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B cell activation and differentiation yields plasma cells with high affinity antibodies to a
given antigen in a time-frame that allows for host protection. Although the end product is
most commonly humoral immunity, the rapid proliferation and somatic mutation of the B
cell receptor also results in oncogenic mutations that cause B cell malignancies including
plasma cell neoplasms such as multiple myeloma. Myeloma is the second most common
hematological malignancy and results in over 100,000 deaths per year worldwide. The
genetic alterations that occur in the germinal center, however, are not sufficient to
cause myeloma, but rather impart cell proliferation potential on plasma cells, which are
normally non-dividing. This pre-malignant state, referred to as monoclonal gammopathy
of undetermined significance or MGUS, provides the opportunity for further genetic
and epigenetic alterations eventually resulting in a progressive disease that becomes
symptomatic. In this review, we will provide a brief history of clonal gammopathies
and detail how some of the key discoveries were interwoven with the study of plasma
cells. We will also review the genetic and epigenetic alterations discovered over the
past 25 years, how these are instrumental to myeloma pathogenesis, and what these
events teach us about myeloma and plasma cell biology. These data will be placed in
the context of normal B cell development and differentiation and we will discuss how
understanding the biology of plasma cells can lead to more effective therapies targeting
multiple myeloma.
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A BRIEF HISTORY OF PLASMA CELLS AND MALIGNANCY

The study of malignancies that would ultimately be resolved to plasma cells was intertwined with,
and necessary for the discovery of plasma cells and their function. Perhaps the first report of the
plasma cell malignancy multiple myeloma described as “mollities ossium” by Samuel Solly in 1844
characterized two cases of patients who presented with symptoms including fatigue, bone pain,
and multiple fractures (1). The author noted, that although rare, these were certainly not the first
cases. Upon autopsy it was revealed that the bone marrow of both patients was replaced with a
red substance filled with distinctive looking large cells [reviewed by Kyle and Rajkumar (2)]. The
second patient noted that his urine stiffened his clothes, and a sample was sent for examination
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by Dr. Henry Bence Jones who confirmed the semi-solid urine
would liquefy upon heating but resume its viscous consistency
upon cooling (3, 4). Dr. Bence Jones emphasized the importance
of obtaining urine samples for diagnosis, a practice that
continues today.

Contemporaneous observations in immunity would lay a
foundation for understanding the cellular source of these
neoplasms and the Bence Jones proteins. The seminal work
of John Fewster and Edward Jenner in smallpox demonstrated
acquired immunity, which Jenner would later use to successfully
protect patients through inoculation with cowpox (5). This led
to discoveries in 1890, where Emil von Behring and Kitasato
Shibasaburo showed that the serum of animals immunized with
sub-lethal doses of dipetheria and tetanus contained an antitoxin
(6). This proved the existence of an adaptive humoral immune
system. The following year Paul Ehrlich described this antitoxin
component as an “antibody” and in his 1908 Nobel laureate
speech predicted the existence of cells that recognize these
toxins using a “toxin receptor” and amazingly anticipated that
“the antitoxin is nothing else but discharged components of
the cell, namely receptors discharged in excess” (7). Although
the term “plasma cell” had already been coined (8), it would be
more than 40 years before the cellular source of this immunity
was discovered.

Several more cases of mollities osseum were reported and in
1873]. von Rustizky coined the phrase multiple myeloma (9).
In 1900 James H. Wright concluded that the cells prevalent in
multiple myeloma “are essentially plasma cells, or immediate
descendants of them” (10). However, this did not explain the
presence of proteinurea or Bence Jones proteins. In 1947,
plasma cell formation was correlated with antibody production
implicating plasma cells as the cellular source of antibodies
(11). Korngold and Lipari determined in 1956 that multiple
myeloma patients often had “electrophoretically homogeneous”
Bence Jones proteins (12), which would later be shown to be
identical to protein in the serum of the same patients (13).
These monoclonal proteins corresponded to one of the two
immunoglobulin light chains that were named kappa and lambda
after Korngold and Lipari. Later the delineation of T and B
lymphocytes (14) [reviewed by Max Cooper (15)] would lead to
the identification of B cells as the precursors to plasma cells.

Advances in electrophoresis and the invention of
the immunoblot allowed for more routine testing of
immunoglobulin proteins in the serum and urine. In 1961,
Jan Waldenstrom described a monoclonal band in patients
with hypergammaglobulinemia many of whom had multiple
myeloma or macroglobulinemia, but other patients had no
symptoms of malignancy (16). Importantly, Waldenstrom
delineated monoclonal proteins as indicative of neoplasm
or a pre-malignant disease (now known as monoclonal
gammopathy of undetermined significance or MGUS). This
was in contrast to polyclonal proteins that were indicative of an
inflammatory response.

Today, the cellular and molecular etiology of multiple
myeloma as well as the programming of normal B cell
development and plasma cell differentiation have been elucidated
to a great extent. Like their discoveries, we have learned much

about multiple myeloma from studying the normal processes of
plasma cell differentiation and vice versa. Despite the incredible
progress made and knowledge gained, over 130,000 new cases of
multiple myeloma occur every year worldwide (17), including
over 30,000 cases in the US alone (18). It is now known that
myeloma is a progressive disease preceded by an asymptomatic
stage called MGUS (19, 20) often followed by an intermediate
stage referred to as smoldering multiple myeloma (SMM),
prior to symptomatic newly diagnosed multiple myeloma
(NDMM), and finally relapsed and/or refractory multiple
myeloma (RRMM). Despite the incredible progress made, it is
still very difficult to identify MGUS patients who will progress
from those whose condition will remain benign. This is a major
problem as MGUS is present in 3% of the population over 50
years of age, and progresses to multiple myeloma at a rate of
~1% per annum (21, 22). There is now a formidable arsenal of
therapies for multiple myeloma, and thus far the most successful
agents are targeted at plasma cell biology, which is largely
retained by multiple myeloma (23). While most patients benefit
from these treatments, ultimately and unfortunately, most still
succumb to disease resulting in almost 100,000 deaths per year
worldwide (17).

