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The human respiratory syncytial virus (hRSV) is one of the most important causes

of upper and lower respiratory tract infections in children and the main cause

of bronchiolitis worldwide. Disease manifestations caused by hRSV may vary from

mild to severe, occasionally requiring admission and hospitalization in intensive care

units. Despite the high morbidity rates associated to bronchiolitis, treatment options

against hRSV are limited and there are no current vaccination strategies to prevent

infection. Importantly, the early identification of high-risk patients can help improve

disease management and prevent complications associated with hRSV infection.

Recently, the characterization of pro- and anti-inflammatory cytokine patterns produced

during hRSV-related inflammatory processes has allowed the identification of potential

prognosis biomarkers. A suitable biomarker should allow predicting the severity of

the infection in a simple and opportune manner and should ideally be obtained from

non-invasive samples. Among the cytokines associated with hRSV disease severity,

IL-8, interferon-alpha (IFN-alpha), and IL-6, as well as the Th2-type cytokines thymic

stromal lymphopoietin (TSLP), IL-3, and IL-33 have been highlighted as molecules with

prognostic value in hRSV infections. In this review, we discuss current studies that

describe molecules produced by patients during hRSV infection and their potential as

biomarkers to anticipate the severity of the disease caused by this virus.
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INTRODUCTION

The human respiratory syncytial virus (hRSV) is a viral agent predominantly involved in
acute lower respiratory tract infections (LRTIs), frequently associated to bronchiolitis and
pneumonia in children and infants (1, 2). HRSV is responsible for approimately 60% of
all LRTIs in children under 5 years old and causes more than 80% of the reported cases
in infants (3, 4). At the age of 2 years, almost all children have been infected with hRSV
at least once, and disease severity among these children may vary from mild to severe
manifestations, sometimes requiring hospitalization with oxygen administration or admission
into intensive care units (5, 6). Moreover, hRSV infection may cause exacerbated airway
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diseases and has been associated with recurrent wheezing and
asthma development (7, 8).

Several attempts to reduce the impact of hRSV-LRTI in
health-care have been made. The first vaccine trial for hRSV
was based on a formalin-inactivated hRSV formulation (FI-
hRSV) in the 1960’s, but this formulation was unable to generate
an effective immune response and conversely produced an
exacerbated disease in children after hRSV infection (9). Since
this first failed attempt, several other vaccination strategies have
been addressed, ranging from live-attenuated viral approaches to
recombinant proteins, as well as recombinant organisms using
both, viral and bacterial vectors as immunoadjuvants (10). It
is important to highlight a growing number of clinical vaccine
trials in the last decades aiming to identify a protective approach
(phase I and II, ClinicalTrials.gov 2017: Identifier: NCT03213405
and 2018 Identifier: NCT03636906) (2, 11). However, despite the
significant progress achieved in this field, until now there are no
commercially available vaccines against hRSV (12).

Regarding hRSV disease management in high-risk groups,
prophylaxis based on neutralizing monoclonal antibodies has
been implemented to prevent severe manifestations associated
to hRSV-LRTI (13–15). Palivizumab and Motavizumab are two
humanized monoclonal antibodies generated against the hRSV
fusion protein F that have shown efficacy in preventing hRSV
infection and the capacity to decrease the rate of hospitalization
of hRSV-infected infants (16). However, only Palivizumab has
been licensed to be used as a therapy against hRSV severe
infections associated with bronchiolitis and pneumonia. Yet, it is
unable to induce long-lasting protection in those treated and the
costs associated to its use make difficult the implementation of
this strategy as a first treatment option (14). Despite the existence
of the neutralizing antibodies described above as prophylactic
and therapeutic strategies, these approaches do not work as
vaccines. Hence, to date there is no successful and affordable
strategy available to control hRSV outbreaks, which represent an
important public health problem worldwide (17, 18).

Therefore, strategies to prevent complications derived from
hRSV infection and improve disease management are needed.
Based on this premise, early diagnosis, and prediction of disease
severity has raised considerable interest in researchers and the
search for biological biomarkers to predict disease severity
during hRSV infection. In this review we discuss the latest
studies available in PubMed on potential prognosis biomarkers
and revise the feasibility of including them during routine
hRSV diagnosis.

