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Fish Red-Blood Cells (RBCs) are nucleated cells that can modulate the expression of

different sets of genes in response to stimuli, playing an active role in the homeostasis

of the fish immune system. Nowadays, vaccination is one of the main ways to control

and prevent viral diseases in aquaculture and the development of novel vaccination

approaches is a focal point in fish vaccinology. One of the strategies that has recently

emerged is the use of nanostructured recombinant proteins. Nanostructured cytokines

have already been shown to immunostimulate and protect fish against bacterial

infections. To explore the role of RBCs in the immune response to two nanostructured

recombinant proteins, TNFα and a G-VHSV protein fragment, we performed different in

vitro and in vivo studies. We show for the first time that rainbow trout RBCs are able

to endocytose nanostructured TNFα and G-VHSV protein fragment in vitro, despite not

being phagocytic cells, and in response to nanostructured TNFα and G-VHSV fragment,

the expression of different immune genes could be modulated.

Keywords: erythrocytes, red blood cells, bacterial inclusion bodies, TNFα, VHSV glycoprotein G, immune response

INTRODUCTION

Fish red blood cells (RBCs) are nucleated cells that contain organelles in their cytoplasm unlike
those of mammals (1). Apart from their well-known role in gas exchange, recently a set of new
biological roles for nucleated RBCs related to the immune response have been reported. Nucleated
RBCs are able to phagocytose and act as antigen presenting cells (2, 3). They can respond to different
pathogen associatedmolecular patterns (PAMPs), modulate leukocyte activity, release cytokine-like
factors (4, 5) and lately they have been implicated in the response to viral infections [reviewed in
Nombela and Ortega-Villaizan (6)].Considering all of these findings, the potential role of RBCs in
the immune system of fish takes on a new, interesting perspective.

To date, one of the best strategies for preventing and controlling viral diseases in aquaculture
is DNA vaccination. However, it remains unclear which mechanisms are responsible for this
protection (7). The search for new, safe and effective vaccines has become a priority in this field.
Among fish viral diseases, viral hemorrhagic septicaemia (VHS) is a lethal infectious fish disease
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caused by viral hemorrhagic septicaemia virus (VHSV), which
affects over 50 species of fish, freshwater and marine, in the
northern hemisphere (8).

As an alternative to overcome the safety problems associated
to live attenuated or DNA vaccines, bacterial inclusion bodies
(IBs) nanostructured recombinant proteins have been presented
as a new option for vaccination (9). IBs are per se strong
stimulants of the fish immune system and have a set of
characteristics which make them an attractive alternative:
they are mechanically stable, production is scalable and cost-
effective, they are non-toxic biomaterials and are composed of
recombinant proteins. The latter means they are an adaptable
prototype, which could be a good platform for vaccination
against a wide range of diseases (9, 10). Such nanostructured
recombinant proteins have already been shown to protect fish
against bacterial infection (9).

In this paper, we show for the first time the response of
rainbow trout RBCs in vitro and in vivo to two different
nanostructured recombinant proteins, recombinant rainbow
trout tumor necrosis factor alpha protein (IBTNFα) and
recombinant fragment 16 of the glycoprotein G of VHSV (11)
(IBfrg16G−VHSV). In response to recombinant protein IBs, RBCs
were able to modulate the expression of interferon related
genes, the myxovirus resistance (mx) gene and genes related to
antigen presentation (cluster of differentiation 83 [cd83], major
histocompatibility class I [mhcI] and major histocompatibility
class II [mhcII]). Genes related to antioxidant response (natural
killer enhancing factor [nkef ] and glutathione S-transferase pi 1
gene [gstp1] and cytokines (interleukin 1β [il1β], interleukin 12β
[il12β], interleukin 6 [il6], interleukin 2 [il2], and interleukin
8 [il8]) were also modulated. Interestingly, IBTNFα mostly
down-regulated in vitro and in vivo immune genes expression
in RBCs meanwhile IBfrg16G−VHSV mainly showed an up-
regulation trend.