B CELL DEVELOPMENT, PLASMA CELL
DIFFERENTIATION, AND
MYELOMAGENESIS

B cell development, much like plasma cell neoplasms, progresses
through a series of well-defined stages. Current data suggest
that a distinguishing attribute of plasma cell malignancies is
the differentiation state at which the transformation manifests.
This defining characteristic can be exploited to better identify
vulnerabilities of multiple myeloma through the study of non-
malignant B cells and plasma cells (23). A comprehensive
description of these processes has been provided for both B cell
development (24, 25) and plasma cell differentiation (26-29),
and is beyond the scope of this current review. However, a brief
description of these processes is essential to understanding the
mechanistic underpinnings and etiology of myelomagenesis.
Like all immune cells, B cells are derived from hematopoietic
stem cells that primarily develop in the bone marrow (30, 31)
or fetal liver (32). Hematopoietic stem cells can successively
differentiate into multi-potent progenitors, common lymphoid
progenitors, and eventually mature B cells through the stages pre-
pro-B, pro-B, pre-B, immature B, and transitional B cells. In the
mouse, this process requires the transcription factors including
E2A (33), PU.1 (34), and PAX5 (35) as well as interleukin
7 (IL7) cytokine signaling (36). It is important to point out
there are key differences in human B cell development (37,
38), which is not dependent upon IL7 (39). However, in both
mice and humans the recombination activated genes, RAG1
and RAG2, physically recombine the variable (V), diversity
(D), and joining (J) segments of the immunoglobulin genes
(40, 41). Mechanistically, RAG proteins work by recognizing and
excising recombination signal sequences, which are conserved
heptamer and nonamer sequences separated by a spacer (42).
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FIGURE 1 | Plasma cell differentiation and myelomagenesis. (A) Schematic of
B cell differentiation, plasma cell development, and myelomagenesis. Lightning
bolts represent genetic mutations common in myeloma. (B) Diagram of stages
of myeloma progressing from a normal plasma cell to monoclonal
gammopathy of undetermined significance (MGUS), smoldering multiple
myeloma (SMM), newly diagnosed multiple myeloma (NDMM), and
relapse/refractory multiple myeloma (RRMM). Below are common mutations in
myeloma and the stages at which they appear.

This proceeds first at the immunoglobulin heavy chain (IgH)
D — ] segments (pre-pro-B), and then V. — DJ segments
(pro-B). If a productive (in-frame) IgH gene is recombined, it is
then transcribed, translated, and expressed on the surface with a
surrogate light chain (composed of VPREB and IGLL1), which
triggers light chain recombination at the V. — ] segments (light
chains contain no diversity segments) marking the pre-B stage.
This occurs first at the kappa light chain and if no productive
allele is made, then at the lambda light chain. Surface expression
of the paired heavy and light chains—referred to as the B-cell
receptor (BCR)—marks the immature B cells stage, after which
B cells can transition from the bone-marrow into the periphery
and secondary lymphoid tissues where they mature.

Mature naive B cells are mitotically (43) and transcriptionally
quiescent (44, 45), but surveil the environment for pathogens
which are recognized by toll-like receptors (TLR) (46) and the
BCR. B cell activation that occurs without cytokine help from
T cells, referred to as T-cell independent activation, generally

results in acute and shorter lived B cell and plasmablast responses.
In contrast, antigens that invoke T cell-dependent (TD) cytokine
stimulation induce a more complex B-cell activation that results
in selection of B cells with higher-affinity B-cell receptors
and longer lasting immunity. However, this process is prone
to genomic errors that contribute to oncogenesis. Indeed,
current data suggests that almost all of myeloma is initiated by
mutations associated with TD responses. TD B-cell activation
requires BCR-mediated endocytosis of protein antigens, which
are subsequently degraded and ectopically presented by the major
histocompatibility complex class II (MHC-II) (47). When an
antigen peptide presented by MHC-II on a B cell is recognized by
a cognate T cell receptor (TCR), this induces an immunological
synapse and T cell stimulation. This causes T cell expression of
CD40 ligand (CD40L) (48) that induces B cell CD40 signaling
(49), as well as polar release of T cell cytokines IL4 (50, 51),
IL21, and IL6 (52) resulting in potent B cell activation. In
particular, IL6 not only induces B cell activation, but is a
potent growth stimulant for plasma cells and myeloma (53).
This stimulation induces rapid B cell proliferation, which forms
a lymphoid structure called a germinal center [Figure 1A;
reviewed in (54, 55)]. During the germinal center reaction,
B cells continuously cycle through rounds of division and
selection for high-affinity antibodies, which are made through
two types of somatic alterations termed somatic hypermutation
(SHM) (56) and class-switch recombination (CSR), both of
which are mediated by the activation-induced cytidine deaminase
(AID) (57). AID deaminates cytosines on single-stranded DNA
resulting in mutations of the immunoglobulin heavy and light
chains or SHM. SHM of the heavy and light chains has the
potential to increase antibody-antigen affinity through mutation
of the complementarity determining region. This results in more
efficient antigen uptake and presentation, resulting in more T
cell stimulation and selection of B cell clones with high-affinity
antibodies to a given antigen. CSR occurs when IgH somatically
recombines the constant region p and its splice isoform 3 with
one of the alternative constant regions y3, y1, al, y2, y4, €, or a2.
CSR occurs via AID-dependent recombination of switch regions
located just 5" of each constant region resulting in recombination
of a new IgH constant region (58-60). This process requires
DSBs, and can result in aberrant recombination with other
genomic regions causing translocations. Indeed, there is now
substantial evidence that myeloma initiating alterations are a
result of errors in CSR.

PRIMARY GENETIC EVENTS IN
GAMMOPATHIES

A dichotomy of genetic aberrations accounts for the large
majority, if not all of myeloma initiating events. First,
approximately half of myeloma cases contain an aneuploidy of
several odd numbered chromosomes including 3, 5, 7, 9, 11, 15,
19, and 21. This is referred to as hyperdiploidy (HD), and will
be further discussed below. The second type of founding genetic
event is almost mutually exclusive with hyperdiploid myeloma
and involves translocations of the IgH locus (61) (Figure 1B).
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FIGURE 2 | Genetic events in newly diagnosed multiple myeloma (NDMM).
Circos plot showing copy number losses (blue) and gains (orange) in the outer
ban (gray lines indicate 10% of the population). Mutations are shown on the
inner ban, where the frequency of non-synonymous mutations and the variant
allele frequency (VAF) are shown for 500 kb regions. Translocations are shown
on the inside where the frequency is denoted by line thickness (key bottom left)
and color denotes the VAF. Data are from 850 NDMM patients part of the
MMRF CoMMpass study (dbGaP phs000748.v7.p4).

IgH translocations juxtapose the IgH enhancers to one of a half
dozen oncogenes including any of the three Cyclin D genes
(CCND1-3), WHSCI1 (also known as NSD2 or MMSET), MAE,
or MAFB [reviewed in (62-64)] (Figure 2). When present, these
translocations are clonal alterations (i.e., present in all tumor
cells) in all stages of MGUS or myeloma and emanate from the
IgH constant chain switch regions implicating them as errors
in CSR that occurred during B cell activation in the germinal
center (65, 66). Consistent with this, more than 90% of myelomas
express class-switched IgH constant chains and almost all display
SHM identifying them as post-germinal center cells.

