
± 1, % IL-17+ = 19 ± 4, % IFNγ+ = 55 ± 3, and
% TNFα+ = 27± 0.5).

Primary Astrocyte Culture and Treatments
Astrocyte cultures were prepared from newborn mice (15 Rai+/+

and 15 Rai−/−) as described (27). Cerebral cortices were
dissociated using the Neural Tissue Dissociation kit (T) (Miltenyi
Biotec, Bergisch Gladbach, Germany) and the cells were cultured
in flasks. For astrocytes monoculture, supernatants containing
microglia were eliminated and adherent cells were trypsinized
and replated. The purity of astrocytes was ≥95% as assessed by
GFAP staining.

Treatment with IFNγ (10 ng/ml) or IL-17 (50 ng/ml) was
performed in serum-free medium for ATP, adenosine and
phosphate measurements or in complete medium for flow
cytometric analysis and qRT-PCR analysis of CD39 and
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FIGURE 1 | Rai dampens extracellular ATP-degrading enzyme activity in astrocytes. (A) ATP (eATP) quantification in culture supernatants from Rai+/+ (Astro WT) and

Rai−/− (Astro Rai−/−) astrocytes stimulated for 5 h with IFNγ (10 ng/ml) or IL-17 (50 ng/ml) or left untreated (-). Data are presented as mean ± SD of relative luciferase

units (RLU) in supernatants from Rai−/− astrocytes vs. Rai+/+ astrocytes. Data have been normalized to the mean RLU value of Rai+/+ astrocytes (n = 5). (B) Total

ATP (tATP) content in unstimulated Rai+/+ (Astro WT) and Rai−/− (Astro Rai−/−) astrocytes. (C) Flow cytometric analysis of surface CD73 and CD39 in Rai+/+

(Astro WT) and Rai−/− (Astro Rai−/−) astrocytes stimulated for 5 h with IFNγ (10 ng/ml), IL-17 (50 ng/ml) or left untreated (-). Data are presented as mean ±

SD of mean fluorescence intensity (MFI) (n= 4). (D)Quantification of enzymatic activities of extracellular ATP-degrading enzymes in Rai+/+ (Astro WT) and Rai−/− (Astro

(Continued)
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FIGURE 1 | Rai−/−) astrocytes stimulated with IL-17 or IFNγ for 5 h or left untreated (-), then depleted of their culture supernatant and incubated with 1mM ATP. Data

are presented as mean fold change ± SD of specific enzymatic activities (nmol free phosphate/mg protein/min) in Rai+/+ astrocytes and Rai−/− astrocytes, with

unstimulated Rai+/+ astrocytes taken as 1 (n = 3). (E) Quantification of adenosine in culture supernatants of astrocytes treated as in D. Data are presented as mean

± SD of adenosine concentration (µM) (n = 3). (F) Immunoblot analysis with anti-Rai or anti-CD39 antibodies of RanBPM-specific immunoprecipitates from total cell

lysates of Rai+/+ and Rai−/− astrocytes treated with IFNγ (10 ng/ml) for 15min (n = 2). The quantification by laser densitometry of the levels of each of the proteins

normalized to the level of RanBPM in each sample is shown (n = 2). 2-Way ANOVA and Mann–Whitney test ****p < 0.0001, **p < 0.01, *p < 0.05.

CD73 expression and immunoprecipitation assays. Surface
upregulation of CD39 and CD73 was analyzed in astrocytes
stimulated for 120 h (peak of expression of CD39, as assessed
in a preliminary time course analysis; Supplementary Figure 2)
with pro-inflammatory cytokines. No surface upregulation of
CD73 was found at any time point (data not shown). For the
treatment with conditionedmedia fromMOG-T cells, the culture
medium was replaced with the culture supernatants from IL-
2-stimulated MOG T cells in the presence or absence of a
neutralizing anti-IFNγ mAb (e Bioscence). Alternatively, MOG
T cells were added to astrocytes as such or previously pulsed with
MOG35−55 peptide.

Splenocytes, CD4+ T Cell Purification
and Treatments
Mouse splenic mononuclear cells were separated by Mouse
lympholyte gradient centrifugation (Cedarlane Laboratories,
Netherlands) and resuspended in RPMI 10% BCS (two wild-type
C57BL/6J mice).

Alternatively, CD4+ T cells were enriched from spleen using
DynabeadsTM UntouchedTM Mouse CD4 Cells Kit (Invitrogen).