CHARACTERISTICS AND PATHOGENESIS
OF HRSV

HRSV is an enveloped, negative, single-stranded RNA virus
belonging to the Pneumoviridae family (19, 20). The genome
of hRSV has 10 genes encoding 11 proteins required for the
replicative cycle of hRSV in infected cells (21, 22), as well as

Abbreviations: hRSV,Human respiratory syncytial virus; LRTI, Lower Respiratory

Tract Infection; TSLP, Thymic Stromal Lymphopoietin; IL, Interleukin; IFN,

Interferon; BALF, Bronchoalveolar lavage fluid; NPA, Nasopharyngeal aspirate;

TLR, Toll-like receptors; AECs, Airway epithelial cells; NF-κB, Nuclear factor κB.

for the modulation of the host immune response (23). Two
hRSV subtypes have been identified, A and B, with the subtype
A mostly associated to outbreaks during winter in countries
with temperate climates (24, 25). hRSV is transmitted by direct
contact or aerosol particles and once in the airways it replicates in
mucosal epithelial cells, starting in the upper respiratory tract and
then continuing to the lower respiratory tract (26). When hRSV
arrives to the lower respiratory tract, viral antigen recognition
by innate immune cells induce an inflammatory response, a
process that is the result of complex interactions between
the pathogen and host factors (27, 28). Lung inflammation
is likely the result of a non-effective activation of the innate
immunity by hRSV infection, mainly leading to Th2 and/or
Th17 immune responses that generate mucus overproduction
in the airways and enhance the inflammatory immune response
in this tissue, leading to lung immunopathology (29, 30). After
airway epithelial cells (AECs) recognize hRSV components
(e.g. F protein and virus-related nucleic acids) through Toll-
like receptors (i.e., TLR3 or 4) (Figure 1A) and retinoic-acid
inducible gene I (RIG-I) receptors, signaling pathways activate
transcription factors, such as interferon-regulatory factor 3
(IRF-3), and nuclear factor κB (NF-κB) (Figure 1A). In turn,
these proteins promote the transcription of several anti-viral
genes and soluble molecules (30, 31). In response to hRSV
infection, AECs produce proinflammatory molecules such as
type-I and type-III interferons (IFN) (31, 32). IFNs bind to
IFN receptors (e.g., IFNAR) located on the surface of target
cells and activate signaling pathways via Signal Transducer and
Activator of Transcription 1 (STAT-1) and STAT-2 transcription
factors. Ideally, STAT will bind to IFN-regulatory factors for a
complete promotion in the transcription of interferon-stimulated
genes (ISGs). Concomitantly, pro-inflammatory cytokines such
as IL-6, tumor necrosis factor alpha (TNF-α) and chemokines
(e.g., CXCL8, CCL3, CCL2, and CCL5) are induced and
secreted to the extracellular medium. Importantly, some of these
molecules (i.e., CCL2 and CCL5) will promote the recruitment
of leukocytes (i.e., monocytes and neutrophils), dendritic cells,
macrophages, natural killer cells, and CD4+ T cells to the site of
infection (31, 32).

Effective clearance of the hRSV requires a balanced Th1
and Th2 adaptive immune response, which promotes IFN-
γ production by cytotoxic CD8+ T cells (27, 33). However,
during hRSV infection a weak type-I IFN response is elicited
in the host, whereby viral replication is effective in infected
cells and a pro-inflammatory Th2-response is generated (34)
(Figures 1A,B). Because hRSV infection does not produce an
effective memory response that confers protective immunity to
subsequent viral exposure, re-infections are very frequent which
lead to hyperreactivity, recurrent wheezing and an increased
susceptibility of developing asthma (35).

CLINICAL MANIFESTATIONS OF HRSV
INFECTION

Clinical manifestations of LRTI caused by hRSV might vary
depending on the individual’s co-morbidity, age or sex,
air pollution exposure, parental asthma history or previous
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FIGURE 1 | Pathogenesis of hRSV and molecules with a biomarker potential induced in the airways during hRSV infection. (A) HRSV attaches to airway epithelial cells

and this binding is mediated by the interaction between the fusion (F) or glycoprotein (G) protein of hRSV. Toll-like receptor 4 (TLR4) is expressed on AECs and it is

involved in the hRSV entry. When hRSV F protein binds to TLR4, this triggers a cascade of signaling, where the protein myeloid differentiation primary response 88

(MyD88) is activated. The activation of MyD88 leads to activation of mitogen-activated protein kinase (MAPK), and the NF-kB transcription factor. Activated NF-kB

translocates to the nucleus and promotes the production of Th1 cytokines (like as TNF-α, IL-6, and IL-8). Nucleolin is a protein located on the cell surface that is also

(Continued)
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FIGURE 1 | involved in the entry process of hRSV, which generates a fusion between host cell membrane and the virus. This fusion allows the entry of the viral genetic

material to the cell, and the binding of dsRNA to TLR3. TLR3 triggers a cascade of signaling by the TIR-domain-containing adapter-inducing interferon-β (TRIF),

MAPKs and NF-kB transcription factor. This signaling pathway promotes the IL-33 and TSLP production. HRSV also can infect Dendritic Cells (DCs) and the virus

mediates its entry by TLR4 receptor, present on the surface of the DC. DCs are then infected and the genetic material of the virus enters the cell. dsRNA binds TLR7

receptor, present in the endosome produced by the fusion, which one TLR3 triggers a cascade of signaling by the MyD88 protein, MAPKs and NF-kB transcription

factor or interferon-regulatory factor (IRF). Those signaling pathways promote the IL-12 and IFN-α production, respectively. (B) Infected AECs secrete several cytokines

and chemokines that have been described as potential biomarkers. High IL-33 levels are produced by AECs and cells expressing ST2 receptor, such as ILC2s,

respond to IL-33 through the production of IL-5 and IL-13, which promote the recruitment of eosinophils that generate disease exacerbation and is associated to

ventilation requirement. The mast cells also express the ST2 receptor and when IL-33 binds to these receptors the production of IL-3 is promoted. AECs produce high

levels of IL-8, promoting the recruitment neutrophils to the infection site, that could generate a degree of hypoxia, ventilation requirement and asthma development.

