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Oral transmission of Trypanosoma cruzi, the etiologic agent of Chagas disease, is

presently the most important route of infection in Brazilian Amazon. Other South

American countries have also reported outbreaks of acute Chagas disease associated

with food consumption. A conspicuous feature of this route of transmission is presenting

symptoms such as facial and lower limbs edema, in some cases bleeding manifestations

and risk of thromboembolism are evident. Notwithstanding, studies that address this

route of infection are largely lacking regarding its pathogenesis and, more specifically,

the crosstalk between immune and hemostatic systems. Here, BALB/c mice were

orally infected with metacyclic trypomastigotes of T. cruzi Tulahuén strain and used

to evaluate the cytokine response, primary and secondary hemostasis during acute

T. cruzi infection. When compared with control uninfected animals, orally infected mice

presented higher pro-inflammatory cytokine (TNF-α, IFN-γ, and IL-6) serum levels. The

highest concentrations were obtained concomitantly to the increase of parasitemia,

between 14 and 28 days post-infection (dpi). Blood counts in the oral infected

group revealed concomitant leukocytosis and thrombocytopenia, the latter resulting in

increased bleeding at 21 dpi. Hematological changes paralleled with prolonged activated

partial thromboplastin time, Factor VIII consumption and increased D-dimer levels,

suggest that oral T. cruzi infection relies on disseminated intravascular coagulation.

Remarkably, blockade of the IL-6 receptor blunted hematological abnormalities, revealing

a critical role of IL-6 in the course of oral infection. These results unravel that acute T. cruzi

oral infection results in significant alterations in the hemostatic system and indicates the

relevance of the crosstalk between inflammation and hemostasis in this parasitic disease.
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INTRODUCTION

The hemoflagellate protozoan Trypanosoma cruzi is the causative
agent of Chagas disease or American trypanosomiasis which is
transmitted primarily through contact with feces of triatomine
insects after biting (1). Transmission can also occur through
blood transfusion (2), organ transplantation (3), congenitally
(vertical transmission) (4), laboratory accidents (5) and by
ingestion of contaminated food/juices (6, 7). Currently, oral
infection is the most frequent route of transmission in Brazil
and other Latin American countries (7–9). Mortality rates in
these orally infected patients are higher (8–35%) when compared
with the classical vectorial transmission (<5–10%) (10). The
acute phase of the disease is a critical period often accompanied
by non-specific clinical symptoms, such as fever, asthenia, face
and limb edema, headache, myalgia, and others. Minor bleeding
manifestations, most commonly from nose, skin petechiae, or
bruising, are apparent in some patients with oral acute Chagas
disease (ACD) and occasionally, risk of thromboembolism is
reported and digestive bleeding may cause death (7, 11–13).
These clinical/hematological signs have a frequency of 4.9% in
orally-transmitted ACD outbreaks (14), although higher values
were described in some cases (12, 13). Moreover, the association
between anemia and thrombocytopenia in the ACD was already
envisioned by Carlos Chagas in 1909 (1).

The knowledge of immunological events that occur
during ACD are mainly based on studies using murine
models. Trypanosoma cruzi experimental infection leads to
pathogen-associated molecular patterns (PAMPs) activation
in macrophages and dendritic cells with IL-12 secretion.
Furthermore, synthesis of interferon-γ (IFN-γ), tumor necrosis
factor-α (TNF-α), and nitric oxide (NO) by macrophages
contributes to parasite clearance (15). In a mouse model of
T. cruzi oral infection with the Tulahuén strain, it was shown
that the major source of TNF in infected tissues are macrophages
and high levels of this cytokine are associated to cardiac, hepatic
and spleen injuries as well as toxic shock in infected BALB/c
(16, 17). IL-6 is also involved in host protective response since
IL-6-/- mice presented 3-fold higher parasitemia and died earlier
than wild-type T. cruzi infected animals, by the subcutaneous

route (18). Interestingly, Th1 cytokines are involved in an
intense crosstalk between immune and hemostatic systems.
Acute inflammation, as a response of an infection can modulate
the systemic activation of the coagulation cascade and impair
physiological anticoagulant pathways (19–22).