Cells were treated with immobilized anti-CD3 (2 mg/ml;
eBiosciences) and anti-CD28 (2 mg/ml; eBiosciences) mAb
for 72 h, alone or in combination with either the non-
hydrolyzable adenosine analog NECA (10µM) (Sigma-Aldrich)
or supernatants from IFNγ-treated Rai−/− or Rai+/+ astrocytes,
in presence or absence of the ectonucleotidase inhibitor
ARL67156 (100µM) (Sigma-Aldrich). Alternatively, cells were
pre-treated with supernatants from IFNγ-treated Rai−/− or
Rai+/+ astrocytes (diluted 1:2 with culture medium) in the
presence or absence of ARL67156 (100µM) for 1 h at 37◦C and
activated with soluble anti-CD3 and anti-CD28mAbs in presence
or absence of 10 µMNECA.

eATP, Adenosine, and Ectonucleotidase
Activity Measurements
ATP levels in the astrocyte supernatants and cells were measured
using a luciferin/luciferase assay (ATP Determination Kit
A22066; Invitrogen) and a luminometer (Berthold Lumat
LB 9501) according to the manufacturer’s instructions.
Adenosine levels were measured on astrocytes supernatants
using a fluorometric assay (Adenosine Assay Kit; Cell
Biolabs, INC.) and a Fluorometer (TECAN) according to
the manufacturer’s instructions.

For determination of nucleotide hydrolysis free phosphate
was measured using the Malachite Green Phosphate Assay Kit
(POMG-25H) (BioAssay Systems) at 620 nm on a microplate
reader, according to the manufacturer’s protocol. Specific activity

FIGURE 2 | Rai limits the IFNγ-dependent upregulation of CD39 on

astrocytes. Flow cytometric analysis of surface CD73 and CD39 in Rai+/+

(Astro WT) and Rai−/− (Astro Rai−/−) astrocytes untreated (-) or stimulated for

120 h with IFNγ (10 ng/ml) or IL-17 (50 ng/ml). Data are presented as mean ±

SD of mean fluorescence intensity (MFI) (A) or frequency of CD39highCD73high

astrocytes (B). Representative dot plots of CD39 and CD73 are shown (n > 3).

Two-Way ANOVA, ***p < 0.001, **p < 0.01, *p < 0.05.

was calculated using a calibration curve and expressed as nmol Pi
released/mg protein/min.

Each sample was run in triplicate. Remaining cells were lysed
in 0.02% SDS in phosphate-buffered saline (PBS) and protein
content determined by the Pierce BCA protein assay kit (Thermo
Fisher Scientific).

Cell Lysis, Immunoprecipitations,
and Immunoblots
Cells were lysed in 1% (v/v) Triton X-100 in 20mM Tris-
HCl (pH 8), 150mM NaCl in the presence of Protease
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Inhibitor Cocktail Set III (Calbiochem) and 0.2mg Na
orthovanadate/ml. Postnuclear supernatants were resolved
by SDS-PAGE and transferred to nitrocellulose. Alternatively,
postnuclear supernatants were immunoprecipitated using
RanBPM polyclonal antibody (Proteintech) and protein A
Sepharose (GE Healthcare). Immunoblots were carried out using
peroxidase-labeled secondary antibodies (GE Healthcare) and
a chemiluminescence detection kit (Bio-rad Laboratories Inc.,
Milan, Italy). Immunoblots were scanned and quantitated using
ImageJ software.

Flow Cytometry and Proliferation Assays
Flow cytometric analysis of astrocytes, MOG-T cells and
splenocytes was performed using AlexaFluor488-, PE-, PerCP-
conjugated anti-mouse antibodies to: GFAP (clone GA5;
eBioscence), CD39 (clone 24DMS1; eBioscence), CD73 (clone
TY11.8; Biolegend), CTLA-4 (clone UC10-4B9; Biolegend),
IL-17A (clone TC11-18H10; Becton Dickinson), IFN-γ (clone
XMG1.2; Becton Dickinson), GM-CSF (clone MPI-22E9;
Biolegend), TNFα (Clone MP6-XT-22; Biolegend), and isotype
control antibodies. Samples were acquired on Guava Easy
Cyte cytometer (Millipore) and analyzed with FlowJo software
(TreeStar Inc., Ashland, OR, USA).

Proliferation was measured on CFSE loaded cells (Molecular
Probes, Thermo Fisher Scientific) by flow cytometry.

RNA Purification and RT-qPCR
Total RNA was isolated and purified from brain, astrocytes
and splenocytes using the RNeasy Plus Mini Kit (Quiagen)
according to the manufacturer’s instructions. First-strand cDNAs
were generated using the iScriptTM cDNA Synthesis Kit (Bio-
Rad). RT-qPCR was performed using the SsoFastTM EvaGreen R©

supermix kit (BIO-RAD) and specific pairs of primers listed in
Supplementary Table 1.