MATERIALS AND METHODS

Production of IBs, Purification,
Quantification , and Fluorescent Labeling
Nanostructured proteins were produced in E. coli following
the method described in Torrealba et al. (9) and Thwaite et
al. (12). In short, E. coli transformed with the plasmid of
interest was cultured in LB with the appropriate antibiotic
and recombinant protein expression was induced at OD550nm

0.5–0.8 with 1mM IPTG (Panreac, Barcelona, Spain). IBs
were isolated after 3 h additional incubation at 37◦C via
enzymatic and mechanical disruption of the cells according
to Torrealba et al. (10), followed by sterility monitoring
(12). Purified nanoparticles, named here IBfrg16G−VHSV, IBTNFα

and IBiRFP [an inclusion body made of a non-immunogenic
phytochrome-based near infra-red fluorescent protein (iRFP)
with the excitation/emission maxima at 690/713 nm (13)],
were stored at −80◦C until use. Quantification was performed
by western blot using an anti-His-tag antibody (Genscript,
Piscataway, NJ, USA) and calculating the protein concentration
from a standard curve using Quantity One software (Biorad,

Hercules, CA, the USA). For flow cytometry or confocal
microscopy, IBfrg16G−VHSV and IBTNFα were conjugated with
fluorescent Atto-488 NHS ester (Sigma-Aldrich) following
manufacturer’s instructions.

Animals
Juvenile rainbow trout (Oncorhynchus mykiss) were obtained
from a commercial farm (Piszolla S.L., Cimballa Fish Farm,
Zaragoza, Spain), and maintained at the University Miguel
Hernandez (UMH) facilities at 14◦C, fed daily with a commercial
diet (Skretting, Burgos, Spain). Prior to experiments, fish ware
acclimatized to laboratory conditions for 2 weeks. Separately,
adult rainbow trout were maintained at the Universitat
Autònoma de Barcelona (UAB) at 17 ± 1◦C, fed daily with
a commercial diet. The number of individuals used in each
experiment is indicated by an “n” in each figure legend.

Cell Cultures
Rainbow trout RBCs were obtained from peripheral blood of fish
sacrificed by overexposure to tricaine (tricaine methanesulfonate,
Sigma-Aldrich) (0.3 g/L). Peripheral blood was sampled from
the caudal vein using insulin syringes (Nipro, Bridgewater, NJ,
USA) as previously described (14). RBCs were purified by
two consecutive density gradient centrifugations (7,206 g, Ficoll
1.007; Sigma-Aldrich). Purity of RBCs of 99.9% was estimated
by optical microscopy (Figure S1). Purified RBCs were cultured
with RPMI-1640 medium (Dutch modification) (Gibco, Thermo
Fischer Scientific Inc., Carlsbad, CA) supplemented with 10%
fetal bovine serum (FBS) gamma irradiated (Cultek, Madrid,
Spain), 1mM pyruvate (Gibco), 2mM L-glutamine (Gibco),
50µg/mL gentamicin (Gibco) and 2µg/mL fungizone (Gibco),
100 U/mL penicillin and 100µg/mL streptomycin (Sigma-
Aldrich) at a density of 106 cells/mL at 14◦C.

Uptake of IBTNFα and IBfrg16G-VHSV by RBCs
RBCs cultures were treated with fluorescent IBTNFα or
IBfrg16G−VHSV at different concentrations and uptake was
analyzed by flow cytometry using a FACSCantoTM cytometer
(BD Biosciences, Madrid, Spain) (10.000 total events), at
different times post-treatment. For dose-response evaluation,
IBs at concentrations of 10, 20 and 50µg/mL were added to
RBCs cultures for 24 h. For time-course experiments, RBCs
were treated with 80µg/mL IBTNFα or 160µg/mL IBfrg16G−VHSV

for 6, 24 and 48 h. After incubation with IBs, the medium was
removed and RBCs were washed with phosphate-buffered saline
(PBS). RBCs were then resuspended in 200 µL of RPMI 2% FBS
for flow cytometry analysis.

In addition, confocal microscopy was performed to evaluate
the uptake of IBs by RBCs. RBCs were incubated with 80
µg /mL of IBTNFα or 160 µg /mL of IBfrg16G−VHSV for
24 h. Then, medium was removed and RBCs were washed as
indicated above. The RBC nucleus was labeled with 10µg/mL
Hoechst (Sigma-Aldrich) and RBC membrane was stained with
5µg/mL of CellMask (Thermo Fischer Scientific). Images were
taken with a Zeiss LSM 700 microscope (Zeiss, Oberkochen,
Germany) and analyzed with Imaris Software v8.2.1 (Bitplane,
Zurich, Switzerland).
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RBCs Immune Response After in vitro

Treatment With IBTNFα or IBfrg16G-VHSV

RBCs were treated in vitro with 50µg/mL of each IB for
24 h. IBiRFP was used as a control. After treatment, RBCs were
resuspended in TRK lysis buffer (Omega Bio-Tek Inc., Norcross,
GA, USA) and stored at−80◦C until RNA extraction.