Tissue factor (TF), the integral transmembrane protein that
initiates coagulation, is strongly induced by pro-inflammatory
cytokines and C reactive protein on monocytes, fibroblasts and
endothelial cells surface allowing further interaction with factor
VII to form the complex TF-factor-VIIa, ultimately resulting in
fibrin formation (19, 23). Under normal conditions, cells in direct
contact with circulating blood do not express physiologically
active TF (24). The traditional coagulation cascade includes
intrinsic and extrinsic pathways that lead to the activation
of different coagulation factors converging at the activation
of factor X to factor Xa. Factor Xa forms a complex with
factor Va to activate prothrombin into thrombin. Thrombin

then converts fibrinogen to a fibrin network forming the
clot (22).

Baboons lethally challenged with Escherichia coli and infused
with recombinant antithrombin (protease inhibitor of thrombin
and factor Xa) at high concentrations, had lower IL-6 and IL-
8 plasma levels and the mortality was markedly reduced (25).
Furthermore, blockade of IL-6 with a monoclonal antibody, in a
primate model of sepsis, attenuated the LPS-induced coagulation
(26). This effect was independent of TNF, since abrogation of
this cytokine with recombinant TNF receptor IgG fusion protein
or a neutralizing TNF antibody in healthy humans or LPS
injected chimpanzees had no effect in coagulation activation
(26, 27). To the best of our knowledge, there are no studies
focusing on the inflammatory and hematological crosstalk as well
as their mechanisms in oral ACD. The few studies addressing
this interaction in Chagas disease in literature focus on chronic
T. cruzi infection and have controversial results regarding
the existence of a prothrombotic status in T. cruzi-infected
patients (28–30).

Here, by using a pre-established mouse model of oral ACD,
we demonstrate that infection leads to a decrease in platelet
count, increased bleeding and coagulation time, mainly in the
peak of parasitemia. Importantly, circulating IL-6 levels seem to
be involved in these hematological changes during oral T. cruzi
infection. This information may help elucidating the mechanism
of oral ACD pathogenesis and provide an additional view on the
interaction between inflammation and coagulation in the context
of infectious diseases.

MATERIALS AND METHODS

Animals and Infection
Male BALB/c mice were obtained from ICTB Oswaldo Cruz
Foundation animal facilities (Brazil) and maintained in SPF
conditions. Mice (6–8 weeks old) were infected via oral cavity
by pipetting 50 all of excreta into their mouth with 5 × 104

T. cruzi insect-vector (Triatoma infestans)-derived metacyclic
forms (Tulahuén strain, TcVI). A different group of mice received
the same number of trypomastigotes by the subcutaneous route
(SC) after a single inoculation in the dorsal region. Before the
infection, mice were maintained starving 4 h and at least 15min
after inoculation.

Ethics Statement
This study was performed in strict accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the Brazilian National Council of
Animal Experimentation and the Federal Law 11.794 (10/2008).
The Institutional Ethics Committee for Animal Research of
the Oswaldo Cruz Foundation (CEUA-FIOCRUZ, License: L-
028/2016) approved all the procedures used in this study.

Parasitemia
Parasitemia was detected at different dpi by counting
trypomastigotes in 5 µL of tail blood and parasite number
was calculated using the Pizzi-Brener method.
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Cytometric Bead Array (CBA)
Mice were anesthetized, bled by cardiac puncture and euthanized
by exsanguination at 3, 7, 14, 21, 24, and 28 dpi. Each bleeding
point represents one mouse. To measure IL-6, IFN-γ, and TNF-α
cytokines in the serum, we used the BD Mouse Th1/Th2/Th17
Cytokine CBA kit (BD Biosciences, USA). The assays were
performed according to manufacturer’s instructions. Sera were
stored frozen at−70◦C until used.

Blood Cell Analysis
The mice were anesthetized and blood was collected into EDTA
BD microteiner R© tube by cardiac puncture. Blood cell count
was automatically determined using the Poch 100- iV DIFF
hematology analyzer (Sysmex, Japan).

Clotting Assays and Measurements of
Coagulation Factors
Activated Partial Thromboplastin Time (aPTT) and
Prothrombin time (PT) were evaluated on a STart 4
stagocoagulometer (DiagnosticaStago, USA). For the aPTT,
plasma (50 µL) was incubated in the coagulometer for 5min
at 37◦C. Then, 50 µL of pre-warmed aPTT reagent (STA PTT;
DiagnosticaStago, France) was added and further incubated for
2min CaCl2 (50 µL at 25mM) was added to start reactions.
For determining the PT, plasma (50 µL) was incubated in the
coagulometer for 5min at 37◦C. Then, 100 µL of the PT reagent
(NEOplastine CI plus; DiagnosticaStago, France) was added.
Time for clot formation was recorded in duplicates.