Statistical Analyses
One-way ANOVA with post-hoc Tukey or 2-way ANOVA with
post-hoc Sidak test were used for experiments where multiple
groups were compared. Mann–Whitney rank-sum tests were
also performed to determine the significance of the differences
between two groups. Statistical analyses were performed using
GraphPad Prism Software (Version 8). A P< 0.05 was considered
as statistically significant.

RESULTS

Rai Dampens CD39 Enzyme Activity in
Astrocytes in Response to IFNγ Treatment
To address the impact of Rai deficiency on the eATP-degrading
activity of astrocytes, ATP was quantified in culture supernatants
from Rai+/+ and Rai−/− astrocytes generated from newborn
mice brain, stimulated or not with IL-17 or IFNγ. Lower
levels of eATP were found in culture supernatants of Rai−/−

astrocytes compared to Rai+/+ astrocytes, despite the fact that
the total levels of ATP were comparable (Figures 1A,B). No
differences in surface CD39/CD73 expression were observed
under these conditions (Figure 1C, Supplementary Figure 1),

suggesting that Rai might modulate the eATP-degrading activity
of astrocytes.

To test this possibility we compared the ATP-degrading
activity of control and Rai−/− astrocytes stimulated or not with
IL-17 or IFNγ by incubating cells depleted of their culture
supernatant with 1mM ATP and measuring free phosphate
production. Both cytokines promoted ATP-degradation, with
Rai−/− astrocytes hydrolyzing ATP more efficiently, both
under basal conditions and following IFNγ or IL-17 treatment
(Figure 1D). Quantification of adenosine in culture supernatants
from astrocytes added with exogenous ATP showed that IFNγ,
but not IL-17, enhanced adenosine production, which was
further enhanced by Rai deficiency (Figure 1E). These data
indicate that IFNγ modulates adenosine generation by astrocytes
and that Rai dampens the activity of ATP-degrading enzymes in
these cells.

To translate these results to the context of EAE we measured
the ATP-degrading activity of astrocytes isolated from the spinal
cord of Rai−/− and control EAE mice. Similar to the results
obtained on astrocytes derived from the brain of newborn mice,
Rai−/− astrocytes obtained from the CNS of EAE mice degraded
ATP more efficiently compared to their wild-type counterparts
(Supplementary Figure 3). These data suggest that the protective
role of Rai deficiency in astrocytes toward neuroinflammation in
EAE could be dependent at least in part on the ability of Rai to
negatively control eATP degradation and adenosine generation.

Rai Couples CD39 to its Negative
Regulator RanBPM
To address the mechanism responsible for the ability of Rai
to negatively control eATP degradation we focused on the
rate-limiting enzyme of the cascade which converts ATP/ADP
to adenosine, namely CD39. Since the scaffolding protein
RanBPM binds to the cytosolic tail of CD39 and downregulates
its ectonucleotidase activity (28), we hypothesized that Rai
may participate in this molecular complex to restrain CD39
function. Rai+/+ and Rai−/− astrocytes were left untreated or
were treated with IFNγ and post-nuclear supernatants were
immunoprecipitated with anti-RanBPM antibodies. RanBPM-
specific immunoprecipitates were analyzed by immunoblotting
with anti-Rai and anti-CD39 Abs. Rai was found to associate
with RanBPM in response to IFNγ (Figure 1F). Interestingly, the
IFNγ-dependent association of RanBPMwith CD39 was reduced
in Rai−/− astrocytes compared to control astrocytes (Figure 1F),
indicating that IFNγR signaling promotes CD39 activation and
suggesting that Rai limits CD39 activity by promoting RanBPM
recruitment to CD39.

Rai Negatively Controls the
Contact-Dependent and -Independent
Upregulation of CD39 and CD73 Elicited by
Encephalitogenic T Cells
Astrocytes have been demonstrated to suppress recently activated
CD4+ T cells by inducing the upregulation of CD39/CD73
on their surface, which correlates with the acquisition of an
immunosuppressive Th17 phenotype (8). Whether inflammatory
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FIGURE 3 | Rai negatively controls the contact-dependent and -independent

upregulation of CD39 and CD73 elicited by encephalitogenic T cells. (A,B)

Flow cytometric analysis of surface CD73 and CD39 in Rai+/+ (Astro WT) and

Rai−/− (Astro Rai−/−) astrocytes untreated (-) or stimulated for 120 h with

culture supernatants from MOG-specific T cells generated from WT mice (SN

T-MOG). Data are presented as mean ± SD of mean fluorescence intensity

(MFI) (A) or frequency of CD39highCD73high astrocytes (n > 3) (B). (C) Flow

cytometric analysis of surface CD73 and CD39 expression in Rai+/+ (Astro

WT) and Rai−/− (Astro Rai−/−) astrocytes treated for 120 h with either culture

supernatants from MOG-specific T cells generated from WT mice (SN T-MOG)

or MOG-specific T cells depleted of their culture supernatants (T-MOG) in the

presence (+Ag) or absence of MOG antigen. Representative dot plots are

shown. The histograms show the frequency of the CD39highCD73high

population. Data are presented as mean ± SD of the percentage of

CD39highCD73high cells (n > 3). Representative dot plots are shown.

