
MINI REVIEW
published: 10 June 2019

doi: 10.3389/fimmu.2019.01155

Frontiers in Immunology | www.frontiersin.org 1 June 2019 | Volume 10 | Article 1155

Edited by:

Richard D. Dix,

Georgia State University,

United States

Reviewed by:

Edward Mocarski,

Emory University, United States

Sarah Rowland-Jones,

University of Oxford, United Kingdom

*Correspondence:

A. Raj Kumar Patro

rajkumarpatro@yahoo.com

Specialty section:

This article was submitted to

Viral Immunology,

a section of the journal

Frontiers in Immunology

Received: 28 November 2018

Accepted: 07 May 2019

Published: 10 June 2019

Citation:

Patro ARK (2019) Subversion of

Immune Response by Human

Cytomegalovirus.

Front. Immunol. 10:1155.

doi: 10.3389/fimmu.2019.01155

Subversion of Immune Response by
Human Cytomegalovirus
A. Raj Kumar Patro*

Infectious Disease Biology Group, Institute of Life Sciences (ILS), Bhubaneswar, India

Human cytomegalovirus (HCMV) is the most common cause of congenital infections

and is an important pathogen in immunocompromised individuals. Despite a robust

host immune system, HCMV able to replicate, evade host defenses, establish latency

for life. A significant portion of HCMV genome dedicated to encode gene products

for modulation of host immune response. Growing number of HCMV gene products

are being recognized to play role in immune evasion. Information on viral immune

evasion mechanisms by which HCMV persists in host will be useful in devising antiviral

intervention strategies and development of new vaccines. This minireview provides a brief

overview of immune evasion strategy adapted by HCMV by utilizing its gene products in

modulation of host immune response.
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INTRODUCTION

The human cytomegalovirus (HCMV) is a ubiquitous β-herpesvirus that establishes lifelong
persistent infection following introduction to an immunocompetent host. Primary infection in
a healthy individual leads to mild febrile illness, whereas HCMV causes serious complications
in immunosuppressed subjects, especially in transplant recipients and in immunocompromised
patients (1, 2). Human cytomegalovirus is the most common cause of congenital infections leading
to neurodevelopmental sequelae. Each year, 20,000–40,000 children are born with congenital
human CMV infection in the US, of which 10–15% develops permanent sequelae including
sensorineural hearing loss (3–5). Furthermore, substantial fraction of the asymptomatic children
develops late onset hearing loss. In an attempt to reduce these disabilities and loss of life, as well as
the associated economic cost, the Institute of Medicine of National Academy of Sciences, USA have
ranked the development of HCMV vaccine as a highest priority (6, 7).

Decades of research on cytomegalovirus has provided novel insight in understanding the host
immune response and evasion strategies adapted by the virus. HCMV has dedicated more than
half of its genome encoding for modulation of host response to infection (8, 9). This mini-review
article discusses on current understanding of HCMV gene products in modulation of host immune
response with an emphases on the immune evasion by interference in antigen presentation and
activation of NK cells, viral strain diversity and superinfection in immune subject.

MODULATION OF IMMUNE RESPONSES BY HCMV
GENE PRODUCTS

The virus has co-evolved with its host organism for 200 million years (9, 10). HCMV has a large
genome size of 236 kb with unique long (UL) and unique short (US) regions flanked by terminal
repeats and internal repeats. The genome has been annotated and encodes 167 gene products, as
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well as non-coding RNAs, microRNAs, and with an extensive
alternate mRNA splicing. However, recent report suggested that
HCMV encode to have more than 750 translated ORFs (11).
More than 40 HCMV gene products are recognized to have a
role in modulating the host immune response following infection
(12, 13). Both the innate and adaptive arms of the immune
system play a crucial role in controlling HCMV infection (12, 14).
Despite a robust host immune system, HCMV is able to establish
latency and once infected the HCMV remains in the host for life.
The virus remains latent in the myeloid progenitor cells during
its dormant phase; however on stimulation, or when the immune
system is suppressed, the virus can once again become active
(15). The battle between the host immune system and the virus
continues throughout life, with HCMV having evolved multiple
mechanisms to evade the host immune response. The divergence
of the immune response and incomplete viral control may
be attributed to the diversity of immune modulators encoded
by HCMV gene products [Figure 1, Table 1]. Many of these
gene products are homologs of host genes involved in the
immune response.

