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Lymphatic vessels collect interstitial fluid that has extravasated from blood vessels

and return it to the circulatory system. Another important function of the lymphatic

network is to facilitate immune cell migration and antigen transport from the periphery

to draining lymph nodes. This migration plays a crucial role in immune surveillance,

initiation of immune responses and tolerance. Here we discuss the significance and

mechanisms of lymphatic migration of innate and adaptive immune cells in homeostasis,

inflammation and cancer.
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INTRODUCTION

The lymphatic system transports fluids from the periphery back into the circulatory system (1)
using a series of open-ended capillaries known as lymphatic vessels (2). This network can be
exploited by pathogens to facilitate rapid spread throughout the host (3). To prevent pathogen
dissemination and enable a fast targeted immune response, the lymphatic system possesses filter-
like structures termed lymph nodes (LNs) (3), where innate immune cells, such as macrophages,
neutrophils and dendritic cells (DCs) trap and kill pathogens (3) and activate the adaptive immune
response (4).

There are two routes by which immune cells can enter LNs: leukocytes can arrive from
the bloodstream by crossing high endothelial venules (HEVs) (5). Alternatively, tissue-resident
immune cells can enter afferent lymphatic vessels and migrate to draining LNs (dLNs) (5–8).
Cells of the innate immune system including DCs, neutrophils, monocytes as well as adaptive
immune leukocytes, such as T and B cells use lymphatic vessels to migrate from tissues into LNs (6–
11). Lymphocytes exit LNs via efferent lymphatic vessels, and eventually return to the circulatory
system by the thoracic duct (12), however, in this review we will focus on the mechanisms and
consequences of immune cell migration via the afferent lymphatic system.

In vitro and ex vivo models including adhesion and transmigration assays and analysis of
immune cell migration in explanted skin provided important mechanistic insight into leukocyte
entry and migration within lymphatic vessels (13–17), while in vivo approaches allowed to examine
this complex biological process in situ (Table 1). Historically, in vivo analysis of immune cell
migration in afferent lymphatics involved direct transfer of immune cells into the skin, lymphatic
cannulation, as well application of fluorescent sensitizers to the skin to label cells and induce
inflammation (18). More recently photoconvertible transgenic mice have been utilized to track
immune cell migration from the skin and tumors (6, 9, 19–23), while intravital imaging approaches,
such as in vivo two-photon microscopy enabled direct visualization of immune cell migration in
lymphatic vessels (6, 16, 24, 25).
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TABLE 1 | Methods for investigating immune cell migration via afferent lymphatic vessels.