Serum levels of coagulation factors (FV, FVII, FVIII, and
APC) and D-dimer were determined using commercial enzyme
linked immunoabsorbent assay (ELISA) kits according to
manufacturer’s protocol (ElabScience Biotechnology, China).

Tail Bleeding Assay
Bleeding propensity was evaluated as previously described
(31). Mice were anesthetized with intramuscular xylazin (16
mg/kg) and ketamine (100 mg/kg). After 15min, the distal
2mm segment of the tail was removed and immediately
immersed in 40mL distilled water warmed to 37◦C during
exactly 30min. The samples were properly homogenized and the
absorbance was determined at 540 nm in order to estimate the
hemoglobin content.

Anti-IL6R and Anti-TNF Treatment
Orally infected BALB/c mice were treated intraperitoneally
with a monoclonal antibody against the interleukin-6
receptor (IL-6R) (8 mg/kg, Tocilizumab, Actemra R©, Roche,
Switzerland), IgG control antibody (8 mg/kg, chrompure
IgG Jackson Immunoresearch Labs, USA) or with a chimeric
anti-TNF protein (0.83 mg/Kg, Etanercept Enbrel R©, Wyeth
Pharmaceuticals, USA). The treatment began at the 14 dpi with
48 h subsequent doses in the case of anti-IL-6R antibody or
IgG control antibody and with another dose at 18 dpi for the
anti-TNF reagent. The control group received normal saline
solution at the same volume (100 µL) and frequency as described
for orally infected mice.

FIGURE 1 | Parasitemia development. Male BALB/c mice were infected with 5

× 104 insect-derived metacyclic forms of T. cruzi within the oral cavity.

Parasitemia (mean and SEM) was assessed during the acute phase and is

expressed as parasites per milliliter. Parasites were counted by light

microscopy and parasitemia calculated by the Pizzi-Brener method. n: 7 dpi =

21, 10, and 14 dpi = 15, 18 dpi = 18, 21 dpi = 11, 23 dpi = 6, 28 dpi = 8;

36, 40, 42, 46, 48, and 53 = 4. The total number of animals in each time point

was obtained from different experiments.

Statistical Analysis
Data were subjected to the D’Agostino-Pearson normality test
to determine whether they were sampled from a Gaussian
distribution. If a Gaussian model of sampling was fulfilled,
parametric test (one-way ANOVA with Tukey’s multiple
comparison test) was used. If the samples deviated from a
Gaussian distribution, non-parametric test (Kruskal–Wallis with
Dunn’s multiple comparison test) was applied. All statistical
analysis was done in GraphPad Prism 6 (GraphPad Software
Inc.). P < 0.05 were considered statistically significant.

RESULTS

Increased Pro-inflammatory Cytokine
Secretion Parallels Parasitemia Elevation
in Acute T. cruzi Oral Infection
We initially determined the parasitemia of BALB/c mice orally
infected (OI) with 5 × 104 T. cruzi metacyclic trypomastigotes.
As shown in Figure 1, circulating parasites were first detected
at 10 dpi. Furthermore, the animals showed higher numbers of
parasites between 21 and 28 dpi. We next evaluated if T. cruzi
infection caused transient changes in serum concentrations of
pro-inflammatory cytokines. Accordingly, OI animals presented
increased levels of TNF (Figure 2A), IFN-γ (Figure 2B) and
IL-6 (Figure 2C) when compared with non-infected animals
(NI). During 14–24 dpi, all cytokines exhibited high levels
concomitantly to the increased numbers of circulating parasites
(Figure 1). In contrast, there were no statistically significant
differences in concentrations of TNF, IFN-γ, and IL-6 in the
initial stages of infection (3–7 dpi), when parasitemia is not
detected. Statistically significant differences in the Th2 and Th17
cytokine levels were not detected (Figure S1).
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FIGURE 2 | Serum cytokine levels during oral acute T. cruzi infection. Male BALB/c mice were infected with 5 × 104 insect-derived metacyclic forms of T. cruzi within

the oral cavity. In the course of the acute infection, serum was isolated and levels of TNF (A), IFN-γ (B), and IL-6 (C) were quantified in non-infected (NI) and infected