To eliminate the virus, the host needs to have an effective
immune system. After viral infection, host antigen presenting
cells must present viral antigen to the immune cells in order
to stimulate effector cells to eliminate the virus. However,
HCMV has devised strategies to limit this presentation. NK
cells are normally responsible for immediate control of viral
infections; however, there are number of HCMV gene products
that block NK cell mediated recognition. Approximately, there
are 12 HCMV gene products, US20, UL16, UL17, UL18, UL40,
UL43, UL140, UL83, UL141-UL144, and UL148, known to
control NK cell modulation (Table 1). HCMV UL16, UL17,
UL40, UL140, and UL142 genes all encode products that down-
regulate NK cell activity by imitating the host HLA class I.
For example, UL40 encodes a canonical ligand for HLA-E and
negatively regulates NK cells, which results in down-regulation
of activating ligand CD155 (20). Individuals with impaired NK
cell function, succumbs to severe herpesvirus infections (31).
In addition, HCMV gene products UL18 and UL83 (pp65)
encode for an MHC-I homolog, modulate expression of other
HCMV genes and inhibit NK cell lysis (12, 20). Furthermore,
the HCMV microRNA miR-UL122 acts to suppress host MICB
surface expression (13, 20, 29).

As is a common characteristic of herpes viruses, HCMV
is able to interfere with the class I MHC molecule involved
in antigen presentation to CD8+ T cells. HCMV establishes
persistent infection by producing host homologous molecules
that prevent recognition and interfere with antigen presentation,
subverting the cytotoxic T lymphocytes (CTLs). Viral antigens
are normally presented by the MHC class I proteins on the
infected cell surface. HCMV gene products obstruct peptide
translocation to the ER lumen and stimulate degradation of the
MHC class I proteins before they can reach the cell surface.
For example, the HCMV US3 gene product degrades the MHC
class I heavy chain by interacting with Tapasin and retaining the
class I molecule at the site of synthesis, in the ER. In addition,
the US2 and US11 gene products relocate the heavy chain of
MHC class I into the ER for proteosomal degradation. Similarly,

another gene product of HCMV, US6, prevents peptide loading
by inhibiting the binding of ATP to TAP, thereby preventing
the transport of peptides through the TAP pore. The combined
functions of the HCMV gene products US2, US3, US6, and US11,
therefore, lead to peptide transport blockade, retention of MHC
class I in the ER and ultimately proteasomal degradation. In
addition, the gene product US2 interferes with MHC class II
signal transduction by degradation of MHC class II proteins.
US2 targets the class II DR and DMα chains for degradation in
the cytosol, thereby preventing antigen presentation to CD4+ T
lymphocytes (12, 14, 16, 32).

In addition to the above, the HCMV UL83 gene product,
pp65 blocks the processing of immediate early-1 in the
proteasome by phosphorylation. Besides, the tegument Protein
UL82 evades antiviral immunity by inhibiting stimulator of
interferon (STING) signaling (21) and may be responsible for
induction of latency (15, 22). Recently, Nightingale et al. reported
that the HCMV gene product UL145 facilitates degradation of
the antiviral factor helicase like transcription factor (HLTF) by
recruiting the host Cullin4 E3 ligase complex, and captures
Cullin3 to invoke the strategy of immune evasion (27).
Additionally, the HCMV late gene product UL111A encodes
cmvIL-10, a homolog of human IL-10, which is expressed during
viral latency, and causes a state of immune suppression (23).
The cytokine Interleukin-10 has an immunosuppressive role on
several effector cells of the immune system. The HCMV gene
product cmvIL-10 exerts an immunosuppressive effect on the
host by modulating the expression of the MHC class I and II
molecules and interfering with dendritic cell (DC) function (24).
In a murine model of CMV, following productive infection with
CMV both in vitro and ex vivo, the virus reduced the expression
of MHC as well as co-stimulation of DC. This eventually led
to loss of expression of IL-2 and IL-12 and hindrance of DC
differentiation (33–35). A recent report by Wang et al also
demonstrated that the HCMV UL148 gene product suppresses
co-stimulation and expression of the cell adhesion molecule
CD58, endorsing cellular immune defense evasion by impairing
NK and T cell activation (28). This work was further supported
by HCMV UL148 mediated tropism and immune evasion by
unfolded protein response (36). In Rhesus model, Rh159, a
homolog of HCMV UL148 involved in retention of distinct set
of costimulatory molecules and involved in NK cell evasion (37).
HCMV UL148 gene products encode for avoidance of killing
of HCMV infected cells from NK cells by down regulating
MICA (38).