Approach Advantages Limitations

Adhesion and transwell assays and

explanted skin preparations

• Can be used for chemical and genetic manipulation of

cells of interest

• Allows to investigate molecular mechanisms of

lymphatic migration

• Ex vivo or immortalized cells may differ phenotypically and

functionally from the same cells in vivo

• May not replicate all the biological conditions, such as

temperatures, pressures, and solute concentrations found in vivo

• Tissue preparation may alter cellular functions

Direct transfer of purified and labeled

donor cells into the skin

• Technically straight forward

• Donor cells can be manipulated ex vivo

• Allows to investigate molecular mechanisms and

kinetics of migration

• The isolation and ex vivo manipulation of cells may alter cellular

phenotypes

• Non-physiological cell numbers are used to detect migrating cells

• Transferred cells are not native to tissues

Mobilization of tissue immune cells by

application of fluorescent

tracers/sensitizers

• Can be used to examine migration of endogenous

cells in response to inflammation

• Relies on uptake of tracer by cells of interest

• Fluorescent label can be taken up by lymph node cells

• Induces inflammation

Lymphatic cannulation • Provides direct insight into the cellular content of

normal afferent lymph

• Difficult to perform on small animals

• Cannulation may induce inflammation

• Anesthesia may alter lymphatic migration

Photolabeling of cells in

photoconvertible transgenic mice

using UV or violet light to monitor

migration of endogenous cells in vivo

• Cells can be labeled in situ by exposure to light

• No ex vivo manipulation required

• Steady-state and inflammation-induced migration can

be accurately quantified

• Difficult to perform in internal organs, requires surgery

• Anesthesia may alter lymphatic cell migration

• UV light may induce an inflammatory response, however, this

response can be reduced if violet light is used to photoconvert

Intravital microscopy to directly

visualize immune cells migrating

inside lymphatic vessels

• Can be used to directly visualize immune cell migration

and interactions with lymphatic vessels in their native

environment

• Provides information about cellular dynamics

• Requires a dedicated imaging setup

• Requires fluorescent reporter mice or adoptive transfer of labeled

cells

• Anesthesia may alter lymphatic cell migration

• Surgery to expose internal organs may cause

extensive inflammation

LYMPHATIC MIGRATION OF INNATE
IMMUNE CELLS

Dendritic Cells
There are two distinct DC populations: plasmacytoid, which
produce high amounts of type 1 interferon, and conventional
DCs (cDCs) (26). Upon sensing inflammatory stimuli, cDCs
enter lymphatic vessels and migrate to LNs (26, 27). They carry
antigens (8) and pathogens including viruses (28, 29), spores
(30) and bacteria (31–33) from the site of infection to LNs,
while DC-mediated transport of innocuous antigens regulates
tolerance (34). In dLNs DCs present antigen to CD4+ T cells,
or cross-present to CD8+ T cells, thereby regulating adaptive
immune responses (26). DC migration from the periphery has
been discussed extensively in several recent reviews (27, 35). Here
we provide a brief overview of the mechanisms of DC migration
via lymphatic vessels (Figure 1).

The most important regulator of DC migration is the
chemokine receptor CCR7. Consistent with this, CCR7-deficient
DCs show a 90 percent reduction in migration from the
periphery in response to inflammatory stimuli (10, 36).
An elegant intravital microscopy study demonstrated that
CCR7 is required for the LPS-induced directed migration of
DCs toward lymphatic vessels and subsequent transmigration
(25). DCs also use CCR7 for trafficking to dLNs from
the lamina propria (37), lung (34), and skin (23) under

homeostatic conditions. Interestingly, CCR7-dependent DC
migration decreases lymphatic permeability (38), indicating bi-
directional communication between the lymphatic network and
immune cells.

Lymphatic vessels express CCR7 ligand, CCL21 (25, 39–
41), which is required for DC trafficking from skin to LNs
under homeostatic (41) and inflammatory (42) conditions.
Imaging studies have provided important insight into the role
of CCL21 in DC migration. Firstly, the size of the CCL21
gradient, and distribution of lymphatic vessels, indicates that
most skin DCs are able to sense CCL21 gradients (41).
Secondly, DCs enter lymphatic vessels at sites of high CCL21
expression (25), suggesting that CCL21 directly regulates entry
into lymphatics. Finally, intravital microscopy has revealed
that CCL21 also enhances DC migration within lymphatic
vessels (40). Collectively, these observations suggest that CCL21
regulates multiple steps in the lymphatic migration of DCs.
In contrast, the other CCR7 ligand, CCL19, appears to be
dispensable for DC lymphatic trafficking (42).

Inflammatory mediators regulate DC lymphatic migration
(26). The cytokines Interleukin-1β (IL-1β) and Tumor Necrosis
Factor-α (TNF-α) promote inflammation-induced DCmigration
to LNs (43–45). Furthermore, the lipid prostaglandin E2
increased CCR7 expression on DCs, augmenting migration
towards CCL19 and CCL21 in vitro (46). Additional regulators
of CCR7-mediated migration include the cell surface molecules
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FIGURE 1 | Leukocyte migration from peripheral tissues to draining lymph nodes via afferent lymphatic vessels. Inflammatory cytokines, including IL-1β and TNF-α,

produced by tissue-resident myeloid cells, enhance DC and neutrophil migration from tissues to lymphatic vessels. Chemokines, such as CCL21, CX3CL1, and