mice by the CBA method. Values represent the median with interquartile range for each group/day post-infection and are representative of two independent

experiments. Results were analyzed using Kruskal–Wallis with Dunn’s multiple comparisons test (*0.0001< p < 0.05, #p < 0.0001). Significant differences not

displayed in the graph: TNF: 3, 7 dpi 6= 21, 24 dpi; IFN-γ: 3, 7 dpi 6= 14, 21, 24 dpi; IL-6: 3 dpi 6= 14 dpi e 7 dpi 6= 14, 21 dpi. n: NI = 16; 3 e 28 dpi = 9; 7, 14 e 21

dpi = 14; 24 dpi = 15. n: NI = 16; 3 and 28 dpi = 9; 7, 14, and 21 dpi = 14; 24 dpi = 15.

Mice Orally Infected With T. cruzi Exhibit
Signs of Disseminated Intravascular
Coagulation, Including Thrombocytopenia
and Increased Bleeding
We analyzed several hematological parameters in NI and OI
mice on 7, 14, 21, and 28 dpi. As shown in Table 1, OI
induced thrombocytopenia. On day 14 and 21, the platelet
counts were 775.4 (±62.54) × 103/µL and 840.8 (± 83.74) ×
103/µL for infected mice, respectively. There were no significant
changes in red blood cell count, hemoglobin concentration,
hematocrit and mean corpuscular volume when compared to NI.
In addition, orally infected mice exhibited leukocytosis on 21 and
28 dpi (Table 1).

In order to evaluate the impact of acute infection-induced
thrombocytopenia, the tail transection method was employed to
evaluate the bleeding tendency. As seen in Figure 3A, OI mice
showed a marked increase in bleeding at 21 dpi when compared
with the NI counterparts.

The elevated pro-inflammatory cytokine profile concomitant
with the decrease in platelet count suggests that oral infection

TABLE 1 | Blood counts of non-infected (NI) and orally T. cruzi infected (OI) mice.

NI 7 14 21 28

WBC 6.6 ± 0.86 9.1 ± 0.41 7.3 ± 0.60 16 ± 2.1* 18 ± 1.4*

RBC 9.8 ± 0.27 11 ± 0.20 9.5 ± 0.21 9.1 ± 0.27 10 ± 0.46

HGB 14 ± 0.33 16 ± 0.35 14 ± 0.41 13 ± 0.45 13 ± 0.49

MCV 52 ± 0.97 52 ± 0.42 49 ± 0.47 53 ± 0.35 49 ± 0.69

HMT 51 ± 0.58 58 ± 1.1 47 ± 1.3 48 ± 1.6 49 ± 1.6

PLT 1195 ± 81.71 1313 ± 101.0 775.4 ± 62.54* 840.8 ± 83.74* 1282 ± 17.44

Blood cells were measured on the Poch 100- iV DIFF hematology analyzer. Values are

presented as mean ± SEM for each group/day post-infection and are representative of

two independent experiments. Results were analyzed using the Kruskal-Wallis with Dunn’s

multiple comparisons test (* 6= NI and 0.0001< p < 0.05. Significant differences not

displayed in the graph: WBC: 7, 14 dpi 6= 21, 28 dpi; RBC: 7 dpi 6= 21 dpi; HGB: 7 dpi

6= 21, 28 dpi; MCV: 14 dpi 6= 21, 28 dpi; HMT: 7 dpi 6= 14, 21 dpi. n = 5). HGB, total

hemoglobin (g/dL); HMT, hematocrit; MCV, mean corpuscular volume (fL); PLT, number

of platelets (103 cells/µL); RBC, number of red blood cells (106 cells/µL); WBC, number

of white blood cells (103 cells/µL).

may course with disseminated intravascular coagulation. In order
to test this hypothesis, plasma frommice were collected and used
for determination of ex vivo aPTT and PT coagulation tests. Oral
infection with T. cruzi prolonged the aPTT (Figure 3B) but did
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FIGURE 3 | Bleeding from the tail of BALB/c mice and ex vivo PT and aPTT measurements during oral infection. Male BALB/c mice were infected with 5 × 104

insect-derived metacyclic forms of T. cruzi (Tulahuén strain) within oral cavity. (A) Bleeding was caused by a tail transection in NI, 7, 14, and 21 dpi OI mice.