HCMV possesses a unique challenge, as it is able to super-
infect in a subject already infected with the virus, even in the
presence of a strong specific immune response. Several studies
have demonstrated congenital HCMV infection in offspring of
immune mothers because of reinfection with a different strain
of virus (39–43). Further, congenital infected infant born to
immune mother may develop sequelae similar to infants born
to mother with primary infection during pregnancy. It has also
been observed that infection withmore than one strain of HCMV
is common in nature (39, 40, 44). HCMV strain polymorphism
could contribute to immune evasion. Since HCMV glycoproteins
are highly polymorphic, antibody response to one strain may
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FIGURE 1 | Modulation of Immune response by human cytomegalovirus. Overview of the interactions between HCMV and the immune system. Red “T” bars indicate

inhibition. Blue arrows indicate activation. Detail mechanisms explained in the text.

not efficiently neutralize infection with a different strain and
this could enable to superinfection (45–47). In addition to
interference in antigen presentation, the CMV gene products
US2, US3, US6, and US11 encode for human homologs that
interfere with the function of CD8+ T cells. This allowed
viral replication and super-infection with a different strain of
virus in a rhesus macaque model. This was confirmed, by the
observation that US2-11 mutant virus, although able to produce
infection, was unable to super-infect (17). However, further
studies are needed to decipher the detailed mechanisms of the
CTL response in contending with the combined action of these
HCMV gene products. The large genome size of HCMV enables
it to utilize an array of genes for host immune evasion, which
allows long-term association and adaption of the virus in the
host. In an immunocompetent host, viral latency is critical for its
survival. After primary infection, the virus persists for a lifetime
regardless of pre-existing immunity. During latency, the viral
genome is maintained in the host without active replication and
retains the capacity to reactivate in response to activation signals
(48). Studies have linked various latency-associated determinants
to HCMV latency (15), however, the detailed mechanisms of
immune evasion during latency and how the virus persists in
the host for life remains elusive. Deciphering these mechanisms
could provide clues to allow us to prevent reactivation of this
latent virus in congenital and transplant setup. Further, a note of
caution is required; HCMV is strictly species specific. Since much
of our understanding on cytomegalovirus biology is derived from

in vitro cell culture studies and animal models, it is necessary to
test these immune evasion functions in the appropriate setting.
For instance, the UL18 gene product of HCMV encoding an
MHC class I homolog was proposed to block NK cell activity by
binding with KIR receptors; however, later studies have found it
to enhance killing of infected fibroblasts by NK cells (12).

Further, extensive genetic variability has been observed in
clinical isolate of HCMV (4, 40, 49–51), and even within a single
host (4, 44, 52–54). High throughput sequencing of HCMV
clinical isolates reveals that intrahost HCMV populations were
as variable as seen in RNA virus quasispecies (52, 53). Viral
strain diversity, differences in culture systems and population
heterogeneity, make the generalization of genetic information
difficult. In addition, a recent report showed that HCMV
seroprevalence is related to a shift in immune phenotype along
an age axis (55). This immunotypes varies in younger vs. elder
individuals (55–57). In due course of evolution with the host,
HCMV has been significant in shaping host immune system
(57). HCMV also affects the host in response to infection
with other pathogen. In HCMV seropositive children and in
aging individuals have negative impact to Influenza; however, in
younger individuals HCMV infection enhance immune response
to influenza (58). Viral strain diversity could limit effective
antiviral function, and the evasion strategy adapted by HCMV
further complicates the development of an effective vaccine
(45, 59). This underscores the need for large-scale genetic
and immunological profiling studies, which could provide
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TABLE 1 | HCMV gene products involved in modulation of host immune response.

HCMV Gene Product Effect on host immune system & mechanism of evasion Reference(s)

US2, US3, US6, US11 MHC class –I down regulation and impairment of expression; Further reduction in HCMV

antigen presentation to CD8+ cells; Evasion of CD8+ T cell Immunity; Superinfection

(16, 17)

US2, HCMV Immediate Early/ Early MHC class –II down regulation; Further reduction in HCMV antigen presentation to CD4+ cells (12, 18)

US18 and US20 Interfere with B7-H6 surface expression involving endosomal degradation; escapes immune

recognition by NK cells

(19)

UL18 Expression of human MHC class –I homolog; downregulate CTLs; Ligand decoy for NK

receptors

(14, 16)

UL16 Regulation of NK cell ligand NKG2D; NK cells function impairment (18)

UL40 NK cell evasion; HLA-E Over expression (20)

UL83 (pp65) IE-I sequestration; inhibit proteasome processing; Reduce action of NKp30; hinders antiviral

gene expression

(21)

IE2 (immediate early) gene product Overexpression of anti-apoptotic FLIP protein (16, 18)

US28 (viral GPCR) Targeting chemokine receptor; reduced inflammatory response (12)