RBCs Immune Response After in vivo

Treatment With IBTNFα or IBfrg16G-vhsv

Juvenile rainbow trout (15–20 g) were treated by intravenous
injection in caudal vein with 50 µL of IBs (5.5 mg/kg)
or 50 µL of PBS. At 24 and 48 h post-injection fish were
sacrificed by overexposure to tricaine. Peripheral blood

was sampled as described above and resuspended in RPMI
10% FBS. Then, RBCs were Ficoll-purified as explained
above. Purified RBCs were either resuspended in TRK
lysis buffer and stored at −80◦C until RNA extraction
or fixed for immunofluorescence and flow cytometry, as
described below.

In order to track the presence of IBs in vivo, IBTNFα was

monitored in peripheral blood and head kidney from IBTNFα

intravenously injected in caudal vein of rainbow trout by means

of fluorescent microscopy using IN Cell Analyzer 6,000 Cell

Imaging system (GE Healthcare, Little Chalfont, UK). Blood was

extracted 3 h post-injection as described above. Head kidney was
aseptically removed, placed in 24 well plates with RPMI 10%

TABLE 1 | List of primers and probes used.

Gene Forward primer Reverse primer Probe Reference or

accession number

tlr3 ACTCGGTGGTGCTGGTCTTC GAGGAGGCAATTTGGACGAA CAAGTTGTCCCGCTGTCTGCTCCTG (14)

tlr9 CCTGCGACACTTCCTGGTTT GCCAGTGGTAAGAAGGAGGATCT CAGACTTCCTGCGTGCCGGCC (15, 16)

ifn1 ACCAGATGGGAGGAGATATCACA GTCCTCAAACTCAGCATCATCTATGT AATGCCCCAGTCCTTTTCCCAAATC (14)

mx1-3 TGAAGCCCAGGATGAAATGG TGGCAGGTCGATGAGTGTGA ACCTCATCAGCCTAGAGATTGGCTCCCC (16)

il15 TACTATCCACACCAGCGTCTGAAC TTTCAGCAGCACCAGCAATG TTCATAATATTGAGCTGCCTGAGTGCCACC (14)

nkef CGCTGGACTTCACCTTTGTGT ACCTCACAACCGATCTTCCTAAAC (14)

gstp1 CCCCTCCCTGAAGAGTTTTGT GCAGTTTCTTGTAGGCGTCAGA (14)

hepcidin TCCCGGAGCATTTCAGGTT GCCCTTGTTGTGACAGCAGTT (14)

trx AGACTTCACAGCCTCCTGGT ACGTCCACCTTGAGGAAAAC (14)

il6 ACTCCCCTCTGTCACACACC GGCAGACAGGTCCTCCACTA CCACTGTGCTGATAGGGCTGG (17)

il12β TGACAGCCAGGAATCTTGCA GAAAGCGAATGTGTCAGTTCAAA ACCCAACGACCAGCCTCCAAGATG (17)

tnfα AGCATGGAAGACCGTCAACGAT ACCCTCTAAATGGATGGCTGCTT AAAAGATACCCACCATACATTGAAGCAGATTGCC (18)

il8 AGAGACACTGAGATCATTGCCAC CCCTCTTCATTTGTTGTTGGC TCCTGGCCCTCCTGACCATTACTGAG (17, 19)

il1β GCCCCCAACCGCCTTA CAGTGTTTGCGGCCATCTTA ACCTTCACCATCCAGCGCCACAA (17)

il2 GTTGCAGCATTGGCCTGTT TGTTCTCCTTATCAATCGTCTTTTGT CAACACCACATCAGCATGACTGCCAC NM_001164065.2

cd83 TTGGCTGATGATTCTTTCGATATC TGCTGCCAGGAGACACTTGT TCCTGCCCAATGTAACGGCTGTTGA (20)

mhcI GACAGTCCGTCCCTCAGTGT CTGGAAGGTTCCATCATCGT (21)

mhcII TGCCATGCTGATGTGCAG GTCCCTCAGCCAGGTCACT CGCCTATGACTTCTACCCCAAACAAAT (22)

FIGURE 1 | Uptake of IBTNFα and IBfrg16G−VHSV by RBCs in vitro. (A) Dose-response of RBCs incubated 24 h with 10–50µg/mL IBfrg16G−VHSV (gray bars) or