Absorbance at 540 nm (hemoglobin concentration) was used to estimate blood loss. (B) NI or OI plasma samples were obtained by cardiac puncture followed by

addition of aPTT or PT reagent as described in the “Methods” section. Clotting time was estimated using a coagulometer. (A,B) Values represent the median with

interquartile range for each group/day post-infection and are representative of two independent experiments. Results were analyzed using the Kruskal-Wallis with

Dunn’s multiple comparisons test (*0.0001< p < 0.05, #p < 0.0001).

TABLE 2 | Serum contents of D-dimer during acute phase of oral T. cruzi infection.

Group Mice with D-dimer>0 ng/mL

NI 0/6

7 dpi 0/5

14 dpi 3/6

21 dpi 2/6

Male BALB/c mice were infected with 5 × 104 insect-derived metacyclic forms of T.

cruzi within the oral cavity. NI or OI sera were obtained by cardiac puncture and used

to measure levels of D-dimer by ELISA. The mean and SEM of animals with detectable

levels of D-dimer were 25.7 ± 7.59 and 45.1 ± 11.0 for 14 and 21 dpi, respectively.

not affect the PT (data not show). This is compatible with a
derangement in the intrinsic pathway of the coagulation cascade.

Comparison of the coagulation factor levels between NI and
OI showed statistically significant differences for FV, FVII, and
FVIII (Figure S2) with a consumption of FVIII at 14 dpi. D-
Dimer, a fibrin degradation product that marks fibrin generation,
degradation and reflects the turnover of the coagulation system,
was also measured in NI and OI. The concentration of this
biomarker was detected on 14 and 21 dpi in OI (Table 2).

Blocking of IL-6 Signaling Prevents
Hematological Changes in the Murine
Model of T. cruzi Oral Infection
Oral infected mice had higher pro-inflammatory cytokine serum
levels, especially between 14 and 24 dpi (Figure 2). Therefore,
we hypothesized that blockade of IL-6R or soluble TNF could
attenuate hemostatic changes observed in OI mice. To test
this hypothesis, we treated OI mice with Tocilizumab (T), a
monoclonal antibody that targets IL-6 signaling by competing
for IL-6R (Figure 4A) or with a quimeric anti-TNF protein,

etanercept (Enbrel R©) (Figure S3A). Both treatments started
at 14 dpi. Treated OI mice group (OI+T) had a significant
drop in bleeding compared with vehicle alone (saline) OI+V
(Figure 4B). Moreover, OI+T had lower aPTT than OI+V and
OI+isotype and showed no significant differences between non-
infected controls (NI+V or NI+T) (Figure 4C). In contrast,
values recorded for aPTT and bleeding assays remained unaltered
after anti-TNF treatment (Figures S3B,C). These results suggest
that blocking the IL-6R attenuates changes in the hemostatic
system under T. cruzi oral infection whereas TNF blockade did
not influence those alterations.

Hematological Disturbances Are Also
Observed in Subcutaneously Infected Mice
Orally infected mice showed hemostatic alterations in the acute
phase. However, we wondered whether these changes were
related to the oral transmission or with T. cruzi presence in the
bloodstream. To answer this point, mice were infected with the
same inoculum by the SC route. As demonstrated in Figure 5,
SC infected mice also showed a significant increase in aPTT
(Figure 5B) but not in bleeding tendency or PT (Figures 5A,C).
Unlike OI mice, changes in aPTT of SC animals started at 14 dpi,
prior to changes in OI animals (21 dpi).

At the SC route, infection killed all animals between 15
and 16 dpi.

DISCUSSION

Previous studies indicate a relationship between inflammation
and coagulation in infection (20, 21). Some patients with oral
ACD present symptoms related to hemostatic alterations such
as facial and lower limbs edema, minor bleeding manifestations,
most commonly from nose, skin petechiae or bruising and risk
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FIGURE 4 | Experimental design, coagulation test aPTT and tail bleeding assay in NI+V, OI+V, OI+isotype, NI+T and OI+T mice. (A) Male BALB/c mice were

infected with 5 × 104 insect-derived metacyclic forms of T. cruzi (Tulahuén strain) within the oral cavity. Anti-IL6R or IgG treatment began after 14 dpi and was

performed in each 48 h. (B) Bleeding was caused by a tail transection in NI+Vehicle (NI+V), OI+V, OI+isotype, NI+treatment (NI+T) and OI+T. Absorbance at 540 nm