Cyclin D Dysregulation

Cyclin D dysregulation is the most common type of IgH
translocation, which involve t(11;14), t(12;14), and t(6;14)
translocations that juxtapose the IgH enhancer(s) with CCND1
(15-20% of NDMM), CCND2 (~1%), and CCND3 (1-4%),
respectively (65, 67, 68). All three Cyclin D genes function
by activating CDK4 and CDK6 that in turn phosphorylate
and inactivate RB allowing for E2F activation and cell cycle
progression (63). Although these translocations result in aberrant
expression of their respective Cyclin D genes, overexpression
of at least one Cyclin D gene appears to be an early and
unifying event in plasma cell malignancies (69). For instance, IgH
translocations to MAF or MAFB result in high levels of CCND2
(70); IgH-WHSCI1 translocations result in moderate levels of

CCND2, and hyperdiploid disease results in overexpression of
CCND1 (located on chromosome 11) or expression of both
CCNDI1 and CCND2 (69). Conversely, CCND3 expression is
less frequent and seems to be primarily a result of t(6;14) (69).
Although most Cyclin D translocations occur at the switch region
breakpoints, a subset of t(11;14) CCNDI1 translocations originate
from the V(D)] region, suggesting that they may be the result
of errors in V(D)] recombination during B cell development
(71). Earlier work indicated myeloma-specific idiotypes reacted
with some pre-B cells from the same patient, suggesting
some myeloma may have origins in B cell development (72).
However, these early studies were limited to two cases and it
is unclear if pre-B cells with a myeloma idiotype harbor the
genetic mutations that result in malignancy. Furthermore, should
these errors occur during B cell development, it is not clear
what causes these to manifest in myeloma rather than mantle
cell lymphoma, which routinely have t(11;14) translocations
originating from the V(D)] region (73). Regardless, it is clear that
these translocations result in aberrant CCNDI1 expression, which
predisposes to malignancy.

IgH-WHSC1 or t(4;14)

IgH-WHSC1 or t(4;14) are the second most common
translocation, occurring in ~15% of NDMM, and in most
cases results in the dual dysregulation of both WHSCI and
FGFR3 (74, 75). These are mostly reciprocal translocations that
occur almost exclusively at the IgM switch region and split
WHSC1 and FGFR3 on the telomeric side of chromosome 4p.
This often results in IgH-WHSC1 fusion transcripts and/or
loss of the 5 exons of WHSC1 (76). Subsequently, the IgH
Ep enhancer drives expression of WHSC1 on the derivative of
chromosome 4, while the IgH 3’ enhancers drive expression
of FGFR3 on the derivative of chromosome 14 (62, 74). For
some time it was unclear whether FGFR3 or WHSC1 was the
definitive oncogenic factor, however, ~25% of t(4;14) myelomas
do not have the reciprocal FGFR3 translocation and lack FGFR3
expression (76, 77). This suggests that WHSCI is the essential
transforming element, although FGFR3 overexpression and
activating mutations likely contribute to pathogenesis. It is also
possible that FGFR3 expression is required for MGUS initiation
but is subsequently lost in a subset of cases. WHSC1 is now
known to be a histone 3 lysine 36 (H3K36) methyltransferase
that catalyzes di-methylation of histone 3 lysine 36 (H3K36me2)
(78, 79). Pervasive H3K36me2 in t(4;14) myeloma is associated
with accessible chromatin and gene dysregulation (79).
However, how WHSC1 results in myelomagenesis or CCND2
upregulation is not well understood and difficult to trace due to
the genome-wide effects H3K36me2.

IgH-MAF and IgH-MAFB

IgH-MAF and IgH-MAFB translocations are the least common
class of primary IgH translocation, and result from t(14;16) and
t(14;20), respectively (80, 81). These are present in approximately
5-10% of NDMM cases, with MAF being more common than
MAFB (66). MAF induces expression of CCND2 through a MAF
binding motif in the CCND2 promoter, as well as Integrin B7
leading to increased adhesion to bone marrow stromal cells
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(70). In addition to upregulating MAFE, t(14;16) translocation
breakpoints disrupt WWOX, a tumor suppressor gene in breast
and prostate cancers, where it is also commonly deleted (82, 83).
The contribution of WWOX to t(14;16) myeloma is still unclear
as there is little to no evidence of biallelic inactivation and most
research has focused on the oncogenic effects of MAF (62).

Hyperdiploidy

Hyperdiploidy is the other common type of initiating genetic
event in plasma cell malignancies. Hyperdiploidy is almost
mutually exclusive with IgH translocations, and hyperdiploid
myeloma tend to have a better prognosis than IgH-translocated
multiple myeloma (61, 66, 84). Unlike IgH translocations, it
is very difficult to trace the oncogenic effects of hyperdiploidy
to a causative element(s) due to the aneuploidy of numerous
chromosomes. Compounding the difficulty of pinpointing the
pathogenic elements in hyperdiploid myeloma, model systems
for hyperdiploid myeloma are lacking. For instance, of the
roughly 80 multiple myeloma cell lines, more than 90% have IgH
translocations and there are no commonly used hyperdiploid cell
lines (62). The good prognosis of hyperdiploid myeloma and lack
of cell line models suggests that hyperdiploidy rarely results in
extramedullary disease or plasma cell leukemia as most cell lines
are derived from patients with disease that is independent of
the bone marrow microenvironment (85). Hyperdiploidy is also
hypothesized to occur during rapid germinal center proliferation
that results in chromosome segregation errors. However, it is not
clear if this is one catastrophic event or a series of sequential
errors that must occur prior to a clonal outgrowth.

Both IgH translocations and hyperdiploid myeloma are
found to be clonal at all stages of gammopathy, which is
consistent with them being founding genetic events (Figure 1B).
Despite these large genomic changes, almost all myeloma has
multiple genetic events present upon diagnosis, suggesting that
primary events initiate MGUS, but are not sufficient to cause
symptomatic disease.

SECONDARY GENETIC EVENTS IN
GAMMOPATHIES

In addition to the primary genetic events described above,
presentation of myeloma is regularly accompanied by several
other major chromosome abnormalities including deletion of
chromosome 13q [del(13q)], amplification of chromosome 1q
[amp(1q)], and deletion of chromosome 1p [del(1p)] (Figure 1).
All three of these alterations involve regions tens of megabase
in size and thus similar to hyperdiploidy, pinpointing the
causative element(s) is difficult. However, contributing elements
are speculated for all of these aberrations with varying degrees of
supportive data.