IBTNFα (black bars). (B) Time course monitoring of RBCs incubated 6, 24, and 48 h with 160µg/mL IBfrg16G−VHSV (gray bars) or 80µg/mL IBTNFα (black bars). Data

represent mean ± SD (n = 4). Two-way Anova and Dunnett’s multiple comparisons test was performed between all conditions and control (untreated cells) and

among concentrations. *, **, ***, ****P-value < 0.05, 0.01, 0.001, and 0.0001, respectively.
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FBS and disaggregated with a Pasteur pipette and passed through
a Falcon 40µm nylon cell strainer (BD Biosciencies) using a
plunger of a 5 ml syringe.

RNA Isolation, cDNA Synthesis, RT-qPCR,
and Gene Expression Analysis
RBCs total RNA was extracted as previously described (14)
using E.Z.N.A. R© Total RNA Kit (Omega Bio-Tek Inc.).
DNAse treatment was performed in order to eliminate
residual genomic DNA using TURBOTM DNase (Ambion,
Thermo Fischer Scientific Inc.). Then cDNA synthesis and
RT-qPCR was performed as described in Nombela et al
(14). Primers and probes used are listed in Table 1. Gene
expression was analyzed by means of the 2 −1Ct or 2−11Ct

(23) using 18S rRNA (Applied Biosystems, Thermo Fischer
Scientific Inc.) as endogenous gene. Principal component

analysis (PCA) and clustering heatmap of immune-gene
expression data (2 −1Ct or 2−11Ct) were performed using
Clustvis software (24). For PCA, unit variance scaling was
applied to rows and singular value decomposition (SVD)
with imputation was used to calculate principal components.
For clustering heatmap, columns were collapsed by taking
mean inside each group, rows were centered, and unit
variance scaling was applied to rows; then, imputation
was used for missing value estimation; and, both rows
and columns were clustered using correlation distance and
average linkage.

Immunofluorescence Assays
Purified RBCs were fixed as previously described (14),
using 4% paraformaldehyde (PFA; Sigma-Aldrich) and
0.008% glutaraldehyde (GA, Sigma-Aldrich) in RPMI

FIGURE 2 | Confocal microscopy images digitalized using z-stack. RBCs incubated with (A) 80µg/mL IBTNFα or (B) 160µg/mL IBfrg16G−VHSV for 24 h. IBs are

showed in green, cell membrane (CellMaskTM ) in red and nucleus (Hoechst-stained) in blue. (C) IBs monitorization in vivo in cells obtained from head kidney of rainbow

trout injected intravenously with 5.5 mg/kg of IBTNFα, 3 h post- injection. Representative bright-field and FITC microscopy images taken with 40× magnification.
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medium. Anti-MX (25, 26) and anti-IL8 (27) were used
as primary antibodies and goat-CFTM647 anti-mouse IgG
(H+L) and goat-CFTM647 anti-rabbit IgG (H+L) antibodies
(Sigma-Aldrich) were used as secondary antibodies.

Nuclear staining was performed with 1µg/mL of 4
′
-6-

Diamidino-2-phenylindole (DAPI, Sigma-Aldrich). Images
were captured in an IN Cell Analyzer 6000 Cell Imaging
system. Flow cytometry was carried out in a FACSCantoTM

flow cytometer.

Software and Statistics
Graphpad Prism 6.01 (www.graphpad.com) was used for
statistics and graphic representation. Statistic tests and P-
values associated with graphics are indicated in each assay.
Flow cytometry data was processed and analyzed using
Flowing Software 2.5.1 (www.flowingsoftware.com/). Principal
component analysis (PCA) and clustering of gene expression
analysis was performed using ClustVis software (https://biit.cs.
ut.ee/clustvis/) (24).

RESULTS

Uptake of IBTNFα and IBfrg16G-VHSV by RBCs
In order to evaluate the interaction between RBCs and IBs, we
performed a dose-response and time-course evaluation by means
of flow cytometry. According to our results, all IB concentrations
assayed showed uptake or attachment to RBCs, which increased
with IB concentration (Figure 1A). The percentage of IB positive
cells ranged from 5 to 7% at 50µg/mL after 24 h incubation.
Time course evaluation at 6, 24, and 48 h showed no differences
in IB load in RBCs (Figure 1B) indicating that the maximum
IB internalization or attachment occurred by 6 h of incubation.
However, the time course was carried out with a higher dose and
up to 17% of fluorescent positive cells were detected. This was
maximum percentage uptake achieved under our experimental
conditions. The level of uptake of IBTNFα by RBCs was observed
to be higher than IBfrg16G−VHSV when comparing the same
concentration of both IBs (Figure 1A). IB uptake was confirmed
by confocal 3D images, which showed the internalization of
IBTNFα (Figure 2A) and IBfrg16G−VHSV (Figure 2B) in the cytosol
of RBCs.