(hemoglobin concentration) was used to estimate blood loss. (C) NI+V, OI+V, OI+isotype, NI+T and OI+T plasma were obtained by cardiac puncture followed by

addition of the aPTT reagent as described in the “Methods” section. Clotting time was estimated using a coagulometer. (B,C) Values are presented as mean ± SEM

for each group/day post-infection and are representative of three independent experiments. Results were analyzed using one way ANOVA with Tukey’s multiple

comparisons test (*0.0001< p < 0.05; #p < 0.0001).

of thromboembolism (7, 11–13) indicating the need of exploring
the crosstalk between immune and hemostatic systems. In the
present study, we examined if the systemic inflammation led to
hemostatic abnormalities in oral ACD and how blocking of IL-6
signaling pathway can modulate these changes.

We found that OImice had significantly higher TNF, IL-6, and
IFN-γ circulating levels than controls, thus demonstrating that
T. cruzi infection leads to a potent pro-inflammatory systemic
response. This is consistent with previous data showing that
Tulahuén strain of T. cruzi induces TNF and IFN-γ production
in BALB/c and C57BL/6 following subcutaneous (32) or OI (16).
Moreover, high levels of TNF are involved in the toxic shock
seen in IL-10-deficient mice infected intraperitoneally with 50
blood trypomastigotes of the Tulahuén strain of T. cruzi (33) as
well as in cardiac, hepatic and spleen injury (16, 17). IFN-γ and
IL-6 control parasite multiplication and confers host resistance
(18, 34, 35). Furthermore, chronic patients with Chagas disease
have elevated circulating levels of IL-6 when compared to healthy
individuals (29, 36).

Interestingly, proinflammatory cytokines play a central role
in the differential effects upon the coagulation and fibrinolysis

pathways. TF is strongly induced after inflammatory stimuli
mainly on monocytes and endothelial cells (23). Cytokines that
have the ability to increase TF expression are TNF, IL-1β, IL-
6, IFN-γ and the chemokine CCL2 (19, 37). Injection of low
doses of LPS in healthy volunteers induced endotoxemia and
TF mRNA had a 125-fold increase in whole blood cells (38).
Blocking IL-6 with a monoclonal antibody in a primate model
of sepsis, largely prevented LPS-induced coagulation activation
once decreased significantly levels of prothrombin fragment 1+2
(F1+2) and thrombin-antithrombin complex (26). Contrarily,
the same treatment in humans did not reduce LPS-induced
TF mRNA or plasma concentrations of the same markers
of coagulation activation showing that results obtained from
primates may not automatically be transferable into humans. IL-
6 is also involved in platelet thrombogenicity, once after addition
of this cytokine to whole blood samples of healthy individuals,
a marked spreading and clumping of the platelets was induced
indicating an hyper-activation state (39).

Although the coagulation alterations mentioned above have
been demonstrated to occur in vivo as a general response to pro-
inflammatory stimuli, it is likely that other hematological changes
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FIGURE 5 | Bleeding from the tail and ex vivo PT and aPTT measurements of BALB/c mice during subcutaneous infection. Male BALB/c mice were subcutaneously

infected with 5 × 104 culture-derived T. cruzi trypomastigotes (Tulahuén strain). (A) Bleeding was caused by a tail transection in NI, 7 and 14 dpi SC mice.

Absorbance at 540 nm (hemoglobin concentration) was used to estimate blood loss. (B,C) NI or SC plasma samples were obtained by cardiac puncture followed by

addition of aPTT or PT reagent. Clotting time was estimated using a coagulometer. (A-C) Values are presented as mean ± SEM for each group/day post-infection and

are representative of one experiment. Results were analyzed using one way ANOVA with Tukey’s multiple comparisons test (*0.0001 < p < 0.05).

may occur. Trypanosoma cruzi infection in humans is associated
with anemia, thrombocytopenia and leukocytosis, mainly during
the acute phase of disease (1, 40). Studies in inoculated
mice with different T. cruzi strains also revealed anemia and
thrombocytopenia during the acute phase of infection (41, 42).
Themechanisms underlying these changes in blood count are not
fully understood, but bone marrow suppression in hemopoiesis
may be involved (42). In a second vein, the parasite trans-
sialidase may induce the accelerated clearance of the platelets
after depleting their sialic acid content that could lead to the
thrombocytopenia observed during ACD (43). In a review of 31
published studies concerning hematological alterations in non-
human hosts infected with T. cruzi (44), half of the studies
reported anemia. However, we did not find significant changes
in the erythrogram. An explanation could be the different route
of inoculation.