Del(13q)

Del(13q) occurs in almost 50% of NDMM (86) and is found
to be clonal, but is less frequent in MGUS where it is either
sub-clonal or clonal (87). Del(13q) co-occurs with t(4;14)
and t(14;16) myeloma and was once considered to be marker
of poor prognosis, but this outcome appears to have been
overcome by the use of proteasome inhibitors (88). Generally,

the entire arm of 13q is lost, and contains several loci that
may contribute to myeloma pathogenesis. Notably RB1, which
prevents cell cycle progression by sequestering E2F transcription
factors, is located on 13ql4. However, 13q loss is primarily
mono-allelic and rarely are there mutations or deletions that
result in biallelic RB1 inactivation (64). In contrast to RBI, the
exosome endoribonuclease DIS3 is mutated in ~10% of NDMM
and ~75% of these mutations occur in del(13q) myeloma
suggesting biallelic loss of DIS3 occurs in most DIS3 mutated
myeloma (66, 89, 90). Finally, 13q14 is also deleted in Chronic
Lymphocytic Leukemia (CLL), albeit in a more punctate fashion,
allowing researchers to pinpoint the DLEU2/miR-15a/16-1 locus
as a minimally deleted region. Deletion of this region causes
a lymphoproliferative disease in mice (91). A similar analysis
independently identified the same locus as a minimally deleted
region in myeloma (92), but it remains to be determined whether
DLEU2, miR-15a, or miR-16-1 have tumor suppressor function
in myeloma.

Amp(1q)

Amp(1q) occurs in 40% of patients and is associated with worse
prognosis (93, 94). The poor prognosis appears to be dose-
dependent as patients with 4 or more copies of chromosome 1q
do worse than those with three (95). These additional copies of
1q likely have a proportional effect on expression of 1q genes, as
a gene signature of high-risk myeloma is composed of a large
number of 1q genes (96, 97). Putative oncogenes may include
CKS1B, which facilitates ubiquitinylation and degradation of
the cyclin dependent kinase inhibitor CDKN1B (p27KIP 1y (98).
Approximately two-thirds of amp(1q) coincide with del(13q),
which is a significant co-occurrence between the two events
(90, 99). If CKS1B and RB1 are the myeloma-inducing genetic
alterations on amp(1lq) and del(13q), respectively, questions
remain as to why two alterations are needed in the same pathway
in addition to overexpression of a Cyclin D gene. This might be
explained by the somewhat rare nature of cell cycle progression
in myeloma where <1% of cells are actively synthesizing
DNA (64). Alternatively, it may be a polygenic effect or other
genes may be responsible for the deleterious effects of these
alterations. One such gene on chromosome 1q is MCL1, a BCL2-
family anti-apoptotic protein that is induced during plasma cell
differentiation and essential for plasma cell and myeloma cell
survival (100-102). There are now MCLI inhibitors in early
phase clinical trials, and it will be important to understand if
these are more effective against myeloma with amp(1q) that
overexpresses MCL1 (103-105), as discussed further below.

Del(1p)

Del(1p) occurs in 20-25% of patients and often co-occurs
with hypodiploidy (loss of chromosomes). Unlike hyperdiploidy,
hypodiploidy is associated with worse prognosis (106, 107) as
is del(1p) (94). The region lost on 1p often includes the cyclin
dependent kinase inhibitor CDKN2C, and similar to amp(1q),
two-thirds of del(1p) also coincides with del(13q) and mono-
allelic loss of RB1. Another promising candidate myeloma
suppressor gene located on chromosome 1p, is FAM46C,
a non-canonical poly(A) polymerase (108, 109). Inactivating
mutations in FAM46C result in a cell survival advantage whereas
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overexpression causes an unfolded protein response and cell
death (110). In addition to being lost in ~25% of NDMM by
del(1p), FAM46C is also mutated in ~10% and translocated
in ~2.5% of NDMM, supporting its role as a bona fide tumor
suppressor in multiple myeloma (66, 89, 90).

GENETIC EVENTS OF PROGRESSION IN
MGUS AND MYELOMA

MYC Structural Variants

MYC structural variants are pervasive in B cell malignancies and
myeloma is no exception. MYC structural variants are sometimes
present in MGUS, present in ~35% of NDMM, and even more
common in RRMM and myeloma cell lines (66, 111). This
suggests that MYC alterations promote disease progression. This
is further supported by a mouse model of myeloma, in which
AID-induced MYC expression only results in myelomagenesis
in mouse strains prone to MGUS (112, 113). This suggests that
MYC cannot initiate MGUS, but facilitates MGUS progression to
myeloma. Consistent with this, IgH-MYC [t(8;14)] translocations
are distinct from other IgH translocations in that they are
found at sub-clonal levels in NDMM and have extragenic
IgH breakpoints (66, 112). Such MYC alterations in myeloma
are distinct from other B cell malignancies such as Burkitt
lymphomas, where immunoglobulin-MYC translocations are a
near universal primary event and IgH-MYC translocations have
breakpoints in the IgH switch regions (114, 115). In myeloma,
MYC structural variants are spread across at least two broad
regions and serve to amplify or transpose large enhancers to
drive MYC expression (66, 112, 116). Interestingly, almost all
MYC translocations are also accompanied by copy number
alterations, with most showing large duplicated sequences at
both translocation breakpoints (66, 117). This appears to be a
common phenomenon present at other secondary translocations
in myeloma and other cancers, however, it is rare at myeloma
primary translocations that originate from the CSR regions
(66, 117). This key insight into the mechanistic basis of secondary
and complex translocations could be explained by synthesis-
dependent strand annealing of DSBs with long single-stranded
overhangs. Indeed, AID deaminates cytosines on single stranded
DNA and is known to initiate genomic instability at heavily
transcribed regions of the genome (118), such as the intragenic
regions of PVT1, where MYC translocations commonly occur, as
well as at the immunoglobulin enhancers.