TSLP production is mediate by AECs. This cytokine is recognized by the receptor TSLPR, which is expressed by macrophages, generating an exacerbation of the

disease and asthma. Periostin is produced by AECs or eosinophils. This protein increases the expression of inflammatory mediators. Deposits of periostin in the lung

is associated with increased severity of asthma. IL-6 is produced by AECs and promotes a Th2 response. This cytokine is involved in the promotion of naïve

differentiation to CD4+ and CD8+ T cell. CD4+ T cells trigger the IL-13 production and Th2 overreaction response. CD8+ T cells increase the disease severity. IFN-α

is produced by pDCs and AECs. At late times of infection, high levels of this cytokine produce high IL-10 levels by T cells. IL-12 is produced by pDCs and promotes

the differentiation of naive T cells into Th1 cells and induces weak IFN-γ-production by T cells. This low IFN-γ-production generate a Th2 overreaction response. IL-3

promotes basophil and eosinophil production, triggering inflammatory and allergic diseases as asthma. IL-13 is produced by ILC2 cells and CD4+ T cells, among

other. High IL-13 levels result in a Th2 overreaction response and the recruitment of eosinophils that generate exacerbated mucus production, airway hyperreactivity

and inflammation. Different lines (dotted and solid) were used to facilitate understanding of the figure and the different signaling pathways involved.

infections, among others (2, 36). HRSV-LRTI might be
accompanied by nasal congestion, rhinorrhea, cough, wheezing
and shortness of breath (36, 37), with an increased risk of
subsequent wheezing episodes that can last for several years
after acute infection. Indeed, pathology induced in the airways
by respiratory viruses is characterized by alterations in the
respiratory epithelium, which stimulates the production of
pro-inflammatory cytokines and chemokines that promote the
infiltration of immune cells into the lungs (38, 39). In some cases,
this response might become exacerbated and bring temporary or
lifetime changes in the lungs, leading to the recurrent wheezing
episodes and asthma (3, 40). Although most viral infections
induce a transient airway hyperresponsiveness (41, 42), those
with a history of atopy or asthma might display enhanced
virus-related inflammation with significant airway obstruction
leading to a more severe disease (43, 44). Therefore, the
identification of hRSV-infected patients susceptible to develop
more severe diseases would be important for performing better
clinical decisions.

DIAGNOSIS OF HRSV INFECTION

Early clinical diagnosis of hRSV infection could help to improve
the care management of patients with respiratory infections and
anticipate severe outcomes, according to the clinical predisposing
factors, such as age. Currently, the available methods for hRSV
diagnosis include tests that are based on molecular, virologic, or
immunologic diagnostic.

Nowadays, the most used methods for hRSV diagnosis
are based on direct immunofluorescence (DIF), reverse
transcriptase-PCR (RT-PCR), immunochromatographic assay
(CIA) and enzyme immune-assay (EIA). Other more complex
methodologies that have been used more frequently in the last
years are based in the detection of multiple analytes in high-
complexity multiplex assays (such as Luminex or Affimetrix),
as these approaches are faster than viral culture (11, 45, 46).
Some molecular assays, such as RT-PCR and Luminex have high
diagnostic sensitivity as compared to cell culture technique, but

only RT-PCR is used as reference technique (47). Although RT-
PCR is the fastest, its implementation is expensive as compared
to DIF, EIA, or CIA assays. However, while the latter are low
cost and fast, their sensitivity is lower than that of RT-PCR or
Luminex and, in some cases (i.e., DIF), the interpretation of the
results is somewhat subjective and requires technical skills, time,
and expertise (47).