Two-Way ANOVA, ****p < 0.0001, ***p <0.001, **p < 0.01, *p < 0.05.

T cells can in turn affect the expression of these ATP-degrading
enzymes in astrocytes, and the role of Rai in this process, have
as yet not been explored. At present no published data are

available on surface expression of CD39 and CD73 in mouse
primary astrocytes either in the basal state or in response to
cytokines. Surface CD39 and CD73 was measured by flow
cytometric analysis of control and Rai−/− astrocytes following
prolonged (120 h) treatment with IL-17 or IFNγ. IL-17 had no
effect on either CD39 or CD73 surface expression (Figure 2A).
At variance, IFNγ was found to promote CD39 upregulation
with, a slight, yet not significant, further increase in Rai−/−

astrocytes compared to control astrocytes (Figure 2A). The
increase in surface CD39 correlated with an increase in the
levels of CD39 mRNA, as assessed by RT-qPCR. An increase
in the levels of CD73 mRNA was also observed in Rai−/−

astrocytes compared to control astrocytes, however this was
not paralleled by an global concomitant increase in surface
CD73 (Supplementary Figure 4). Interestingly, co-upregulation
of surface CD39 and CD73 was observed in response to
both IFNγ and IL-17 in a small subpopulation of astrocytes
(Figure 2B). This CD39highCD73high subpopulation was larger in
Rai−/− astrocytes compared to wild-type controls under steady-
state conditions and was further expanded following IFNγ, but
not IL-17, treatment (Figure 2B).

To mimic the CNS microenvironment shaped by infiltrating
T cells during EAE, surface CD73 and CD39 were measured
by flow cytometry on wild-type and Rai−/− astrocytes treated
with conditioned media from MOG-specific T cells for
120 h. Under these conditions both CD39 and, to a lesser
extent, CD73, were upregulated in both wild-type and Rai−/−

astrocytes (Figure 3A). Additionally, a substantial increase in
the abundance of the CD39highCD73high wild-type astrocyte
subpopulation was observed, with a further significant increase
in Rai−/− astrocytes (Figure 3B). No significant effect on the
frequency of CD39highCD73high astrocytes was observed when
an anti-IFNγ antibody was added to the conditioned media
(data not shown), suggesting that other T cell-derived factors
are responsible for the robust co-upregulation of CD39 and
CD73 on this astrocyte subpopulation. These results indicate
that encephalitogenic T cells promote co-upregulation of CD39
and CD73 on astrocytes in a contact-independent manner and
that Rai deficiency results in an enhanced ability of astrocytes to
respond to T cell-derived factors.

To understand whether surface ectonucleotidase expression
on astrocytes can be further modulated by their physical contact
with T cells, surface CD39 and CD73 were measured on wild-
type and Rai−/− astrocytes co-cultured for 120 h in the presence
or absence of MOG with encephalitogenic T cells previously
depleted of their culture supernatant. Under these conditions an
increase in the abundance of the CD39highCD73high astrocyte
subpopulation was observed, independently of the presence of
antigen (Figure 3C). However, Rai deficiency did not affect
the contact-dependent upregulation of CD39 or CD73, as
opposed to the enhancement observed in the presence of
conditioned media from MOG-specific T cells (Figure 3C).
Hence, encephalitogenic T cells elicit a co-upregulation of
CD39 and CD73 on astrocytes in both a contact-independent
and a contact-dependent but antigen-independent manner, and
the contact-independent response is enhanced in astrocytes
lacking Rai.
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FIGURE 4 | Rai−/− astrocytes inhibit T-cell proliferation and TCR signaling

through cell-cell contact-independent mechanisms. (A) Flow cytometric

analysis of CFSE-labeled splenic mouse cells from wild-type mice stimulated

for 72 h with anti-CD3/CD28 antibodies (3+28) in combination with either

NECA or supernatants from IFNγ-treated Rai−/− (SN AstroRai−/−) or Rai+/+

(SN AstroWT) astrocytes in presence or absence of ARL67156 (100µM) (ARL).