Immunoglobulin Light Chain Kappa (IgK)

and Lambda (IgL)

Immunoglobulin light chain kappa (IgK) and lambda
(IgL) enhancers are often co-opted in complex secondary
translocations that drive oncogene expression. IgL translocations
occur in ~10% of MGUS and NDMM, but up to 20% of RRMM
or myeloma cell lines, whereas IgK translocations are more rare,
occurring in <5% of NDMM (64, 66). This is surprising given
that two-thirds of human B cells and myeloma cells express
IgK and only one-third express IgL. The higher prevalence
of IgL translocations can be explained by B cell ontogeny,
where IgK V] rearrangement deletes the IgK enhancer if a

productive IgK product is not made (119). Thus, without an
enhancer the IgK region is inert if translocated, and consequently
all IgK-translocated myelomas express IgK (66). Conversely,
IgL-translocated myelomas are found at the normal ratio of
two-thirds IgK expressing to one-third IgL expressing, which
indicates that the IgL enhancer is constitutively active, and
equally prone to translocation even in IgK-expressing myeloma
(66). We recently showed that translocations of the IgL locus,
but not the IgK locus, were prognostic of poor outcome (66).
This was even true when restricting the analysis to the same
translocated oncogene. For instance, approximately 40% of both
IgK and IgL translocations occur to MYC, but only patients with
IgL-MYC translocations have a poor prognosis, despite similar
baseline levels of MYC expression from each translocation (66).
This suggests that distinct enhancers are differentially susceptible
to therapeutic perturbation and myeloma is not only a disease of
oncogenes but also an “enhanceropathy.”

Deletion of 17p [del(17p)] Including TP53
Deletion of 17p [del(17p)] including TP53 is also a marker of
poor outcome as well as of genomic instability. Unlike several
other prognostic markers TP53 status as a high-risk marker has
not waned in the face of modern therapies that target plasma
cell biology (107). Del(17p) is rare in MGUS, present in ~10%
of NDMM but present in the majority of plasma cell leukemias
and associated with extramedullary disease (66, 107, 120, 121).
TP53 mutations also occur in ~5% of NDMM, but are primarily
restricted to samples with del(17p), suggesting a step-wise
progression where del(17p) predisposes to biallelic loss of TP53
by selection for cells with TP53 mutation. The co-occurrence
of TP53 mutations with 17p loss results in exceedingly poor
outcomes (95), and provides strong evidence that TP53 is the
functional tumor suppressor inactivated by del(17p).

Aberrant NF-«kB Signaling

Aberrant NF-kB signaling results from both inactivating
mutations of genes that suppress NF-«kB signaling (e.g., TRAF3)
as well as aberrant upregulation of genes the promote NF-kB
signaling (e.g., MAP3K14) (89). There is a broad mutational
spectrum encompassing dozens of genes, mostly mutated at
a low frequency, that converge on the non-canonical NF-
kB pathway in ~20% of NDMM (122, 123). Non-canonical
NF-kB signaling provides a pro-survival signal and growth
advantage to myeloma cells (122, 123), but it is possible that
it occurs by a variety of mechanisms. For instance, NF-kB was
discovered as a transcription factor that regulates kappa light
chain expression (124), but is now known to also regulate IgH
and human IgL expression (125). This suggests that NF-kB
signaling may enhance expression of oncogenes translocated to
immunoglobulin enhancers in myeloma.

This non-canonical NF-kB signaling in myeloma is in
contrast to other B cell malignancies such as Waldenstrom’s
macroglobulinemia (lymphoplasmacytic lymphoma), where over
80% of cases harbor activating mutations in MYD88 that
result in canonical NF-kB signaling (126, 127). This may
impart a more “innate-like” B cell response and explain why
Waldenstrom’s macroglobulinemia is almost exclusively IgM
expressing whereas IgM expressing myeloma is very rare. Indeed,
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long-term follow-up of MGUS cases, 15% of which are of
the IgM isotype, indicate that IgM MGUS patients progress
almost exclusively to Waldenstrom’s macroglobulinemia or
non-Hodgkin’s lymphoma whereas class-switched MGUS cases
progress to multiple myeloma (128).

Ras Signaling

Ras signaling is a common alteration in myeloma but rare in
MGUS (129). KRAS and NRAS are the two most commonly
mutated genes in myeloma, each present in ~20% of NDMM
(66, 89, 95). Counterintuitively, 15% of KRAS-mutated patients
also have NRAS mutations. Given the subclonal nature of
most Ras mutations, it is conceivable that in cases where both
KRAS and NRAS are mutated, these occur in distinct and non-
overlapping clonal populations. Alternatively, it may suggest
that not all Ras mutations uniformly activate MAPK signaling.
Indeed, this has been recently confirmed by phosphoproteomics
in myeloma cell lines (130). In contrast, FGFR3 mutations appear
to be a more potent inducer of MAPK signaling and are mutually
exclusive with NRAS and KRAS mutations (130, 131).

THE MOLECULAR PROGRAM OF
MULTIPLE MYELOMA

As noted above, translocations and chromosomal aberrations
serve to dysregulate oncogenes and tumor suppressor genes
and given the broad array of mutations in myeloma, it is not
surprising that these result in distinct gene expression subtypes.
Over a decade ago Zhan et al. used cDNA microarrays to classify
myeloma into 7 gene expression subtypes, which mostly reflected
the founding genetic mutations (132). These expression subtypes
include two CCND1 subtypes, CD-1 and CD-2, both driven by
t(11;14) translocations, but CD-2 tended to express more B-cell
like markers such as CD20; the HY subtype corresponded with
genetic hyperdiploidy; the MF subtype corresponded with MAF
and MAFB translocations; the MS corresponded with WHSC1
translocations (WHSC1 was commonly referred to as MMSET
at the time); LB or low bone disease was not well defined by
gene expression or discernable baseline genetics; PR represented
a proliferative disease with poor outcome (132). These subtypes
of myeloma are well conserved, as segregation of myeloma based
on translocations and Cyclin D expression (TC subtype) resulted
in groups with similar characteristics (69). Another independent
study from Europe identified 10 groups based on gene expression,
which corresponded with those from Zhan et al. but provided
slightly more granularity (133). Furthermore, we recently found
that gene expression subtypes from Zhan et al. were largely
conserved in yet another independent data set using a newer
technology (RNA-seq) (66). Thus, it appears the initiating genetic
alterations of myeloma appear to imprint a gene expression
program such that myeloma is really several diseases.

The gene expression subtypes described above correlate with
primary genetic events in myeloma, but the impact of secondary
and tertiary genetic mutations on gene expression are harder
to discern. This may be due to the often sub-clonal nature of
these alterations, which likely result in their effects on gene
expression being diluted out by cells without the alteration

when profiled en masse. Emerging single-cell technologies may
eventually be able to address this difficult problem, which would
ideally require simultaneous profiling of DNA and RNA. Early
experiments of single-cell RNA-seq have provided intriguing data
indicating the inter-sample heterogeneity of myeloma cells was
segmented into distinct gene expression programs, whereas those
from SMM, MGUS, and plasma cells from healthy donors where
more homogenous (134). This suggests that sub-clonal genetic
differences may underlie these variations in the gene expression
program, and has important implications for myeloma cell
plasticity and the ability of current therapies to effectively
eradicate all clones.