Immunologic diagnosis of hRSV is based on the
characterization of cellular and cytokine/chemokine profiles
(48, 49). In this case, flow cytometry is the main technique
used to identify the cell types present in the bronchoalveolar
lavage fluid (BALF) and peripheric blood samples of patients
with hRSV infection. Cells recruited to the lungs include
neutrophils, dendritic cells, T and B cells, alveolar macrophages
and monocytes (10, 35). Clinical studies with hRSV infected
children have shown an increased amount of neutrophils
(CD11b+, CD18+, and CD54+) (50), alveolar macrophages
(expressing TNF-α) (51), monocytes (CD69+) (52) and B
cells (53) infiltrating the infected airways. Contrarily, the
presence of T cells (CD4+ and CD8+) and plasmacytoid
dendritic cells (DCs, HLA-DR+, CD123+/CD11c−) significantly
decrease in peripheral blood of infected children, as compared
to healthy children control groups (54, 55). Besides the
characterization of the cells infiltrating the airways, the
cytokines/chemokine profile observed in the infected tissue is
also informative. The main cytokines evaluated in the BALFs
of hRSV infected individuals are mainly IL-2, IL-12, IFN-γ,
IL-8, IL-6, and TNF-α (35). Importantly, all these cytokines
can be evaluated by flow cytometry, ELISA, RT-PCR, or
Luminex (56–58).

The types of samples used to detect hRSV or immune-related
markers can be nasal washes, nasopharyngeal aspirates (NPA),
nasopharyngeal swabs, BALFs, serum and peripheral blood (11,
45, 46). However, cytokines as biomarkers should be assessed
at the site of infection (upper and lower respiratory tract) and
to a lower extent in peripheric blood. The role of the above-
mentioned cytokines during infection is discussed below in the
following sections.
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SEVERITY PROGNOSIS IN HRSV
INFECTION

Among the patients diagnosed with LRTI, a significant number
of hRSV-infected children treated as outpatients will require
additional medical attention due to respiratory complications.
Furthermore, a significant percentage of diagnosed patients will
display recurring wheezing episodes and other complications in
the following months after the first LRTI episode (59, 60). It
is worth mentioning that these patients can not be identified
early after infection due to a lack of accurate tools for predicting
disease severity. Furthermore, at present there is no consensus
on predicting the outcome of patients with LRTI caused by
hRSV, which represents a problem for disease management
due to the rapid evolution of the disease in which mechanical
ventilation might be unexpectedly required in the course of
24 hours or less (61). Currently, methods that are based on
clinical parameters used by physicians are widely accepted
to support clinical decisions (62). However, these parameters
may be somewhat subjective and are not accurate enough to
perform a precise categorization or prognosis of disease severity
(63, 64). To address this problem, biomarkers within samples
of patients might contribute to a better diagnosis and could
help physicians take more accurate decisions, increasing the
possibility of obtaining better outcomes (4, 65). In line with this
notion, in the last years several research groups have focused on
identifying an accurate method for determining the severity and
progression of LRTI by hRSV (62, 66–68). Below, we describe
diverse parameters and soluble molecules currently used to assess
disease severity in hRSV-infected patients (Table 1).

Clinical Score as a Biomarker Related to
Disease Severity
The use of prediction models to calculate the risk of severe
outcome in LRTI in children has been previously implemented
based on the clinical characteristics of patients, radiological
findings, and laboratory results (77). In the last 10 years,
remarkable progress in diagnostics has been achieved thanks
to the availability of transcriptional profiles that have allowed
establishing fingerprints related to disease progression and
severity caused by hRSV infection (78). Among the available
methods based on transcriptomic approaches, the “molecular
distance to health” (MDTH) has shown to be a promising
diagnostic tool for respiratory tract infections (68, 79). The
MDTH is a tool designed to measure alterations in the
transcriptional profile of immune cells (i.e., neutrophils,
cytotoxic cells, and T-cells) obtained from patients (80). Data is
obtained from the test as a single score that is compared with
a basal score from healthy controls. Importantly, MDTH scores
performed during the first days of hRSV infection have been able
to predict disease severity in terms of hospitalization days and
intensive care requirements (78).

Microbial Factors as Severity Biomarkers
It is well known that the higher microbial load at the site of
infection, the greater the possibility to cause tissue damage, which
is related to worse prognosis. Based on this premise, several

research groups have tried to demonstrate a direct relationship
between viral loads and the severity of the disease (81), but
the conclusions are somewhat controversial. Different studies
have shown a direct correlation between the increase of viral
loads with more severe clinical manifestations (81–83). In fact,
these studies showed that high hRSV viral loads at day 3 are
significantly associated with requirement for intensive care and
respiratory failure (84). In contrast, studies, such as (69, 85)
and Piedra et al. have reported the opposite, where high hRSV
loads at the beginning of the infection correlate with protective
immune response and less severe disease progression (86). These
findings raise the discussion about the role of viral loads in disease
progression and the possibility of considering this factor as a
potential biomarker to determine disease severity in hRSV-LRTI,
as viral loads could be leading the host immune response to
the virus.