UL82 (pp71) The tegument protein binds with stimulator of interferon genes to inhibit antiviral response. (21, 22)

UL111A HCMV encodes cmv IL-10, an homolog of human IL-10, thereby modulate immune system

results in immune suppression

(23, 24)

UL141 CD155 down regulation (14)

UL142 Inhibition of MICA (12, 18)

UL36 Inhibition of pro-apoptotic recruitment of pro-caspase 8 to the DISC Decline in phagocytic

activity (infected APCs)

(12)

UL37 Inhibition of pro-apoptotic Bcl-2 family Bak and Bax protein Apoptosis inhibition (18)

UL97 Along with HCMV pp65 mediated immune evasion; Protein Kinase UL97 Forms a Complex

with the Tegument Phosphoprotein pp65

(14, 25)

IE gene products Induction of TGF-β: HCMV induce transcription & release of TGF-β (26)

UL138 Latency associated; Sensitizes cells to TNF-α signaling (15)

UL141- UL144 Encodes for homolog of TNFR; This HCMV encoded gene product inhibits cell surface

expression of CD155 and CD112 (NK cell activating ligands) and the death receptor for the

TNF family ligand TRAIL

(8, 14)

UL145 degradation of helicase like transcription factor- (HLTF) by recruitment of Cullin4/DDB ligase

complex

(27)

UL146 Chemokine; role in inflammatory response (14)

UL148 Suppression of CD58; Potent Modulator of CTL Function (28)

miR-UL112 Escape from NK cell by down regulation of MICB; recognition from T cells by NKG2D

decreased

(29, 30)

List of HCMV gene products involved in immune evasion.

[US, Unique short; UL, Unique long; miR, Micro RNA; MHC, major histocompatibility complex, TAP, Transporter associated with antigen processing; NK cells, natural killer cells; CTL,

cytotoxic T cell I; LIR-1, Leukocyte Immunoglobulin-like receptor 1; HLA, human leukocyte antigen; IE, Immediate early; FLIP, FLICE-inhibitory protein; FLICE, cysteine proteases (caspase-

8/MACH/Mch5), CRP- C-reactive protein, MICA, MHC class I polypeptide-related sequence A; un, unknown; DISC, death-inducing signaling complex; APC, Antigen presenting cells;

Bak- BCL2 Antagonist/Killer, Bax- BCL2 Associated X, Bcl-2- B-cell lymphoma 2; pp65, phospho protein 65; TGF-β, Transforming growth factor –β; TNFR, tumor necrosis factor

receptor; Cullin4/DDB, Cullin-4A·DNA Damage-binding Protein; CD, cluster of differentiation].

a decisive correlation on the nature of protective immune
responses (56, 59–61).

HCMV has devised multiple strategies to interfere with
antigen presentations and escape from CTL response, but this
does not abrogate with the development of CTL response
by host. This underscores the critical role of CD8+ T cells
in HCMV infected cells as targets for immune clearance.
Studies from adaptive transfer of HCMV specific CTL, in
bone marrow transplant subjects, provide protection from
HCMV disease (62). The complex interaction between the
HCMV immune-evasins and host factors contributes to the
levels of viral persistence in host (63). Information on viral

immune evasion mechanisms by which HCMV persists in host
will be useful in devising antiviral intervention strategies and
development of new vaccines. Deletion of immune evasions
could be a novel strategy for virus attenuation for vaccine
candidate without compromising CD8T cell response (64).
Hansen et al reported that Simian immunodeficiency virus
(SIV) protein expressing rhesus cytomegalovirus vector elicits
SIV specific CD8+ T cells which recognizes unusual, diverse
epitopes and results in immune clearance (65, 66). Thus, CMV
vectors, genetically altered for diverse CD8+ T cell response
could be useful for effective prophylactic and therapeutic
vaccination (9, 65–68). Further, this could be useful in ultimately
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designing an effective vaccine that could protect primary as well
as reinfections.

CONCLUSIONS

In conclusion, human cytomegalovirus is a master of disguise.
HCMV has evolved mechanisms to replicate and evade the
host immune system by targeting the host cell machinery.
Information on the host cell receptor targeted by this virus and
the mechanisms utilized to operate cellular processes and evade
the host immune system will provide clues to viral pathogenesis.
An increasing number of HCMV gene products have been
reported to play roles in immune evasion. These gene products
sophistically orchestrate to modulate the host immune system,
thereby allowing persistent and latent infection and life-long
existence in the host. Information on viral escape mechanisms
will be useful in rational design of antiviral drugs and should
bring us one step closer to development of an effective vaccine.
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