The presence of IBTNFα in RBCs was monitored in vivo
in peripheral blood and head kidney cells by fluorescent
microscopy using intravenously injected IBTNFα. In blood, few
RBCs were found to carry the IBTNFα (data not shown); however,
RBCs carrying IBTNFα were easily found in head kidney cells
extracts (Figure 2C).

Immune Response of RBCs Induced After
Exposure to IBTNFα or IBfrg16G-VHSV in vitro
To explore the immune response triggered by IBs in RBCs in
vitro, RBCs were treated with 50µg/mL of IBTNFα, IBfrg16G−VHSV

or IBiRFP and RNA was extracted at 24 h post-treatment. IBTNFα

tended to down-regulate the genes tested in RBCs at 24 h
post-treatment. This down-regulation was statistically significant
in genes related to antigen presentation (cd83, mhcI) and
antioxidant gene gstp1. On the other hand, only the antioxidant

TABLE 2 | Immune-gene expression analysis of RBCs stimulated in vitro with

50µg/mL of IBiRFP, IBTNFα and IBfrg16G−VHSV at 24 h post-treatment.

IBTNFα IBfrg16G−VHSV

Mean SD Mean SD

mx 0.902 0.157 1.013 0.199

il15 0.943 0.288 1.181 0.414

cd83 0.782*** 0.042 0.918 0.101

mhcI 0.794* 0.138 0.899 0.145

mhcII 0.965 0.235 1,270 0.428

nkef 1.106 0.753 1.067 0.943

gstp1 0.785** 0.105 1.254 0.588

trx 1.070 0.179 1.289** 0.316

tlr3 0.866 0.163 0.887 0.198

tlr9 0.814 0.656 0.907 0.623

RBCs were Ficoll-purified and treated with IBs. 24 h post-treatment gene expression was

analyzed by RT-qPCR, 2−11Ct method, normalized to the endogenous gene eukaryotic

18S, and relative to control cells (treated with IBiRFP ). Data represent mean fold change±

SD (n = 4). Mann-Whitney test was performed between each condition and control cells.

*, **, ***P-value < 0.05, 0.01, and 0.001 respectively.

trx gene was significantly up-regulated in IBfrg16G−VHSV treated
RBCs at 24 h post-treatment (Table 2).

In order to analyse the gene expression of RBCs in response
to each treatment as a whole, multivariate analyses of the gene
expression data matrix were performed. A principal component
analysis (PCA) plot of the gene expression profile showed
a differentiated population of RBCs treated with IBTNFα or
IBfrg16G−VHSV compared to IBiRFP (Figure 3A). This is also
appreciable in the clustering heatmap (Figure 3B), where the
mean values of molecular (gene expression) signatures are
clustered. The heatmap data matrix visualizes the values in the
cells by the use of a color gradient which gives an overview of the
largest and smallest values in the matrix (24).

Immune-Gene and Protein Expression
Modulation in RBCs From Peripheral Blood
After in vivo Treatment With IBTNFα

or IBfrg16G-VHSV

Rainbow trout were intravenously injected to evaluate the
immune response triggered by IBs in RBCs of peripheral blood
in vivo. RBCs were sampled at 24 and 48 h post-injection. In
general, the results showed, as in vitro, a down-regulatory trend
in the gene expression of IBTNFα treated individuals compared
to IBiRFP treated individuals. It should be noted that cd83 was
significantly down-regulated at 24 h post-injection (Figure 4A),
as occurred in vitro. On the other hand, il6 was significantly
up-regulated at 24 h post-injection. Further, tlr9, ifn1, il1β,
il2, mhcII and nkef genes were significantly down-regulated
at 48 h post-injection (Figure 4B). In contrast, IBfrg16G−VHSV

treated individuals showed an up-regulatory trend at both 24
and 48 h post-injection, compared to IBiRFP, with significant
up-regulation of cytokines il2 and il6, and antioxidant gene
nkef at 24 h post-injection, and of tlr3, interferon inducible
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FIGURE 3 | Principal component analysis (PCA) of immune-gene expression evaluation of RBCs stimulated in vitro with 50µg/mL of IBiRFP, IBTNFα, or