PLASMA CELL DIFFERENTIATION AND
EPIGENETIC DYSREGULATION IN
MULTIPLE MYELOMA

Although the gene expression program appears to be driven by
primary genetic alterations, there is clearly a cascade of molecular
events that result from these abnormalities. Furthermore, genetic
events alone cannot fully explain the gene expression program
or phenotype. For instance, the most common translocation in
myeloma, t(11;14), is also a defining characteristic of mantle
cell lymphoma (73), and t(8;14) translocations that occur as
secondary events in myeloma are present as primary events in
the majority of Burkitt lymphomas (114, 115). Unlike myeloma,
both these lymphomas are believed to originate from pre-
germinal center B cell, suggesting that the combination of
cancer genetics and cell differentiation state determine the
cellular phenotype. Indeed, plasma cell differentiation involves
dramatic changes in gene expression, epigenetic reprogramming,
and cell morphology (45, 135-140). Thus, genetic alterations
may manifest in different phenotypes given their timing in
the context of the epigenetic landscape of the cell of origin.
These epigenetic changes involve DNA methylation, which
primarily occurs on cytosines in CpG dinucleotides (Figure 3).
DNA methylation at promoters or enhancers usually functions
to repress gene expression by occluding transcription factor
binding (141), whereas intragenic DNA methylation corresponds
with high levels of gene expression and serves to help prevent
transcription from cryptic promoters (142). During germinal
center formation and plasma cell differentiation, the histone
3 lysine 27 (H3K27) methyltransferase EZH2 represses plasma
cell differentiation genes (e.g., PRDM1, IRF4) by depositing the
repressive H3K27me3 histone modification, thereby prolonging
the germinal center response (143, 144). The rapid cellular
proliferation during the germinal center results in a genome-wide
DNA hypomethylation, thereby facilitating activation of plasma
cell enhancers, which have the ability to induce plasma cell
differentiation (45, 137-139, 145). This explains why activating
mutations in EZH?2 give rise to germinal center B cell lymphomas
(143). These and other epigenetic processes serve to activate
plasma cell enhancers and super-enhancers, which are often co-
opted to drive oncogene expression (112, 116, 146). Determining
the unique trans-acting factors in plasma cell and myeloma cell
enhancers may provide an effective way to therapeutically target
multiple myeloma (147).
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As noted above, one of the most common translocated
genes in myeloma is the H3K36 methyltransferase, WHSCI,
resulting in a genetic alteration with widespread epigenetic
effects. This results in a global increase of H3K36me2 and
increased chromatin accessibility as well as a commensurate
inhibition of the repressive mark H3K27me3 (78, 79). How this
may specifically promote oncogenesis, is still being determined.

In addition to aberrant WHSC1 expression due to t(4;14)
translocations, there are a number of mutations in epigenetic
enzymes that confer survival advantages to myeloma cells. These
include mutations in the H3K27me3 demethylase KDM6A (also
known as UTX), where loss of KDM6A function results in
increased proliferation, adhesion, and clonogenicity of myeloma
cells (148). Unlike the genome-wide effects seen as a result of
WHSC1 overexpression, only focal changes on H3K27me3 were
observed with KDMG6A ablation (148).

Recently, mutations in the isocitrate dehydrogenases, IDH1
and IDH2, have been reported (90). Isocitrate dehydrogenases
normally produce o-ketoglutarate, but when mutated result
in the accumulation of D-2-hydroxyglutarate, which inhibits
Jumonji-C histone demethylases and TET family methylcytosine
hydroxylases that require o-ketoglutarate as a co-factor.
A consequence of IDH mutations includes altered histone
modifications and DNA hypermethylation (149). This may
alter the function of transcription factors, such as MYC and
MAX, which bind CpG containing E-box elements and are
sensitive to DNA methylation state (146, 150). Indeed, we
recently showed that loss of function mutations in MAX occur
in ~3% of myelomas and alter its binding affinity to methylated
and hydroxymethylated E-box transcription factor binding
sites (150).

Other modifiers of the DNA methylation pathway mutated in
myeloma include TET2 (90), which oxidizes DNA methylation

(151) allowing for its removal by base excision repair, as well
as the de novo DNA methyltransferase DNMT3A (90), which
catalyzes DNA methylation at unmethylated CpGs (152). We
recently showed that conditional deletion of both de novo DNA
methyltransferases in B cells results in a loss of DNA methylation
at B cell enhancers as well as increased B cell activation and
plasma cell differentiation in response to immunization (137).
However, the functional impact of these enzymes in myeloma has
yet to be elucidated.

In addition to the recent discoveries of mutations in enzymes
that regulate DNA methylation, early observations in multiple
myeloma showed promoter DNA hypermethylation and gene
silencing of the cyclin-dependent kinases inhibitors CDKN2B
(p15) and CDKN2A (p16), suggesting they were incapable of
preventing cell cycle progression (153). SOCSI, a suppressor of
cytokine signaling including the key myeloma cytokine IL6 (53),
is also aberrantly silenced by DNA hypermethylation (154, 155).
Despite these punctate hypermethylation events, recent genome-
wide analyses have found myeloma is mostly characterized
by widespread hypomethylation as compared to plasma cells
from healthy individuals (156-159). This DNA hypomethylation
appears to be progressive as it is more severe in NDMM and
RRMM than in MGUS and SMM (156, 159). Indeed, as part
of the Multiple Myeloma Research Foundation’s CoMMpass
project we are performing whole genome bisulfite sequencing on
a large cohort of multiple myeloma and have found pervasive
hypomethylation organized into megabase domains that are
devoid of gene expression. In contrast, DNA methylation was
retained in the gene bodies of highly expressed genes. Given
the pre-clinical data showing that myeloma cells are sensitive
to the DNA methylation inhibitors, such as 5-azacytidine
and decitabine (160, 161), the selective sensitivity of multiple
myeloma to demethylating agents has yet to be shown in vivo.
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THERAPEUTIC VULNERABILITIES OF
PLASMA CELLS

As our understanding of plasma cell and myeloma biology has
improved, so too has our ability to treat myeloma effectively.
Like most malignancies diagnosed in the mid twentieth century,
myeloma was initially treated with cytotoxic chemotherapy
that derived its benefit from attacking any rapidly dividing
cell in the body. The alkylating agent melphalan was the first
effective treatment for myeloma and in combination with the
corticosteroid prednisone formed the backbone of myeloma
therapy for 40 years (162, 163). The next major advance came
in the 1980’s with the introduction of high dose chemotherapy
and autologous stem cell rescue, a procedure that is still
routinely performed on the majority of eligible myeloma patients
today (164, 165). However, it is the addition of novel plasma
cell targeted therapy that has had the greatest impact on the
improvement in overall outcomes for myeloma patient over the
last two decades.