CXCL12, synthesized by LECs in the skin control leukocyte migration to lymphatic vessels and aid transmigration into the vessel lumen. In addition to chemokines,

lymphatic endothelial cells produce the lipid S1P, which acts upon S1P receptors, to promote the migration of DCs and T cells into lymphatic vessels and aid

trafficking to the draining lymph node. Integrins, such as ICAM-1, CD11b, and LFA-1 may promote leukocyte entry into lymphatic vessels and subsequent migration

within lymphatics. Interactions between CD44 and MR promote T cell entry into lymphatic vessels. Lastly, LYVE-1 can bind to hyaluronic acid on DCs, and promote

DC entry into lymphatic vessels. ICAM-1, Intercellular Adhesion Molecule 1; LFA-1, lymphocyte function-associated antigen 1; LYVE-1, Lymphatic vessel endothelial

hyaluronan receptor 1; MR, macrophage mannose receptor; S1P, sphingosine-1-phosphate.

CD37, CD38, and CD47 which enhance DC movement toward
CCR7 ligands and migration to dLNs (15, 47–50). In contrast,
immunosuppressive molecules including IL-10 (51), TGF-β (52,
53) and the anti-inflammatory lipid Resolvin E1 (54) can inhibit
DC trafficking.

In addition to CCR7, a number of other chemokine
receptor/ligand pairs have been implicated in lymphatic DC
migration. CXCR4/CXCL12 and CX3CR1/CX3CL1 enhance DC
trafficking from inflamed skin (55, 56). The role of CCR8 is less
clear with CCR8-deficient mice displaying reduced lymphatic
migration of DCs following an injection of latex beads (57),
but enhanced migration of DCs following FITC painting (58),
suggesting that CCR8 plays a limited, or stimulus-specific, role
in this process.

Intravital imaging and FITC-painting experiments have
demonstrated that integrins, and integrin signaling are required
for inflammation-induced DC migration to dLNs (14, 59, 60).
However, DCs from mice lacking all integrins were able to
migrate to LNs when injected into resting skin (61), indicating

that integrins are important for DC migration in response
to inflammation but dispensable for steady state DC egress.
Accordingly, inflammation increases the expression of integrin
ligands on lymphatic endothelial cells (LECs) (14). DC-expressed
L1 cell adhesion molecule guides transendothelial migration
of DCs thereby promoting trafficking to dLNs (17). A recent
study demonstrated that interactions between LEC-expressed
LYVE-1 and hyaluronan on the DC plasma membrane mediated
DC adhesion and transmigration across LECs and subsequent
migration to dLNs (13).

Sphingosine-1-phosphate (S1P), a lipid mediator of leukocyte
egress from lymphoid organs (62), has been implicated in DC
trafficking from the skin and lung (33, 63–65). However, in mice
that lack S1P in lymphatic fluid, but not blood, the migration
of adoptively transferred DCs to dLNs was comparable to that
seen in wild-type mice (66). These results, and the fact that
there are five S1P receptors (63), suggest that further experiments
are required to uncover the precise role of S1P signaling in
DC migration.
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FIGURE 2 | Neutrophil migration in skin lymphatic vessels. (A) Two-photon microscopy was used to examine the lymphatic migration of neutrophils in response to S.

aureus. Images are maximum intensity projections of three-dimensional volumes acquired via two-photon microscopy. Lysozyme M+ GFP neutrophil (green) migrating

inside a lymphatic vessel (LYVE-1, white) is show at three representative time points. Red track indicates neutrophil’s path. Tick marks are 10µm apart.

(B) Two-photon image of a Lysozyme M reporter mouse skin with a Lysozyme M+ (green) neutrophil containing S. aureus (red) inside the LYVE-1+ lymphatic vessel

(white). Scale bar is 10µm. Figure was adapted from Hampton et al. (6).

In contrast to cDCs, the lymphatic migration of pDCs is
poorly understood. While one study reported that adoptively
transferred pDCsmigrated to dLNs from ovine skin (67), another
showed that pDCs were not detected in the lymph of rats
(68). However, pDCs transported harmless inhaled antigen from
murine lungs to the mediastinal LN where they suppressed T
cell activation, suggesting that pDC migration may play a role in
preventing inflammation (69).