IBfrg16G−VHSV, at 24 h post-treatment. (A) PCA plot of molecular (gene expression data, 2−11Ct) signatures of IBiRFP, IBTNFα, or IBfrg16G−VHSV treated samples, at

24 h post-treatment. Ellipses and shapes show clustering of the samples. (B) Heatmap of molecular (gene expression data, 2−11Ct) signatures of IBiRFP, IBTNFα, or

IBfrg16G−VHSV treated samples. Annotations on top of the heatmap show clustering of the samples, mean values. PCA plot and heatmap were performed using

Clustvis software. Heatmap data matrix visualizes the values in the cells using a color gradient which gives an overview of the largest and smallest values in the matrix.

mx, cd83, and mhcII at 48 h post-injection (Figures 4A,B,
Table S1). However, mx gene appeared down-regulated at
24 h post-injection. Separately, most of the genes were up-
regulated with all the treatments in comparison with PBS-
injection.

The gene expression profile PCA plot depicted differentiated
populations for RBCs from individuals treated with IBTNFα

or IBfrg16G−VHSV compared to IBiRFP (Figures 5A, 6A, for
24 and 48 h post-injection, respectively), which was also
observed in the clustering heatmap (Figures 5B, 6B, for 24
and 48 h post-injection respectively). In addition, at 48 h post-
injection, MX and IL8 protein levels, evaluated by means
of flow cytometry, showed an increment, but not statistically
significant, in MX (Figures 7A,C) and IL8 (Figures 7B,D)
in RBCs from rainbow trout treated with IBfrg16G−VHSV

in relation to PBS-injected or the other IBs assayed. This
result correlates with the mx gene expression at 48 h in
vivo. On the other hand, the protein levels of MX and IL8
in RBCs from IBTNFα treated rainbow trout were slightly
lower than IBiRFP and PBS-injected individuals (only showing
statistical significance for MX between IBTNFα and IBiRFP

treatments), which is consistent with the down-regulatory trend
observed in IBTNFα treated RBCs in vivo and in vitro at
the transcriptional level. Moreover, in whole peripheral blood,
a similar tendency was observed in MX protein expression,
although more pronounced in this case. Note, however, for
IL8 protein levels, we did not observe any difference among
groups (Figures 8A,B).

DISCUSSION

Recently, IBs have been reported as new alternatives in fish
prophylaxis as immunostimulants or adjuvants (10), thus
potentially serving as a new platform for vaccine delivery.
The uptake of IBs has been reported in rainbow trout

macrophages (RT-HKM) and zebrafish liver cells (ZFL). In
both cell types IBs made with cytokines stimulate the innate
immune response (9). Moreover, IBs made with fish viral
antigens have evoked an anti-viral innate immune response in
ZFL and RT-HKM (12). However, the immune response of
nucleated RBCs to nanostructured cytokine or viral antigen
IBs has not been tested until now. Nucleated RBCs are the
main cell in the blood and recently have been endorsed as
immune cells mediators (6, 28). In this work we show that
the uptake or attachment of IBs by rainbow trout RBCs
occurred in approximately 7% of cells counted. This contrasts
to the near 40% and 80% reported for ZFL and RT-HKM,
respectively, at same concentration (50µg/mL) of IBTNFα (9).
RBCs endocytosed both the IBs tested here reaching their
maximum level at 6 h post-treatment, in contrast to RT-HKM
and ZFL cell lines, which reached their maximum uptake
at 24 h post-treatment in vitro (10). Besides, monitorization
of IBTNFα in vivo demonstrated its presence on/in RBCs
from head-kidney 3 h post-injection. The mechanism by
which RBCs endocytose IBs is unknown. It may occur via
the micropinocytosis endocytic pathway, as proposed for
mammalian cells (29).