Proteasome Inhibitors

Proteasome inhibitors target the ability of both normal and
malignant plasma cells to produce thousands of antibodies
per second. In order to sustain such rapid levels of protein
production, the cells rely heavily upon a number of quality
control pathways for survival, and it is these pathways that have
proven to be an Achilles heel for myeloma. In all cells, protein
synthesis occasionally results in the production of misfolded
and non-functional peptides that must be quickly disposed of
to prevent their accumulation. These peptides are tagged with
ubiquitin, which targets them for degradation by the proteasome
system. Given the marked protein synthesis activity in myeloma
cells, the amount of misfolded protein is similarly amplified,
making myeloma even more dependent on the proteasome
(166). Proteasome inhibitors block the degradation of misfolded
proteins, allowing them to accumulate and ultimately induce
cell death through the unfolded protein response (Figure 4).
Although the proteasome plays an outsized role in myeloma cells
by controlling the unfolded protein response, it has a number
of other functions including regulation of signaling pathways,
cell-cycle, and DNA repair. Proteasome inhibitors may therefore
contribute to cell death through multiple mechanisms. There are
currently three proteasome inhibitors approved for myeloma,
bortezomib (167), carfilzomib (168), and ixazomib (169). These
agents are often combined with dexamethasone, a corticosteroid
with anti-lymphocyte activity, and an immunomodulatory drug,
particularly during induction therapy (170), but also during
maintenance (171) and relapse (172, 173).

Immunomodulatory Imide Drugs (IMiDs)

Immunomodulatory imide drugs (IMiDs) include thalidomide,
the notorious anti-nausea medicine developed in Europe during
the 1950s. Despite extensive testing in animals with no side-
effects, thalidomide resulted in severe birth defects and in
most cases death. However, discovery of the anti-angiogenic
properties of thalidomide (174) led to clinical trials which
showed it to be an effective agent in treating myeloma (175).

This spurred the development of more potent and less toxic
analogs of thalidomide, including lenalidomide (176, 177)
and pomalidomide (178), now approved for the treatment of
myeloma. Despite their efficacy, the mechanism by which IMiDs
exert their effect was only recently discovered. IMiDs alter the
target specificity of the CUL4A-DDBI1-Cereblon E3 ubiquitin
ligase (179), and in myeloma, this leads to the degradation
of two key plasma cell transcription factors, Ikaros (IKZF1)
and Aiolos (IKZF3) (180, 181) (Figure 4). Importantly, IMiDs
bind Cereblon through an interaction at residue 391, which
is not conserved in mice (182), explaining why thalidomide
had no effect on animal studies originally conducted in the
1950s. IMiD-mediated degradation of IKZF1 and IKZF3 results
in myeloma cell growth arrest as well as activation of T cells
(180, 181), both of which may contribute to anti-myeloma
effects of IMiDs. Through loss of IKZF1 and IKZF3, IMiDs
also lead to down regulation of IRF4, another essential plasma
cell transcription factor (183). IRF4 in turn regulates the
expression of MYC (184), a potent oncogene in numerous
lymphoid malignancies.

MYC Aberrant Expression

MYC aberrant expression occurs in the majority of myeloma
cases through amplification, translocation, or transcriptional
dysregulation (66, 112). Many MYC translocations result in
its juxtaposition to immunoglobulin enhancers where the
BET bromodomain protein BRD4 is highly associated. As
a result, BRD4 inhibitors and degraders are currently being
investigated as a method of downregulating MYC expression
and inhibiting myeloma cell proliferation (185-187). IMiDs
may also target MYC expression through inhibition of IKZF1-
and/or IKZF3-regulated enhancers translocated to MYC (66)
(Figure 4).

Immune-Based Therapies

Monoclonal antibodies against cell surface antigens highly
expressed on malignant cells have been an important part
of cancer therapy since the introduction of rituximab two
decades ago. Like other cells of the immune system, plasma
cells express cell surface markers that distinguish them from
other cells, many of which continue to be expressed on
myeloma. The transmembrane glycoprotein CD38 and the
immunoreceptor SLAMF?7 are the targets of the two monoclonal
antibodies currently approved for the treatment of multiple
myeloma, daratumamab (188, 189) and eloztuzumab (190),
respectively. Daratumumab is capable of inducing complement
dependent cytotoxicity, antibody dependent cellular cytotoxicity
(ADCC) by NK cells, and antibody dependent cell phagocytosis
(ADCP) by macrophages (191, 192), while elotuzumab acts
primarily through ADCC and enhancement of anti-myeloma
NK cell activity by crosslinking SLAMF7 on the two cell types
(193-195) (Figure4). Development of biologics that target
plasma cells has been limited by the number of plasma cell
specific markers, and thus a number of other potential targets
on myeloma cells are being studied, including GPRC5D (196)
and sulfated HLA-I epitopes (197). BCMA is an important
cell survival receptor on plasma cells and is the target of the
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FIGURE 4 | Therapeutic modalities in multiple myeloma. Cellular targeted therapies (top) include chimeric antigen receptor T-cells (CAR-T cells) that target B cell
maturation antigen (BCMA) and Bispecific T cell engagers (BiTE), which are two conjugated antibodies, one that recognizes the CD3 receptor on T cells while the
other antibody recognizes BCMA. Monoclonal antibodies elotuzumab and daratumumab target SLAMF7 and CD38, respectively and result in myeloma cell killing by
Natural Killer (NK) cell mediated antibody-dependent cellular cytotoxicity (ADCC) and in the case of daratumumab also by Macrophage antibody-dependent cellular
phagocytosis (ADCP). Molecular modalities include immunomodulatory imide drugs (IMiD; top right) that bind Ikaros (IKZF1) and Aiolos (IKZF3) to Cereblon (CRBN) as
part of an E3 ubiquitin ligase complex, which subsequently ubiquitinates IKZF1 and IKZF3 marking them for proteasomal degradation. Proteasome inhibitors (center)
result in proteotoxic stress and the unfolded protein response, which plasma cells are particularly sensitive due to their high levels of antibody production.
Anti-apoptosis inhibitors (middle left) include MCL1 inhibitors (MCLi) and BCL2 inhibitors such as venetoclax which induce mitochondrial outer membrane
permeabilization (VOMP) and apoptosis. Therapeutics targeted at intracellular signaling include the cyclin dependent kinase 4 and 6 (CDK4/6) inhibitor abemiciclib
and the mutant IDH2 inhibitor enasidenib. FGFR3 which is highly expressed in most t(4;14) myeloma and sometimes has activating mutations, is targeted with
erdafitinib. FGFRS feeds into RAS / MEK / MAPK signaling, which is targeted with drugs against BRAF (vemurafenib) and MEK (cobimetinib). Finally, a new class of
drugs that target transcriptional activators such as bromodomain and extra-terminal (BET) inhibitors the block or degrade BRD4 are being used to target the enhancer
machinery present at large enhancers that are often translocated in myeloma such as those found at the immunoglobulin loci.