The graph shows the mean value ± SD of the percentage of CFSElow cells

(proliferating cells) (n = 5). (B) Immunoblot analysis of ZAP-70 phosphorylation

(Continued)

FIGURE 4 | in postnuclear supernatants of splenocytes from wild-type mice

stimulated for 5min with anti-CD3/CD28 antibodies (3+28) in combination

with either NECA or supernatants from IFNγ-treated Rai−/− (SN AstroRai−/− )

or Rai+/+ (SN AstroWT) astrocytes in presence or absence of ARL67156

(100µM) (ARL). A control blot of the same filter is shown. The histogram

shows the quantification by densitometric analysis of the levels of

phosphorylated ZAP-70 relative to actin (n = 3). One-way ANOVA;

****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.

Rai−/− Astrocytes Inhibit T Cell
Proliferation by Suppressing TCR Signaling
and Promoting Adenosine-Dependent
CTLA-4 Upregulation
The enhanced ability of Rai−/− astrocytes to co-upregulate
surface CD39/CD73 and hydrolyze eATP in the presence
of the pro-inflammatory cytokines or factors released by
encephalitogenic T cells suggests that Rai−/− astrocytes may
suppress the activity of infiltrated T cells in an adenosine-
dependent manner. To test this hypothesis we measured
the proliferation of splenic T cells activated by CD3/CD28
costimulation in the presence of conditioned media from
IFNγ-treated Rai−/− or Rai+/+ astrocytes, using a non-
hydrolysable adenosine analog as control. Flow cytometric
analysis of CFSE-labeled splenocytes showed that culture
supernatants from both IFNγ-treated wild-type and Rai−/−

astrocytes, but not from untreated astrocytes, inhibited T
cell proliferation (Figure 4A, Supplementary Figure 5). These
effects were neutralized by treatment with the CD39/CD73
inhibitor ARL67156 (Figure 4A), indicating that they were
mediated by adenosine. ARL67156 alone had no effect on
CD3/CD28-dependent proliferation (Supplementary Figure 5).
Suppression of T cell proliferation was more profound in
the presence of conditioned media from Rai−/− astrocytes
(Figure 4A), consistent with their higher adenosine content
(Figure 1).

Adenosine binding to A2AR results in an elevation in
intracellular cAMP, which effectively inhibits TCR signaling
through the PKA-dependent activation of the kinase Csk, a
negative regulator of the initiating kinase Lck (29). Lck is
required for the phosphorylation-dependent recruitment of the
kinase ZAP-70 to the TCR, a key step for signal propagation
(30). To explore the ability of astrocytes to modulate TCR
signaling through their ATP-hydrolysing activity, splenic T cells
were activated by CD3/CD28 costimulation in the presence
of conditioned media from wild-type or Rai−/− astrocytes in
the presence or absence of ARL67156, and the activation of
ZAP-70 was measured by immunoblot using a phosphospecific
antibody. Consistent with their inhibitory effect on T cell
proliferation, supernatants from IFNγ-treated, but not from
untreated, astrocytes suppressed ZAP-70 activation, with a higher
efficiency for supernatants from Rai−/− astrocytes (Figure 4B,
Supplementary Figure 5). Inhibition was fully relieved by the
ectonucleotidase inhibitor (Figure 4B), supporting the notion
that suppression of TCR signaling by astrocyte-derived factors is
mediated by CD39/CD73-dependent adenosine production.
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FIGURE 5 | Rai−/− astrocytes promote CTLA-4 expression on T cells through cell-cell contact-independent mechanisms. (A) Flow cytometric analysis of the

frequency of CTLA-4 positive cells among splenic mouse T cells treated with culture supernatants from IFNγ-treated Rai+/+ (SN AstroWT) or Rai−/− (SN

AstroRai−/−) astrocytes or NECA for 72 h. Data are presented as mean value ± SD of the percentage of CTLA-4 positive cells (n = 3). (B) Immunoblot analysis of

phosphorylated PKA substrates and phospho-CREB in lysates of CD4+ T cells from wild-type mice stimulated with anti-CD3 antibodies, culture supernatants from

IFNγ-treated Rai+/+ (SN AstroWT) or Rai−/− (SN AstroRai−/−) astrocytes or NECA for 5min. β-Tubulin was used as loading control. The histogram shows the

quantification by densitometric analysis of the levels of phosphorylated PKA substrates and CREB relative to tubulin (n = 3). (C) Flow cytometric analysis of the

frequency of CTLA-4 positive cells among splenic mouse T cells stimulated with anti-CD3/CD28 antibodies (3+28) in combination with either NECA or supernatants

from IFNγ-treated Rai+/+ (SN AstroWT) or Rai−/− (SN AstroRai−/−) astrocytes in presence or absence of ARL67156 (100µM) (ARL). Data are presented as mean

value ± SD of the percentage of CTLA-4 positive cells (n = 5). (D) Real-Time PCR analysis of full length and soluble CTLA-4 mRNA expression in splenic mouse cells

stimulated for 24 h with anti-CD3/CD28 antibodies (3+28) in the presence of supernatants from IFNγ-treated Rai+/+ (SN AstroWT) or Rai−/− (SN AstroRai−/−)

astrocytes. The levels of the different transcripts were normalized to GAPDH, used as housekeeping gene. Data are presented as mean value ± SD (n = 3). One-way

ANOVA; ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.