Soluble Proteins as Biomarkers for
Disease Severity
In the last few years, the analysis of protein expression patterns
has become one of the most explored fields in diagnosis. The
samples used to obtain the protein expression patterns range
from blood to nasopharyngeal samples, with both suggesting
helpful insights into the identification of molecules related to the
severity of the infection. For example, increased levels of serum
transaminases, aminotransferases and antidiuretic hormones
have been related to severe cases of hRSV bronchiolitis (70, 71).
Furthermore, increased levels of lactate dehydrogenase (LDH)
in nasopharyngeal samples has also shown to have a predictive
value of 88% in determining the severity of the disease in young
children with bronchiolitis (72, 73). Another molecule proposed
as a disease severity biomarker is mucin 5AC (MUC5AC), a
highly glycosylated protein present in the airway mucus (74).
This protein has been reported to be detected in nasal aspirates
obtained from hRSV-infected children and its presence and
concentration is correlated to disease severity caused by hRSV
(75). Taken together, several soluble molecules show a correlation
with the severity of hRSV-related disease and can be easily
detected in samples that are simple to obtain, and thus may be
used as biomarkers of disease severity related to infections caused
by hRSV.

Pro-inflammatory Cytokines as Biomarkers
for Disease Severity in hRSV Infections
During hRSV infection, the host innate immune response
generated against the virus can be unbalanced and ultimately
detrimental to the host. Non-optimal responses against the
virus are Th2-like responses with the generation of cytokines,
which in turn can recruit numerous pro-inflammatory immune
cells (35, 56). Furthermore, several studies have reported an
increase in the levels of Th2-like cytokines in different types
of samples (BALF, serum, blood, plasma, nasopharyngeal, or
aspirate washes), which can be correlated with disease severity
in children. Such cytokines, which could be used as prognosis
biomarkers are IL-33, IL-8, TSLP, IL-6, periostin, and IFN-α.
Those biomarkers could predict hRSV disease severity in children
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TABLE 1 | Molecules and cells as severity markers in respiratory diseases.

Marker Sample type Market for References

Viral loads Nasal washes Disease progression in hRSV-LRTI. (69)

Transaminases, aminotransferases and antidiuretic hormones Serum and nasopharyngeal Bronchiolitis caused by hRSV (70, 71)

Lactate dehydrogenase Nasopharyngeal Bronchiolitis caused by hRSV in children. (72, 73)

MUC5AC Mucus Severity disease caused by hRSV infection (74, 75)

Neutotrophins (BDNF and NGF) BALF Severity disease caused by hRSV infection (76)

Developed asthma later hRSV infection

BDNF, Brain-derived neurotrophic factor; NGF, nerve growth factor.

(Table 2). Other cytokines, such as IL-12, IL-3, and IL-13 could
also be potential biomarkers, although more clinical studies
are required (Table 3). Next, we will explain further how some
of these cytokines could be useful to predict the severity of
hRSV infection.

Interleukin-33 (IL-33)
IL-33 is constitutively expressed by endothelial and epithelial
cells. The main function of this cytokine is the initiation and
development of the innate and adaptive Th2 type immune
response (103). Cells expressing the ST2 receptor respond to
IL-33, including mast cells, eosinophils, and basophils, among
others (104). Type-2 innate lymphoid cells (ILC2s) are also
targeted by IL-33 to produce Th2-type cytokines (IL-6, IL-
8, IL-5, IL-13), which in turn promote a Th2 response with
eosinophil recruitment, generating an exacerbated disease (105)
(Figure 1B). Recent studies with mice in which IL-33 was
neutralized during hRSV infection, showed that severe pathology
was not induced and that mice treated with IL-33 during
hRSV infection quickly developed the disease, resulting in more
severe clinical outcome (35, 88). Interestingly, Saravia et al.
measured IL-33 levels in NPA and showed a link with ventilation
requirement in infants hospitalized by bronchiolitis caused by
hRSV (87). In 2015, Bertrand et al. performed a study in children
with bronchiolitis caused by hRSV and detected high levels of IL-
33 expression levels in NPA in patients with a family history of
atopy (66). García-García et al. measured IL-33 levels from NPA
in children infected with hRSV, associating bronchiolitis with
high levels of this cytokine. Furthermore, both studies describe
that IL-33 cytokine is elevated when coinfection occurred (88).
Taken together, these results indicate that IL-33 could be a
good biomarker to determine the severity and prognosis during
bronchiolitis caused by hRSV.

Interleukin-8 (IL-8)
IL-8 has a mayor chemotactic role, and is mainly produced
by monocytes, endothelial cells, macrophages, and T cells (106,
107). IL-8 binds to G protein-coupled receptors CXCR1 and
CXCR2 expressed by cells that include monocytes, neutrophils,
endothelial cells, macrophages, and T cells, among others (108,
109) (Figure 1B). During an infection with hRSV, McNamara
et al. found that the concentration of IL-8 remains elevated
during the disease, even when the number and recruitment
of neutrophils ultimately decreased (110). Elevated IL-8 levels