Additionally, increased numbers of leukocytes were observed
on 21 and 28 dpi. This alteration is also described in
patients and in animal models (44–47). At 21 dpi, when

platelet counts were still significantly lower, the normal platelet
plug formation was affected as ascertained by tail bleeding
assay. Notwithstanding, thrombocytopenia in humans with
functional platelets generally does not induce or induces
only minor bleeding symptoms, with the exception of life-
threatening hemorrhages (48, 49). By contrast, mice with severe
thrombocytopenia and inflammation resulted in spontaneous
hemorrhage in different organs (50). Also at 21 dpi, beyond
reduction in platelet plug formation, coagulation changes were
seen with increased aPTT. Interestingly, production of D-dimer
was evaluated and was detected at 14 and 21 dpi and FVIII levels
were very low at 14 dpi.

Taken together, the disturbances mentioned above
characterize the clinical syndrome of disseminated intravascular
coagulation (DIC). This syndrome corresponds to a derangement
of hemostasis with hemorrhage being the most common
presentation consisting of widespread production of thrombin,
which in turn leads to microvascular thrombosis, organ
failure, and a consumptive coagulopathy related to a systemic
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FIGURE 6 | Trypanosoma cruzi oral infection causes hemostatic derangement linked to a systemic inflammation. (A) Trypanosoma cruzi orally infected mice have

thrombocytopenia, Factor VIII depletion and increased D-dimer levels, linked to a systemic inflammation. Blocking of IL-6 signaling restores normal hemostasis.

(B) Hypothesis: Acute T. cruzi infection leads to increase of pro-inflammatory cytokines. IL-6 is associated with a decrease with platelet count, possibly due to

megakaryopoiesis disturbances, platelet clearance and/or consumption; reduction in serum FVIII levels and high levels of D-dimer related to fibrin turnover. Altogether

these processes are involved in the increase of bleeding tendency and aPTT, signs of disseminated intravascular coagulation that leads to microhemorrhages and

microthrombi as previously reported (7, 13, 16).

inflammation (19). In fact, we previously showed formation
of thrombotic masses in the liver of OI mice (16). Patients
with DIC have higher IL-6 levels with the cytokine increase
being paralleled by the severity of the disease (51). Therefore, we
hypothesized that blockade of the IL-6 signaling would protect or
minimize the hematological disturbances observed at 21 dpi. Yet,
there was an impressive reduction in inflammation associated
changes comprising significant reduction in coagulation time,
aPTT and bleeding time. Both did not differ from control levels.
However, anti-TNF treatment did not change these parameters,
suggesting that TNF is not affecting directly the coagulation
cascade, as observed in sepsis (26, 27).

Thus, based on these early findings, targeting the immune
system, more specifically IL-6R, during the acute phase of oral
infection, can prevent a hemostatic derangement (Figure 6A).
Since any long-term benefits and liabilities of the intervention
still remain uncertain, it will be interesting to explore whether
long-term benefits are also gained in our model of T. cruzi
oral infection.

This study instigates many questions to explore. The
hematological disturbances also develop in a parenteral
route of transmission such as subcutaneously, suggesting
that inflammatory response to parasite presence in the
blood triggers this process. Moreover, whether there is
an influence of the genetic variability of the parasite, i.e.,

T. cruzi DTUs (named as TcI to TcVI) correlated with
more severe hematological changes. TcI, TcII, TcIII, TcIV,
and TcVI genotypes had been reported in oral outbreaks
(52–54) even though in the Brazilian Amazon prevails TcI
(55) and in this study we used Tulahuén strain (TcVI).
Ultimately, if there is any dysregulation of megakaryopoiesis
leading to thrombocytopenia, changes in platelet clearance or
consumption, deep alterations in fibrinolytic system remains
undetermined (Figure 6B).

In conclusion, we show for the first time that oral
ACD promotes a hemostatic derangement linked to systemic
inflammation. This process is associated to low platelet count,
bleeding and increased coagulation time, in parallel with high
parasitemia. Blocking IL-6 signaling pathway ameliorates all
these changes. Our studies open a new paradigm of looking to
the hemostatic system when evaluating a patient infected with
T. cruzi and suggest that translation of these results may be
possible in the near future.
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