In addition to directly inhibiting TCR signaling, adenosine
suppresses T cell responses by inducing the cAMP/PKA-
dependent expression of the inhibitory receptor CTLA-4, which
blocks CD28-mediated costimulation (31, 32). Additionally,
an upregulation of CTLA-4 expression has been reported in

T cells exposed to astrocytes or to their conditioned media
(7), suggesting a mechanistic link between these observations
and our finding that astrocytes effectively degrade eATP.
To address this issue, surface CTLA-4 was measured by
flow cytometry on T cells exposed to conditioned media
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from IFNγ-treated wild-type or Rai−/− astrocytes. The
levels of T cell surface CTLA-4 were higher in the presence
of IFNγ-treated astrocyte culture supernatants, similar to
adenosine-treated T cells. Significantly higher levels of
CTLA-4 were observed in the presence of supernatants
from Rai−/− astrocytes compared to wild-type astrocytes
(Figure 5A). The enhanced ability of conditioned media from
IFNγ-treated Rai−/− astrocytes to induce A2AR signaling
compared with wild-type astrocytes was further supported by
an enhancement of PKA activity and CREB phosphorylation
(Figure 5B). Culture supernatants from untreated astrocytes
had no effect on surface CTLA4 (Supplementary Figure 5).
Supernatants from IFNγ-treated Rai−/− astrocytes, but
not from IFNγ-treated WT astrocytes, induce significant
CTLA4 upregulation also on CD3/CD28 activated T cells
when comparing with activated T cells without addition of
astrocytes supernatant (Figure 5C). This effect was completely
neutralized by the ectonucleotidase inhibitor (Figure 5C),
indicating that CTLA-4 upregulation by astrocytes is dependent
on their ectonucleotidase activity. ARL67156 alone had
no effect on CD3/CD28-dependent CTLA4 upregulation
(Supplementary Figure 5).

While CTLA-4 can be rapidly expressed at the T-cell surface
through the release of an intracellular pool stored in lysosomes
(33), adenosine-dependent CTLA-4 upregulation involves de
novo gene expression triggered by cAMP-dependent activation of
the transcription factor CREB (34). To understand whether the
increase in surface CTLA-4 observed in the presence of astrocyte
culture supernatants was the result of transcriptional activation,
wemeasured CTLA-4mRNA levels on splenic T cells activated by
CD3/CD28 costimulation in the presence of conditioned media
from IFNγ-treated wild-type or Rai−/− astrocytes. Real-time RT-
PCR analysis revealed an increase in the levels of the transcript
for both the full length and the soluble form of CTLA-4, which
results from alternative splicing and inhibits T-cell responses
by binding B7 on APCs (35, 36) (Figure 5D). Collectively,
these results indicate that astrocytes inhibit T cell activation
and proliferation by suppressing TCR signaling and enhancing
CTLA-4 expression through CD39/CD73-mediated adenosine
production and cAMP/PKA signaling, which are enhanced in the
absence of Rai.

A2 Reactive Astrocytes Are Induced by
Encephalitogenic T Cells in the Absence
of Rai
Astrocytes can polarize toward a neurotoxic A1 phenotype or a
neuroprotective A2 anti-inflammatory phenotype depending on
the disease. To date the signaling mechanisms responsible for the
shift elicited by inflammatory cues remains largely unknown (11),
and whether encephalitogenic T cells drive astrocyte polarization
has as yet not been explored.

To investigate whether soluble factors released by
encephalitogenic T cells induce astrocyte polarization, A1
or A2-specific transcripts were measured in astrocytes cultured
for 24 h in conditioned media from encephalitogenic T cells.
While no effect was detected in control astrocytes, under these

FIGURE 6 | Rai negatively controls the conversion of astrocytes toward a

neuroprotective phenotype. (A) Real-Time PCR analysis of A1-specific

(H2-D1, Serping and C3; upper panels) or A2-specific (Emp1 and S100a10;

lower panels) transcripts in WT (Astro WT) and Rai−/− (Astro Rai−/−)

astrocytes either untreated or treated for 24 h with culture supernatants from

MOG-specific T cells generated from WT mice. Data from 3 independent

experiments, each carried out on the pooled astrocytes from at least 5 Rai+/+

or 5 Rai−/− mice, are presented as mean value ± SD. The levels of the

different transcripts were normalized to GAPDH, used as housekeeping gene.