(in nasopharyngeal samples) have been widely correlated with
disease severity caused by hRSV infection, including the risk of
mechanical ventilation (4, 90). In 2013, Díaz et al. found high
IL-8 levels in NPA in children with severe hRSV bronchiolitis
as compared to controls and patients with mild disease
manifestations. More specifically, they observed an increase in
IL-8 in a group of patients with severe disease (111), which may
suggest that higher levels of this cytokine relate to higher severity
of hRSV infection. Tabarani et al. identified in nasopharyngeal
washes increased levels of IL-6, IL-8, and TNF-α associated to
hRSV disease severity in young children (89). In this study, the
authors associated the severity of disease with the age of the
individuals, chronic diseases and elevated concentrations of IL-
8, as well as other molecules (89). In another study, which was
performed in children with severe hRSV infection, Brand et al.
assessed the levels of IL-8 in plasma and NPA and found an
increase in IL-8 in the plasma of children with severe disease,
as compared to children with mild or moderate disease (48).
In 2015, Díaz et al. performed another study in children with
bronchiolitis caused by hRSV and Rhinovirus (RV). This study
showed higher IL-8 levels in NPA of children infected with both,
hRSV and RV than children infected with RV alone, which was
associated with more days requiring O2 treatment (92). Based on
this study, it can be suggested that high IL-8 levels in children
infected hRSV will act as a good predictor for determining the
days that requiringO2 treatment. In 2016, Huang et al. performed
a clinical study that included 96 patients with asthma-chronic
obstructive pulmonary disease (COPD) and 35 healthy controls.
Their results showed an increment of IL-8 and other cytokine
levels that were related to the severity of airway diseases. The
researchers suggest that IL-8 could be a potential marker for
the evaluation of asthma and COPD (91). There are not new
clinical studies that correlate high levels of this cytokine with the
disease severity.

Thymic Stromal Lymphopoietin (TSLP)
TSLP is expressed by several cell types, but mainly by epithelial
cells and keratinocytes (112, 113). Two isoforms have been
described for this cytokine: a long and a short form of TSLP
(114). The short isoform is constitutively expressed in several
tissues, particularly in those that are highly sensitive to
inflammation. Importantly, the long isoform of TSLP has been
widely correlated with exacerbated immune responses and the
establishment of allergic and asthma in patients with atopic
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TABLE 2 | Pro-inflammatory cytokines as prognosis biomarkers in respiratory diseases.

Cytokine Sample type Biomarker for References

IL-33 Nasal aspirates Risk for asthma or severe hRSV disease in children after reinfection. (87)

Ventilation requirement in infants hospitalized by bronchiolitis caused by hRSV

NPA Bronchiolitis, asthma, and allergic diseases. (88)

Allergic inflammation. (66)

IL-8 Plasma Predictors of mechanical ventilator requirement during hRSV infection and bronchiolitis. (4, 48)

Nasopharyngeal wash Severity during hRSV infection. (89)

Plasma and nasal secretion Prognosis for children evolving to bronchiolitis by hRSV. (90)

Plasma Severity of airway diseases, asthma and COPD. (91)

NPA Predictive value for the number of days with need of supplemental oxygen. (92)

TSLP NPA Severe bronchiolitis by hRSV. (93)

NPA Increased infant hospitalization and disease severity. (88)

BALF Asthma development by hRSV. (94, 95)

Periostin NPA Severe bronchiolitis by hRSV. (93)

NPA Increased infant hospitalization (88)

Bronchial and nasal cells Persistent or uncontrolled asthma in children. (96)

Serum Persistent or uncontrolled asthma in children. (97, 98)

Tracheal aspirates and nasal wash Pulmonary hypertension and prognosis during hRSV bronchiolitis. (99)

IL-6 Blood, plasma and serum Increased infant hospitalization and severe hRSV bronchiolitis. (4)

Nasopharyngeal wash Severity during hRSV infection. (89)

NPA High hRSV disease severity. (100)

NPA Predictive value for the number of days with need of supplemental oxygen. (35, 92)

IFN-α Blood Severity of the disease in children under 2 years infected by hRSV. (101)

Blood and nasopharyngeal swabs More severe illness and recurrent wheezing in in hRSV bronchiolitis. (89, 102)

BALF, Bronchoalveolar lavage fluid; NPA, Nasopharyngeal aspirate.

dermatitis (95) (Figure 1B). Asthma may result as a consequence
of different factors in children. However, a possible association
with viral infections has gained increased attention of researchers
in the last decade (88). At present, there is increasing evidence
suggesting an association between TSLP elicited upon infection
with hRSV or RV and the development of asthma (88, 94).
However, it still remains to be elucidated whether asthma favors
severe viral disease or if asthma is the result of severe disease
elicited during respiratory infection. Lee et al. reported that viral
antigen recognition triggers a signaling cascade involving the
NF-κB nuclear factor and retinoic acid induced gene 1 (RIG-1)
(115). The activation of this cascade resulted in TSLP production
and a strong Th2 response, contributing to the pathophysiology
observed in severe bronchiolitis, which eventually in some cases
progressed to asthma (115). Later, García-García et al. showed
an association between TSLP, together with periostin and IL-
33, with disease severity in the infection of the respiratory tract
of children. This study showed a correlation between increased
levels of TSLP with hRSV bronchiolitis and coinfections with
rhinovirus, as well as with severe disease and intensive care unit
(ICU) admission (88).