Neutrophils
Neutrophils are the first immune cells recruited to sites of
inflammation, where they kill pathogens and release mediators
that recruit other leukocytes (70, 71). Until recently neutrophils
were thought to die at inflammatory foci. However, several
groups, including ours, have shown that neutrophils can enter
tissue lymphatic vessels and migrate to dLNs from the site of
inflammation (6, 72–74).

Intravital imaging of inflamed mouse skin has enabled
direct visualization of neutrophil migration within lymphatic
vasculature (Figure 2A) (6, 72). However, in comparison to DCs,
the significance and extent of neutrophil lymphatic migration
are incompletely understood. Cannulation experiments have
demonstrated that inflammation leads to a dramatic increase in
neutrophils in ovine afferent lymph (8, 75, 76). Furthermore,
neutrophils can transport antigens and microorganisms
(Figure 2B) from the site of infection to LNs (6, 8, 77).
Accordingly, inhibiting neutrophil lymphatic migration reduced
early lymphocyte proliferation (6). Notably, a recent study
did not detect substantial lymphatic migration of neutrophils
in response to Staphylococcus aureus (S. aureus) (78). This
likely highlights the fact that most neutrophils arrive in dLNs
from the circulation via HEVs in response to bacteria already
in dLNs, while a smaller population of neutrophils migrates
directly from the site of inflammation to dLNs via afferent
lymphatics. However, since neutrophils are the first innate
immune cell subset to arrive in the LN from inflamed tissues,
and often carry microbes, neutrophil lymphatic migration can
exert considerable influence on the subsequent adaptive immune
response (6, 77, 79).

Lymphatic migration of neutrophils could potentially be
exploited by pathogens to enhance dissemination, since some
microorganisms including the bacterium S. aureus can survive
inside neutrophils (80). Consistent with this, injection of
Leishmania major-containing neutrophils was sufficient to
establish infection in mice, while depleting neutrophils reduced
Leishmania burden when the pathogen was injected into the
skin (81). Neutrophils also transported live Mycobacterium
bovis bacille Calmette-Guérin from the skin to dLNs (77).
In Toxoplasma gondii infection neutrophils removed the
macrophages that line the subscapular sinus of the LN (82),
however, it is not clear whether this favors pathogen control
or spread.

CCR7 appears to be less important for neutrophil lymphatic
migration than for that of DCs. Although it was required for
neutrophil entry into lymphatic vessels in response to TNF-α
and Complete Freund’s Adjuvant (CFA) (72), and for CFA-driven
migration from skin to LNs (83), neutrophil migration from the
skin to dLNs in response to S. aureus was CCR7-independent
(6). This suggests that the requirements for neutrophil trafficking
vary depending on the stimulus and additional molecules may
play key roles in guiding this migration.

The chemokine receptor CXCR4 regulates neutrophil
migration from the bone marrow into the circulation (84) and
may also play a role in their lymphatic migration. Inhibiting
CXCR4 decreased neutrophil trafficking in response to immune
complexes and S. aureus (6, 73). However, CXCR4 was
not required for neutrophil entry into lymphatic vessels in
response to CFA, as revealed by confocal imaging (72), again
highlighting differences in neutrophil trafficking in response to
distinct stimuli.

The cell surface receptor CD11b, which is involved in
neutrophil recruitment from the vasculature into tissues (85),
is emerging as a major regulator of neutrophil migration
via lymphatics since neutrophil migration from inflammatory
foci to LNs is substantially reduced when CD11b is inhibited
(6, 73, 74). Intravital imaging demonstrated that blocking
CD11b or its ligand ICAM-1 impaired neutrophil intraluminal
crawling within lymphatic vasculature following CFA injection
by reducing neutrophil speed and directionality (72). Likewise,
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inhibiting CD11b and ICAM-1 reduced neutrophil entry into
lymphatic vessels and diminished egress from the skin in
response to Mycobacterium bovis (74). Lymphocyte Function-
associated Antigen (LFA-1), which binds to ICAMs and is
involved in neutrophil entry into tissues from the circulation,
was required for neutrophil migration via afferent lymphatics in
response to immune complexes (73) but not S. aureus (6).