(B) Real-Time PCR analysis of the A1-specific transcripts H2-D1, Serping and

C3 in the brain of Rai+/+ EAE mice (EAE WT) and Rai−/− EAE mice (EAE

Rai−/−) 15 days post immunization. Data are presented as mean value ± SD

obtained on three Rai+/+ and three Rai−/− EAE mice. 2-way ANOVA;

**p < 0.01, *p < 0.05.

conditions a strong induction of the A2-specific transcripts
Emp1 and S100a10 was detected in Rai−/− astrocytes. At
variance, Rai deficiency did not affect the levels of the A1-specific
transcript H2-D1 and Serping1 (Figure 6A). Consistent with
the protective role played by Rai deficiency in the EAE mouse
model, lower levels of the A1-specific transcript H2-D1, Serping1
and C3 were found in the brain of Rai−/− EAE mice compared
with control EAE mice (Figure 6B). These data identify Rai as a
signaling molecule that restrains the polarization of astrocytes to
the neuroprotective A2 phenotype.

DISCUSSION

The cross-talk of astrocytes with encephalitogenic T cells is
centrally implicated in multiple sclerosis pathogenesis (13, 37).
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Astrocytes respond to Th1 and Th17 cell-derived cytokines by
producing factors that attract inflammatory cells. Additionally,
they act as APC to promote effector T cell activation and
expansion (38). However, activated astrocytes also deploy a
variety of strategies to counteract inflammation and limit
neuronal damage, including induction of Fas-mediated apoptosis
of infiltrated T cells, skewing of T-cell polarization to a
protective Th2 phenotype and Treg-dependent suppression of
encephalitogenic T-cells (10, 39, 40). Here we document a new
protective mechanism exploited by astrocytes to suppress T-cell
activation and proliferation, which involves the upregulation of
the astrocytic expression and activity of the ectonucleotidases
CD39 and CD73 in response to pro-inflammatory factors
released by encephalitogenic T cells. Additionally, we identify Rai
as a negative regulator of this inhibitory circuitry.

The balance between eATP and adenosine has emerged as an
important factor in the control of neuroinflammation to which
both infiltrating T cells and astrocytes contribute. eATP boosts
T-cell activation and promotes Th17 cell differentiation while
inhibiting Treg cell differentiation and stability (41). Additionally
eATP triggers microglia activation (42). On the other hand,
ATP degradation to adenosine is a potent mechanism of T-
cell suppression, and in fact CD39 has been established as a
Treg cell marker that contributes to their inhibitory function
(18, 43, 44). The function of CD39+ Treg cells in MS is
still unclear. Indeed in relapsing-remitting multiple sclerosis
enhanced frequency of CD39+ Treg cells has been reported
both during relapse (45, 46) and during the remission phase
(47). Adenosine suppresses TCR signaling by interacting with
the adenosine receptor A2AR (48), which activates a cAMP/PKA
axis that inhibits TCR signaling at multiple steps (29). We
found that conditioned media from IFNγ-activated astrocytes
were able to inhibit T-cell proliferation and that this effect
was abrogated by an ectonucleotidase inhibitor, indicating
a contact-independent, adenosine-mediated mechanism of T-
cell suppression. Accordingly, proximal TCR signaling, which
requires activation of the kinase Lck that is inhibited by
cAMP (49), was impaired when T cells were activated in the
presence of conditioned media from astrocytes. The ability of the
ectonucleotidase inhibitor to reverse this effect highlights a major
role for the ATP-degrading, adenosine-elevating activity of CD39
in T-cell suppression by astrocytes.

Interestingly, we found that the ATP-degrading activity of
astrocytes contributes to the suppression of T-cell proliferation
through an additional, cAMP-dependent mechanism involving
upregulation of the inhibitory receptor CTLA-4. Astrocytes
have been shown to induce the contact-independent CTLA-4
upregulation on activated T cells, suggesting the presence of
soluble inhibitory factors (7). The fact that the enhancing effect
of culture supernatants from IFNγ-activated astrocytes on T cell
expression of CTLA-4 can be reversed by an ectonucleotidase
inhibitor supports the notion that a major one among these
factors is adenosine. Of note, we found that surface CTLA-4
upregulation was paralleled by an increase in the levels of specific
transcripts, consistent with the fact that A2AR triggering on T
cells promotes CTLA-4 transcription through its cAMP-elevating
activity and the resulting activation of the transcription factor

CREB (34). Indeed, we found that conditionedmedia from IFNγ-
treated astrocytes were able to trigger CREB activation in an
ectonucleotidase-dependent manner.