Interleukin-6 (IL-6)
IL-6 is a soluble mediator that can be produced by macrophages
and epithelial cells (116). After its synthesis, IL-6 moves to
the liver through the bloodstream and generates a pleiotropic
effect over immunity and inflammation (117). This cytokine is

involved in the promotion of the differentiation of naïve CD4+

and CD8+ T cells and is an important link between innate and
acquired immunity (117) (Figure 1B). In 2013, Tabarani et al.
evaluated the levels of IL-6 in nasopharyngeal wash samples
from children with LRTI and hRSV. Interestingly, they found a
correlation between the magnitude of the clinical manifestations
elicited by hRSV infection and high levels of IL-6 amongst other
inflammatory mediators (CCL2, TNF-α, CXCL8, IL-10) (89). On
the other hand, Brown et al. have suggested that high levels of
IL-6 in the plasma could indicate a higher probability of infant
hospitalization and severe bronchiolitis caused by hRSV (4). In
2016, Lu et al. also detected high levels of IL-6 in NPA of patients
with hRSV and this was correlated with higher hRSV disease
severity (100). Increased levels of IL-6 and other cytokines have
also been found in nasal lavage fluids of children with LRTI,
particularly those which needed O2 treatment (35, 118). Other
studies performed in children with bronchiolitis caused by hRSV
infection showed that high IL-6 levels in nasal samples and BALF
correlated with the need for ventilation and with a higher degree
of hypoxia (35, 92). In this study, the authors suggested that IL-
6 and other cytokines assessed could be reliable biomarkers to
determine the severity of hRSV infection.

Periostin
Periostin is a protein that is expressed at basal levels in almost
all human tissues (119). Its expression is also found in the
respiratory epithelium and is elevated levels in asthmatic children
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TABLE 3 | Pro-inflammatory cytokines as potential prognosis biomarkers in

respiratory diseases.

Cytokine Sample type Potential Biomarker for References

IL-12 BALF Recurrent wheezing due to hRSV

infection.

(66)

Developed asthma later hRSV

infection.

Developed asthma in infants with

bronchiolitis caused hRSV

infection.

(35)

IL-3 BALF Recurrent wheezing due to hRSV

infection.

(66)

Developed asthma later hRSV

infection.

NPA Severe bronchiolitis by hRSV. (100)

IL-13 Nasal aspirates Ventilation requirement in infants

hospitalized by bronchiolitis

caused by hRSV.

(87)

Blood Asthma diagnosis. (100)

Nasal washes High IL-13 levels are elevated in

children with hRSV LRTI.

(35)

BALF, Bronchoalveolar lavage fluid; NPA, Nasopharyngeal aspirate.

(120). This protein is produced by eosinophils in response
to IL-4 an IL-13 signaling (121) (Figure 1B). The role of
periostin is related to the generation of allergic inflammation
and the development of a Th2 phenotype, among others (120)
(Figure 1B). Periostin has been associated with asthma severity
and increased levels of periostin have been found in the serum of
children with exacerbatedmanifestations of asthma (122). Lopez-
Guisa and colleagues evaluated periostin levels in bronchial and
nasal cells from asthmatic, non-asthmatic, atopic, and healthy
children and found a significant increase in periostin levels in
asthmatic children (3.7 times), as compared to the other groups
(96). These results were confirmed in studies that showed a
correlation between high levels of periostin in the serum with
persistent or uncontrolled asthma in children (97, 98). In fact,
clinical manifestations of asthma are considered to be very
similar to bronchiolitis symptoms (123). These findings suggest
that asthma could be a sequel of severe bronchiolitis in children
(123). García-García et al. showed in NPAs that increased
concentrations of periostin were associated with more severe
hRSV infection, as compared to healthy children (88, 93). More
recently, periostin levels were associated with the severity of viral
bronchiolitis, as children with severe pulmonary hypertension
had high levels of this protein as compared to children with
mild pulmonary hypertension (8,887 ± 1,582 pg/ml vs. 5,016 ±

1,017 pg/ml) (99). These results indicate that periostin could be
another good biomarker for the prognosis of hRSV infection and
particularly bronchiolitis.