Significantly, with this work, we add to the growing body of
data demonstrating nucleated RBCs can exercise a role in the
immune response. RBCs are able to respond to virus (6, 14, 30),
produce cytokines when exposed to stimuli (17), and endocytose
pathogens (2). Here we show for the first time rainbow trout
RBCs evoke an immune response to IBs made of cytokine
TNFα and viral protein frg16G-VHSV in vitro and in vivo.
We demonstrate this response at protein and transcript level.
Rainbow trout Ficoll-purified RBCs treated with IBs in vitro and
RBCs Ficoll-purified from blood extracts from IB-intravenously
injected individuals modulated the expression of genes related to
antigen presentation, cytokines and other genes involved in the
immune response. PCA clearly clustered the RBCs’ immune-gene
expression profiles for each treatment.
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FIGURE 4 | Immune-gene expression analysis of RBCs from rainbow trout injected intravenously with PBS, IBiRFP, IBTNFα, or IBfrg16G−VHSV at 24 and 48 h

post-injection. Rainbow trout of 15–20 g were injected with 5.5 mg/kg of IB intravenously. Blood was extracted and RBCs Ficoll-purified 24 h (A) and 48 h (B)

post-injection. Gene expression was analyzed by RT-qPCR, 2−1Ct method, with endogenous gene eukaryotic 18S rRNA. Data represent mean AU (arbitrary units) ±

SD (n = 4). Mann-Whitney test was performed between each condition and control (treated with PBS or IBiRFP). #P-value < 0.05, compared to PBS; & P-value <

0.05, compared to IBiRFP.

FIGURE 5 | Principal component analysis (PCA) of immune-gene expression evaluation of RBCs from rainbow trout injected intravenously with IBiRFP, IBTNFα, or

IBfrg16G−VHSV, at 24 h post-injection. (A) PCA plot of molecular (gene expression data, 2 −1Ct) signatures footprint of IBiRFP, IBTNFα, or IBfrg16G−VHSV treated

samples, at 24 h post-injection. Ellipses and shapes show clustering of the samples. (B) Heatmap of gene expression (2 −1Ct) signatures of IBiRFP, IBTNFα, or

IBfrg16G−VHSV treated samples. Annotations on top of the heatmap show clustering of the samples mean values. PCA plot and heatmap was performed using

Clustvis software. Heatmap data matrix visualizes the values in the cells using a color gradient which gives an overview of the largest and smallest values in the matrix.

As regards TNFα, RBCs from IBTNFα-treated rainbow trout
individuals showed a down-regulatory trend for genes related
to TNFα signaling such as tlr9, tnfα, il1β , il12β , and il2 genes
transcripts, in vivo, at 24 and 48 h post-injection, compared
to fish injected with the non-immunogenic protein IBiRFP. It
is known that TNFα is a cytokine involved in the regulation

of immune cells and inflammation. It is mainly produced by
monocytes and macrophages along with additional producers
including B and T lymphocytes, NK cells, polymorphonuclear
leukocytes, and eosinophils in response to bacterial toxins,
inflammatory products, and other invasive stimuli (31). Recently,
nucleated RBCs have been also reported to modulate TNFα
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FIGURE 6 | Principal component analysis (PCA) of immune-gene expression evaluation of RBCs from rainbow trout injected intravenously with IBiRFP, IBTNFα, or

IBfrg16G−VHSV, at 48 h post-injection. (A) PCA plot of molecular (gene expression data, 2 −1Ct) signatures of IBiRFP, IBTNFα, or IBfrg16G−VHSV treated samples, at

48 h post-injection. Ellipses and shapes show clustering of the samples. (B) Heatmap of molecular (gene expression data, 2 −1Ct) signatures of IBiRFP, IBTNFα, or

IBfrg16G−VHSV treated samples. Annotations on top of the heatmap show clustering of the samples mean values. PCA plot and heatmap was performed using

Clustvis software. Heatmap data matrix visualizes the values in the cells using a color gradient which gives an overview of the largest and smallest values in the matrix.

FIGURE 7 | Protein expression analysis of RBCs from rainbow trout injected intravenously with 5.5 mg/kg of IBiRFP, IBTNFα, IBfrg16G−VHSV or PBS at 48 h

post-injection. (A) Interferon related protein MX and (B) chemokine IL8 Mean Fluorescence Intensity (MFI) measured by flow cytometry. Data represent mean ± SD (n

= 4). Mann-Whitney test was performed between each condition and control cells (treated with PBS or IBiRFP). &P-value < 0.05, compared to IBiRFP. Representative

immunofluorescence images of RBCs stained with (C) anti-MX and (D) anti-IL8, taken with 60× magnification. Protein stain in red, DAPI (blue) for nuclei stain.