Interestingly, the levels of surface CD39 expression were
upregulated in response to long-term treatment with IFNγ but
not IL-17, while surface CD73 expression was not affected,
highlighting CD39 as a limiting factor in ATP degradation by
astrocytes and indicating that this protective response may be
elicited preferentially by Th1 cells. It is however noteworthy
that both IFNγ and IL-17, and to an even greater extent
conditioned media from encephalitogenic T cells, increase the
abundance of a CD39+ astrocyte subpopulation that co-expresses
CD73, which may account for the increased ATP-degrading
activity detected under these conditions. This finding supports
the notion that astrocytes shift toward an immunosuppressive
phenotype in a Th1/Th17-conditioned microenvironment. Of
note, transcription of the gene encoding CD39 has been reported
to be activated by cAMP (50). Taking into account the fact that
astrocytes are able to promote CD39 upregulation on co-cultured
activated T cells (8), a possible scenario is that the resulting
adenosine-generating activity of T cells may trigger adenosine
signaling on astrocytes, thereby promoting cAMP accumulation
and transcriptional activation of CD39, which would in turn
result in suppressive adenosine-mediated signaling in T cells.
ROS-dependent upregulation of CD39 has been recently reported
in CD8T cells (51). While the impact of ShcC/Rai on ROS
production has as yet not been investigated, our finding that
surface CD39 expression was upregulated in response to long-
term treatment with IFNγ opens the possibility that enhanced
ROS generationmay account for the higher CD39 expression also
in astrocytes.

Our results identify Rai as a negative regulator of astrocyte-
mediated, adenosine-dependent T-cell suppression. Indeed, the T
cell suppressive effects of conditioned media from IFNγ-treated
astrocytes were enhanced by Rai deficiency. This results both
from the enhanced ability of Rai−/− astrocytes to degrade eATP
to adenosine in response to short-term IFNγ treatment and from
the greater increase in CD39 expression and frequency of the
CD39+CD73+ subpopulation after long-term IFNγ treatment
compared to their wild-type counterparts. These results provide
insights into the mechanisms responsible for the protective effect
of Rai deficiency in astrocytes from encephalitogenic T cell-
dependent neurodegeneration (23). Rai was initially identified as
a molecular adaptor that couples the receptor tyrosine kinase Ret
to Akt in neuronal cells (52). We showed that in T cells Rai limits
antigen receptor signaling by impairing ZAP-70 recruitment to
the activated TCR (53). The restraining effects of Rai on IFNγ-
dependent CD39 expression and activity could be hypothesized
to result from a similar mechanism involving the ability of Rai to
exploit its adaptor function to interfere with IFNγR signaling.

That Rai is able to modulate the activity CD39 is intriguing.
Studies on this ectoenzyme have been largely focused on the
extracellular domain, which represents the most conspicuous
part of the protein (54). Interestingly, recent evidence indicates
that the short cytosolic tail is also implicated in the regulation
of CD39 activity. Namely, RanBPM, an interactor of the small
GTPase Ran, has been shown to associate with the cytosolic
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tail of CD39, which negatively regulates its activity, in B cells
(28). RanBPM acts as a scaffolding protein, interacting with
a variety of membrane proteins and receptors (55). Here we
demonstrate that Rai forms a complex with RanBPM and
promotes IFNγ-dependent recruitment of RanBMP to CD39,
thereby restraining its function, which places Rai in the negative
regulatory circuitry of CD39, accounting for the enhanced CD39
activity in Rai−/− astrocytes.

Reactive astrocytes may adopt two distinct phenotypes,
A1 and A2, with A1 astrocytes being neurotoxic and A2
astrocytes neuroprotective (11). Although astrocyte conversion
to the A1 phenotype has been shown to be modulated
by activated microglia in human neurodegenerative diseases
including multiple sclerosis (11), the underlying mechanism and
the impact of encephalitogenic T cells on this process remain
unknown. Our data provide evidence for a new role of Rai as a
negative regulator of astrocyte polarization to the A2 phenotype,
highlighting an additional mechanism involving astrocytes that
contributes to attenuating EAE severity in Rai−/− mice (23).

In conclusion, the results presented in this report show
a reciprocal interplay whereby pathogenic T cells trigger
CD39 expression and activity on astrocytes, highlighting this
ectonucleotidase as a hub where signals from T cells and
astrocytes converge to modulate the pathogenic activity of T cells
in the CNS. They moreover identify astrocytic Rai as a central
player in this cross-talk which unleashes the pathogenic effects
of infiltrated encephalitogenic T cells in the CNS by negatively
regulating a protective CD39-based T cell suppression circuitry.
Finally, they provide evidence that Rai negatively regulates the
polarization of reactive astrocytes toward a neuroprotective A2
phenotype. Both the enhanced T cell suppressive activity of

Rai-deficient astrocytes and their enhanced A2 polarization are
likely to account for our finding that Rai deficiency in astrocytes
prevents reactive astrogliosis and ameliorates EAE (23).
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