Interferon Alpha (IFN-α)
IFNs are a large family of pleiotropic cytokines. Particularly, IFN-
α and IFN-β are type-I interferon family members produced
by epithelial cells and most of immune cells (124). To exert
its biological action, type-I IFNs binds to the type-I IFN

receptor (IFNAR1/2) (125), which triggers the expression of
pro-inflammatory molecules and antiviral genes, such as those
involved in the degradation of viral RNA (126). Importantly,
the recognition of the hRSV non-structural protein 1 (NS1)
has been correlated with impaired IFN-α function, particularly
through the induction of the miRNA miR-29a, which inhibits
the expression of the IFN-α receptor in infected cells (101).
These studies suggest that low levels of IFN-α could be related
to the severity of hRSV infection and hence could be used as a
biomarker. However, other studies based on the transcriptional
profile of blood samples and nasopharyngeal swabs, report
contrasting results, indicating that type-I interferons, particularly
IFN-α/β are increased in hRSV bronchiolitis and correlate
with severe illness and recurrent wheezing (89, 102). These
studies suggest that interferon signaling pathways may serve as
important biomarkers associated to hRSV loads and severity
(102). Resolving the discrepancies found among different studies
analyzing the role of IFN-α in hRSV disease severity will require
further investigations that ideally relate transcriptional findings
with protein levels in blood and nasopharyngeal samples.

OTHER POTENCIAL PRO-INFLAMMATORY
CYTOKINES AS BIOMARKERS FOR
SEVERITY CAUSED BY HRSV

Besides the cytokines described above as potential biomarkers for
hRSV severity (4), recent studies have preliminarily pointed out
other pro-inflammatory cytokines that show positive correlations
with hRSV severity and are potential prognosis biomarkers
for respiratory diseases (Table 3). Some of these cytokines are
described below.

Interleukin-12 (IL-12)
IL-12 is produced in response to viral or bacterial infections
by DCs and other antigen-presenting cells and is involved in
promoting naïve T cell differentiation into Th1T cells (127)
(Figure 1B). Bertrand et al. have shown that nasal and lung
samples display increased levels of IL-12 in LRTI patients.
Furthermore, they showed for first time that high levels of IL-
12p40 (in BALF) and other cytokine could be correlated with
recurrent wheezing and the development of asthma in infants
with bronchiolitis caused by hRSV infection (35, 66).

Interleukin-3 (IL-3)
IL-3 is mainly expressed by mast cells and activated T cells
located in the airways (128). This cytokine induces an increase
in basophil and eosinophil production (129) (Figure 1B) and is
involved in the pathogenesis of asthma (128). In 2015, Bertrand
et al. described for the first-time the presence of high levels of
IL-3 in BALF and NPA obtained from children <9 months with
acute bronchiolitis caused by hRSV. Furthermore, the authors
found a correlation between high levels of IL-3 with episodes
of recurring wheezing and the development of asthma in the
future (66). Lu et al. also found high levels of IL-3 in NPA in
children with bronchiolitis caused by hRSV and an increased
risk of asthma, which was associated with higher disease severity
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(100). The results of this study suggest that IL-3 could be involved
in the development of chronic airway inflammatory diseases and
that it could be used to predict clinical outcomes in hRSV-LRTI.
Consistently, the authors suggested that IL-3 could be eventually
used to predict the clinical outcome of patients.

Interleukin-13 (IL-13)
In the lungs, IL-13 is the mediator of eosinophilic inflammation,
mucosal secretion, and bronchial hyper reactivity (130). It has
been observed that IL-13 is elevated in COPD, as well as in
asthma and other lung diseases (131). Importantly, IL-13 is
produced in response to IL-33 signaling and is released from
various cells, including alveolar macrophages, basophils, mast
cells, eosinophils, ILC2 and CD4+ T cells (132) (Figure 1B).
In 2015, Saravia et al. linked high levels of IL-13 and IL-33
with the requirement for ventilation in infants hospitalized with
bronchiolitis caused by hRSV (87). Consistently, in an animal
model of hRSV (BALB/c mice), an up-regulation of IL-13 has
been reported, which results in the recruitment of eosinophils to
the airways that generates exacerbated mucus production, lung
hyperreactivity and airway inflammation (132). A more recent
study performed in 2016 evaluated IL-13 levels in the blood of
children being treated for respiratory symptoms following severe
hRSV bronchiolitis and found that IL-13 could be used as a
clinical asthma diagnosis marker (100).

CONCLUDING REMARKS

Biomarkers for classifying the severity of respiratory tract
infections have become a global need due to the lack of effective
strategies to decrease the impact of such diseases and the need
for improving the management of patients and their potential
outcomes. Most efforts point to the development of highly
sensitive, rapid, and low-cost techniques that allow predicting
in an accurate way the prognosis of patients with respiratory

infections. Nowadays, an important number of molecules have
been identified which could help asses disease severity, however
their specificity and sensitivity remain challenging and are
not strong enough yet to accurately predict disease outcome
and become a canonic biomarker for predicting LRTI severity
associated to hRSV. Hence, more studies are needed to establish
the pro-inflammatory cytokine and cytokine expression patterns
that are related to disease development during the different
stages of hRSV infection. Ideally, particular pro-inflammatory
cytokine profiles will ultimately allow determining early on
during infection the severity of disease caused by hRSV.
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