protein in response to IPNV virus exposure (30). Here we
observed that RBCs exposed to IBTNFα down-regulated the
inflammatory response at 24 and 48 h post-treatment. TNFα

is a pleiotropic cytokine with a diverse range of biological
actions. TNF family members are known to represent a “double-
edged sword,” having both beneficial and detrimental activities
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FIGURE 8 | Protein expression analysis of total blood samples from rainbow trout injected intravenously with 5.5 mg/kg of IBiRFP, IBTNFα, IBfrg16G−VHSV, and PBS at

48 h post-injection. (A) Interferon related protein MX and (B) chemokine IL8 Mean Fluorescence Intensity (MFI) measured by flow cytometry. Data represent mean ±

SD (n = 4). Mann-Whitney test was performed between each condition and control cells (treated with PBS or IBiRFP). #P-value < 0.05, compared to PBS.

(32). Systemic exposure to recombinant TNFα would cause a
shock similar to septic shock syndrome (31). Further, TNFα
inhibition of IFNγ-induced IL12 production exerts mechanisms
by which TNFα and IL12 cytokines can elicit anti-inflammatory
and repair functions, tightly modulated by positive and negative
feedback signals for optimal immunity without manifested
inflammation (33). Another important observation is that fish
recombinant TNFα has been reported to regulate the expression
of endothelial cells TLRs, including TLR9, but had negligible
effects on macrophages (34). Therefore, taking into account that
nucleated RBCs are the most abundant cell type in peripheral
blood, it wouldmake sense that RBCs were equipped tomodulate
inflammation in response to a systemic exposure to TNFα.
Moreover, in the IBTNFα injected group, genes related to antigen
presentation, cd83 and mhcII, were also down-regulated at 24
and 48 h, respectively. As well, RBCs treated in vitro with IBTNFα

down-regulated the expression of cd83 and mhcI 24 h post-
treatment. TNFα has been reported to modulate IFNγ-induced
MHC class II expression in a cell type-specific mode (35).
Therefore, TNFα treatment augments or blocks MHC class II
induction depending on the cell type and cellular differentiation
state (35). mhcII and cd83 gene expression has been previously
reported for rainbow trout RBCs (3, 36) and chicken RBCs (37).
However, this is the first report that shows the regulation of cd83
andmhcII gene transcripts in response to an immunostimulant.

On the other hand, RBCs from rainbow trout injected
with IBfrg16G−VHSV showed an up-regulatory trend for most of
the genes, specifically interleukins il2 and il6, and antioxidant
enzyme nkef were significantly up-regulated, compared to IBiRFP,
at 24 h post-injection. This is probably due to the effort of RBCs
to compensate the inflammatory response triggered after the first
treatment stimulus. Then, 48 h post-injection, the Type 1 IFN
and antigen presentation responses were increased, since tlr3,mx,
cd83, andmhcII genes transcripts were significantly up-regulated,
compared to IBiRFP. MX protein production was consistent with
gene expression levels.

G-VHSV is known to induce the expression of ifn1 and
mx (25, 38, 39). Peptides derived from G-VHSV have also
demonstrated their efficacy to induce type 1 IFN response (25,
26, 39). It is also noteworthy that IBfrg16G−VHSV triggered the

up-regulation of mhcII and cd83 gene expression in rainbow
trout RBCs, thus endowing them the characteristics of antigen
presenting cells (APCs). CD83 and MHCII are principally
produced by professional APCs to process antigens and induce T
cell priming. However, recently, the concept of non-professional
APCs is emerging (40). These atypical APCs up-regulate the
expression of MHC and related molecules under certain stimuli.
However, there is not enough evidence about their functionality
priming T cells (40).

Bacterial lipopolysaccharide has been reported to stimulate
the innate immune response of RBCs in vitro (28). Bacterial IBs,
which contain remnants of endotoxin, are therefore considered
immunostimulants per se (41), which is shown by the global
increment in the immune response of RBCs from rainbow trout
injected with IBiRFP compared to PBS-injection. This, added
to the utilization of IBs as delivery platforms to administrate
cytokines, coadjuvants, or antigens, makes them a good candidate
for future vaccines. In this context, RBCs have shown their ability
to mount or modulate and immune-response to IBs made of
cytokine TNFα and the viral protein frg16G-VHSV.

All these considerations provide a new perspective on the role
and potential use of RBCs. Given the large amount of RBCs in the
organism and their rapid distribution throughout the body they
could be a promising target cell for the presentation or delivery
of IBs or other types of vaccine carriers.
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