Inflammatory cytokines may enhance neutrophil entry into
lymphatics. TNF-α promoted neutrophil entry and crawling
within lymphatic vessels in mouse cremaster muscle (72).
However, since inflammatory cytokines also control neutrophil
recruitment to sites of inflammation and lifespan, identifying
a distinct role for these molecules in neutrophil lymphatic
migration requires further investigation.

Monocytes and Macrophages
Monocytes are circulating leukocytes that phagocytose and kill
bacteria and fungi and regulate the activity of other immune cells
via cytokine release (86–88). They can also differentiate into DC
and macrophage subsets (89). Several studies have demonstrated
that monocytes egress tissues via afferent lymphatic vessels and
transport antigen to dLNs (7, 8, 90–92). Once there, monocytes
may present and cross-present antigens since a subcutaneous
injection of antigen-pulsed monocytes induced the proliferation
of antigen-specific CD4+ and CD8+ T cells (91). The molecular
mechanisms controlling monocyte migration via lymphatic
vessels are yet to be identified. However, CCR7may be important,
since CCR7-deficient LPS-primed monocytes failed to migrate
from the footpad to the popliteal LN (91). Accumulating evidence
suggests that macrophages can also migrate from inflammatory
lesions to dLNs (93–95) and that α1β1 integrin may limit
macrophage egress via afferent lymphatics (93).

LYMPHATIC MIGRATION OF ADAPTIVE
IMMUNE CELLS

T Cells
T cells possess a rearranged T cell receptor which includes either
αβ or γδ polypeptides (96). While αβ T cells are more abundant,
γδ T cells are enriched in epithelial and mucosal tissues where
they act as the first line of defense against pathogens. One of the
main functions of CD8+ T cells is to kill infected cells (97), while
CD4+ helper T cells secrete cytokines and regulate the function of
other immune subsets (98). Photoconversion experiments (22),
along with lymphatic cannulation (99), have demonstrated that
effector, rather than naïve, T cells comprise the majority of lymph
migrating T cells under homeostatic (22, 99) and inflammatory
conditions (22, 100). This migration plays an important role
in immune surveillance and in resolution of inflammation
(18, 101–103).

Like DCs, T cells use CCR7 to migrate to LNs under
homeostatic and inflammatory conditions. Following antigen
challenge, T cells overexpressing CCR7 were preferentially lost
from the lung and accumulated in the mediastinal LNs (104),
while CCR7-deficient T cells failed to migrate from the footpad
to the popliteal LN (11). However, the need for CCR7 in T cell
migration might be context dependent, as T cells used CCR7

for trafficking from acute, but not chronically, inflamed skin
(100). Tumor-infiltrating T cells could also emigrate to dLNs
independently of CCR7 (9).

The lipid S1P, which promotes αβ T cell exit from
LNs (62), can also mediate their migration via afferent
lymphatics. Consequently, antagonizing S1P receptors led to
T cell accumulation near skin lymphatic vessels and reduced
migration to dLNs (100, 105). LEC-expressed macrophage
mannose receptor (MR) and the cell surface molecule CD44,
which interacts with MR, promoted T cell lymphatic migration
by increasing T cell adhesion to lymphatic vessels (106,
107). Another LEC-expressed protein, CLEVER-1, was also
demonstrated to be important for T cell migration via afferent
lymphatics (108). Additionally, intravital imaging has shown that
LFA-1 and its ligand ICAM-1, increased T cell velocity within
afferent lymphatic vessels thereby promoting T cell migration to
dLNs (16).

T cell egress from tissues to dLNs can either promote
inflammatory responses or suppress them. For example,
lymphatic migration of Regulatory T (Treg) cells may suppress
allograft rejection (103). Likewise, CCR7-deficient Treg cells
failed to migrate to the draining LN and accumulated in
the skin, reducing skin inflammation during a delayed-type
hypersensitivity reaction (101). Conversely, overexpression of
CCR7 on antigen-specific Th1-cells enhanced their egress to
dLNs and led to faster resolution of the inflammatory response
in the skin (102).