first generation of myeloma directed chimeric antigen receptor  events in an individual patient’s tumor remains an active area of
(CAR)-T cells and bi-specific T cell engaging (BiTE) antibodies,  investigation. As described above, alterations in the Ras-MAPK
which are conjugated antibodies binding both myeloma cells  pathway occur in approximately 40% of patients. Although
and T cells. A neutralizing antibody against the BCMA ligand  no direct Ras inhibitors exist, treatment with inhibitors of
APRIL is also being developed, as are monoclonal antibodies that ~ downstream kinases such as BRAF (vemurafenib) and MEK
deliver cytotoxic drugs more specifically to the antigen expressing  (trametinib, cobimetinib) have been reported in a small number
cell, so called antibody drug conjugates (ADCs). ADCs targeting  of cases (198-201). Cobimetinib for Ras and Raf mutated patients
the plasma cell markers CD138, CD74, and CD48 are currently  is also being incorporated into a larger precision medicine trial

undergoing clinical trials. known as MyDrug (202). Additional arms of this study include
inhibitors of IDH2 (enasidenib), FGFR3 (erdafitinib), and CDK
Targeting Tumor Specific Biology (abemiciclib) (Figure 4).

Targeting tumor specific biology has been successfully used to

treat CML and a number of solid tumors with common driver ~BCL2 Family Inhibitors

mutations, but given the degree of genetic heterogeneity in ~ BCL2 family inhibitors represent a new class of drugs that may
myeloma, this has been less successful than plasma cell directed  have applications in a broad range of malignancies. Pro- and anti-
therapy. Nonetheless, treatment guided by specific oncogenic  apoptotic members of the BCL2 family exist in a delicate state of
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balance that regulates the survival of both normal and malignant
cells (203, 204). The anti-apoptotic proteins BCL2, BCL2L1
(also known as BCL-xL), and MCL1 bind to and sequester pro-
apoptotic proteins BIM, BAX, and BAK, preventing them from
activating the apoptotic pathway. As normal cells transform
into malignant cells they become even more dependent on
the anti-apoptotic proteins for survival, leaving them sensitive
to inhibitors of the BCL2 family and providing a potential
therapeutic window (205-207). Venetoclax, navitoclax (ABT-
263), AZD5991, AMG176, and S63845 induce tumor apoptosis
by disrupting the function of BCL2, BCL2L1, and/or MCL1
(103, 104, 208). Venetoclax, a BCL2 specific inhibitor, has
been approved for the treatment of chronic lymphocytic
leukemia (CLL), which originates from BCL2-dependent B cells
(209, 210). In contrast, plasma cells upregulate and become
dependent upon MCLI, reducing their dependence upon BCL2
(100, 211). As a consequence, myeloma is primarily dependent
on MCLI and inhibitors of MCLI have shown promising pre-
clinical activity (103, 104). Surprisingly, a subset of myeloma
characterized by the t(11;14) translocation is co-dependent
on BCL2 and responds to BCL2 inhibition with venetoclax
(212-218). Dexamethasone further enhances sensitivity to
venetoclax by increasing expression of BIM and its binding to
BCL2 (219). The biological basis for the BCL2 co-dependence in
t(11;14) myeloma remains a mystery, however gene expression
profiling of myeloma patient samples did reveal that t(11;14)
were composed of two gene expression groups, CD1 and
CD2, where CD2 had increased expression of B cell markers
such as CD20, PAX5, and VPREB3, suggesting a possible
connection with B cells and BCL2 dependence. The bone marrow
microenvironment may also play a role in maintaining plasma
cell MCL1 dependence through stromal cell mediated secretion
of the plasma cell survival cytokine IL6 (220, 221).

SUMMARY

Throughout the history of multiple myeloma, we have learned
a great deal about normal plasma cells from studying the
malignant form and vice versa. While tremendous progress
in the treatment of myeloma has been made over the past
25 years, due in a large part to therapies targeting plasma
cell biology, myeloma remains an incurable disease. This
necessitates not only the continued study of plasma cell
and myeloma biology, but also the germinal center B cell
origins of the disease. Clues of these origins are provided
by epidemiological correlations. For instance, patients with
Gaucher’s disease accumulate lysolipids due to a deficiency
in glucocerebrosidase, and are more prone to monoclonal
gammopathies (222). This was recently leveraged to identify
lysolipids as an antigen driving the gammopathy (223). Similarly,
it is realized that MGUS incidence increases with obesity and
has a higher prevalence in African Americans and in males
(64, 223, 224). It will be important to sort out the genetic
vs. environmental factors in each of these cases in hopes of
minimizing risk of MGUS development. Likewise, it will be very
important to identify factors that influence progression of MGUS

to myeloma. Clinical trials testing therapeutic intervention to
minimize risk of disease progression in SMM are already
underway. However, given that 3% of adults over the age
of 50 have MGUS (64), less toxic approaches at early stages
of clonal gammopathy are needed to minimize chances of
disease. Here, even interventions with small effects may have
a large impact on cumulative disease burden. It would also
be very valuable to accurately identify cases of MGUS that
will develop into myeloma. Given the likelihood that myeloma
may never be completely eliminated by preventative approaches,
better models of disease will be needed to effectively develop
the next generation of therapies. For instance, although we
have learned a lot from patient derived cell lines models,
these do not provide tractable comparisons of different genetic
alterations without confounding background genetics. Although
CRISPR has revolutionized gene editing, it has yet to be co-
opted to induce myeloma translocations and it is unclear if
this is possible. However, it is encouraging that other genetic
approaches have been able to induce such translocations in
murine B cells (225). Finally, given the dependence of most
myeloma on the microenvironment, better in vivo models will
also be needed. Significant efforts have yielded a mouse model
of myeloma driven by AID-dependent MYC expression (113),
and a humanized mouse capable of sustaining the human
immune system including myeloma (226). These systems will
need to be further exploited and expanded to better understand
how the different genetic subtypes of myeloma respond
to therapy and to delineate microenvironmental interactions
and dependencies that can be leveraged to better treat
multiple myeloma.
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