Like αβ T cells, γδ T cells can migrate from the skin (23,
95, 109) and tumors (9) via lymphatic vessels to dLNs and
comprise a large proportion of the cells in bovine lymph (110).
Photoconversion experiments have demonstrated that murine γδ

T cells can migrate from the skin to dLNs in the absence of CCR7
(23). Similarly, bovine γδ T cells can egress tissues independently
of this receptor (111). The consequences of γδ T cell lymphatic
migration are poorly understood, though it may enhance CD8+

T cell proliferation (23).

B CELLS

Cannulation experiments in sheep (112) and photoconversion
experiments in mice (95), suggest that B cells use afferent
lymphatic vessels to migrate from tissues to dLNs. The
mechanisms of this migration are not yet known, however, at
least in chronic inflammation, B cell egress may be independent
of S1P and requires CCR7 (100). Similarly to T cells, blocking
CLEVER-1 reduced B cell migration to dLNs (108).

LYMPHATIC MIGRATION OF IMMUNE
CELLS IN DISEASE

The importance of immune cell migration via lymphatics in
host defense is illustrated by the observations that mice lacking
CCR7 are susceptible to microbial and viral infections (113–
115). On the other hand, lymphatic migration of immune cells
may also augment autoimmunity since preventing immune cell
trafficking from the meninges to the cervical LNs reduced the
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severity of EAE (116). Furthermore, higher densities of lymphatic
vessels in transplanted corneas (117) and kidneys (118) were
associated with rejection, while preventing DC migration to
the dLN by blocking Vascular Endothelial Growth Factor C
(VEGF-C) improved corneal transplantation outcomes (119).
Interestingly, in mice, obesity was associated with decreased
lymphatic function and reduced immune cell migration to
dLNs (120), suggesting that obesity may be linked to decreased
immunity. CCR7 as well as its two ligands, CCL19 and CCL21,
have been identified in mouse and human atherosclerotic lesions
(121), consistent with accumulating evidence of a role for
immune cell lymphatic migration in heart disease (122–125).

Lymphatic vasculature also plays a crucial role in tumor
immunity by enabling transport of antigens from tumors to
dLNs and egress of immune cells (9, 126). Lymphatic vessels
can also serve as conduits for tumor cell spread (1). Their
dual role in cancer is highlighted by the findings that many
tumors overexpress VEGF-C, which promotes the growth and
survival of LECs (127, 128) leading to increased LN metastasis
(128–130). Furthermore, a recent study demonstrated that IFNγ-
induced PD-L1 expression by LECs may dampen anti-tumor
immunity by limiting cytotoxic CD8+ T cell accumulation in
melanoma (131). On the other hand, overexpression of VEGF-C
in a mouse melanoma model increased DC migration to dLNs
(132). Consistent with an increase in lymphatic migration in
cancer, enhanced trafficking of adoptively transferred B and T
lymphocytes from footpads to dLNs was observed in melanoma-
bearing mice (133).

Similarly to DC migration from the periphery, the DC-
dependent transfer of antigen from B16F10 melanoma to
the dLN required CCR7. This correlated with an increase
in CD8+ T cell priming and a reduction in tumor growth
(126). Overexpression of TGF-β1 in a model of squamous

cell carcinoma reduced DC trafficking to dLNs, which led to

an increase in LN metastasis (53). However, since CCR7 and
the TGF-β1 receptor are not restricted to DCs (134), other
immune cells may also contribute to these effects on tumor
growth and metastasis. In contrast to DCs, photoconversion
experiments demonstrated that tumor-infiltrating T cells
do not require CCR7 to migrate to dLNs via afferent
lymphatics (9).

CONCLUDING REMARKS

Lymphatic migration of immune cells presents opportunities
for control of immune responses in infection and homeostasis.
However, with the exception of DCs and T cells, the
mechanisms controlling lymphatic migration of immune cells
remain poorly understood. New tools, such as photoconversion
and intravital imaging are poised to provide novel insight
into the migration of previously overlooked immune subsets.
A better understanding of the distinct mechanisms guiding
lymphatic migration of specific immune subsets may suggest
new approaches for treatment of cancer, autoimmunity and
excessive inflammation.
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