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Circular RNAs (circRNAs) are a class of endogenous noncoding RNA, which is different

from linear RNA. CircRNA is an RNA molecule with a closed loop structure formed

by reverse splicing. CircRNAs have been studied in several organisms, however, the

circRNAs associated with the response to Salmonella enterica serovar Enteritidis (SE)

inoculation in chickens are still unclear. In the current study, Jining Bairi chickens

were inoculated with SE. CircRNAs involved in the response to SE inoculation were

identified through next-generation sequencing. Our results showed that there were

5,118 circRNAs identified in the control and treated groups. There were 62 circRNAs

significantly differentially expressed following SE inoculation. Functional classification

revealed that those significantly differentially expressed circRNAs were associated with

immune system process, rhythmic process and signaling following SE inoculation.

CircRNAs NC_006091.4: 65510578|65515090, NC_006099.4: 16132825|16236906,

and NC_006099.4: 15993284|16006290 play important roles in the response to SE

inoculation. The findings in the current study provide evidence that circRNA alterations

are involved in the response to SE inoculation in the chicken.

Keywords: chicken, circular RNA, Salmonella enterica serovar Enteritidis, expression profile, metabolism,

immunology

INTRODUCTION

Salmonella enterica serovar Enteritidis (SE) is one of the most common serotypes of the Salmonella
bacteria reported worldwide and is the primary source of human intestinal infection (1). From
the total confirmed Salmonella infections, 18% were caused by SE, and the incidence was 2.83 per
100,000 people in the United States (2). Egg-related salmonellosis costs $44 million per year in
Australia (3). SE has a close relationship with the chicken, as poultry meat and egg are regarded as
the main source of human foodborne infection (4). SE infection is mainly caused by oral intake of
contaminated feed or water. SE can enter the bloodstream and colonize the internal organs. The
cecum is the main site of Salmonella colonization (5). Many studies showed that genetic selection
is an efficient way to control Salmonella infection in the chicken (6).

Circular RNAs (CircRNAs), a novel type of noncoding RNAs, compose a class of RNA
developing covalently closed loop structures without 5′-3′ polarities (7) but with widespread,
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abundant, and tissue-specific expression across animals (8). To
date, circRNA can be divided into three types, namely, intronic
circRNA, exonic circRNA and exon-intron circRNA (9–11).
Many circRNAs comprise one to several exons of protein-coding
genes (12). CircRNA production may occur posttranscriptionally
(13). Several functions have been identified for circRNAs,
including transcription regulation, RNA transport (14), protein
binding (15), and regulation of translation (9). CircRNAs were
identified as efficient microRNA (miRNA) sponges (16, 17).
Moreover, circRNAs have been found to be associated with
diseases, including Alzheimer’s disease, colorectal and ovarian
cancer, idiopathic lung fibrosis and hepatocellular carcinoma in
humans (12, 18, 19). Recent studies indicated that circular RNA
expression alterations were enriched and stable in exosomes and
could be a promising biomarker for cancer diagnosis (20, 21).
It has been reported that circRNA alterations are involved in
resistance to ALV-J-induced tumor formation in the chicken (22).

The technological breakthroughs in high-throughput deep
sequencing and functional genome promote the study of
circRNAs (23). A large number of circRNAs has been
identified in Archaea, mice, and humans (10, 24). However,
the identification of circRNAs related to certain traits in
chickens is limited. In the current study, next-generation
sequencing was used to detect circRNAs involved in the
response to SE inoculation in the chicken. The study will
lay the foundation in which circRNAs may be used as
molecular markers related to the host response to SE inoculation
in chickens.

MATERIALS AND METHODS

Animals and SE Inoculation
The Jining Bairi Chicken, a China local chicken breed, used
in the current study was provided by Shandong Bairi Chicken
Breeding Co., Ltd (Jining, Shandong, China). The SE strain
(CVCC3377) used for the inoculation was purchased from
China Veterinary Culture Collection Center (http://cvcc.ivdc.
org.cn/). To make the inoculant, SE were enriched in LB broth
at 37◦C for 16 h, pelleted at 4,000 rpm for 5min, and diluted with
sterilized PBS to an adjusted OD value of 1. The concentration
of SE in the inoculant was measured by the plating method.
The experimental design of animal inoculation was described
in detail previously (25). In brief, 168 2-day-old SE negative
Jining Bairi chickens were randomly divided into 2 groups, 84
chickens in each group. Chickens in one group were orally
inoculated with 0.3mL inoculants of 109 cfu/ml as the treated
(T) group, and chickens in another group were mock inoculated
with the same amount of sterile PBS as the control (C) group.
Twelve chickens from each of the T group and C group were
euthanized by cervical dislocation for sample collection at 1,
3, 7, 14, 21, 28, and 35 days postinoculation (dpi). The cecum
samples were frozen in liquid nitrogen and stored at −80◦C
until further RNA isolation. Samples collected at 7 dpi were
selected for the current study based on the bacterial number in
cecal content in the treated group. All animal procedures were
approved by the Shandong Agricultural University Animal Care
and Use Committee.

RNA Extraction and circRNA Sequencing
Four samples from each T and C groups at 7 dpi were randomly
selected for RNA isolation. Total RNA was isolated from each
sample using the TRIzol reagent (Invitrogen, Grand Island, NY)
according to the manufacturer’s instructions. The concentration
of RNA sample was measured using a DS-11 Spectrophotometer
(DeNovix, Wilmington, DE, USA). The integrity of the RNA
sample was assessed by agarose gel electrophoresis. Three
qualified RNA samples were selected in each group and encoded
as C1, C2, C3 and T1, T2, T3 to construct the library. In total,
six libraries were constructed. Subsequently, the RNA libraries
were sequenced by Illumina HiSeq2500 platform according
to the manufacturer’s instructions at BioMarker Technologies
(Beijing, China).

Data Analysis
Raw data were first processed using a custom Perl script. Clean
reads were obtained after removing the adaptors, poly-N reads,
and low quality reads and used for the downstream analysis.
The clean reads were mapped to the chicken genome sequence
(galGal 5.0) using the TopHat2 version 2.0.10 (26) and bowtie2
software (27). CircRNAs were predicted using CIRI (CircRNA
Identifier) (28). Annotation of the circRNA was performed
based on the following databases: Nr (NCBI nonredundant
protein sequences), Pfam (protein family), KOG/COG (Cluster
of Orthologous Groups of proteins), and Swiss-Prot (http://www.
ebi.ac.uk/swissprot/). All the data have been deposited into the
SRA database with an accession number of SRP158084.

Function Analysis and Identification of
Differentially Expressed circRNAs
The raw junction reads for all the samples were normalized to
the number of total mapped reads and log2 transformed. The
significantly differentially expressed (SDE) circRNAs between
the T and C groups were identified using the DESeq 2 (29).
The resulting P-values were adjusted using the Benjamini and
Hochberg’s approach for controlling the false discovery rate. Fold
change > 2.0 and P < 0.05 were considered significant.

Gene Ontology (GO) and Kyoto encyclopedia of genes and
genomes (KEGG) biological pathway enrichment analysis for
SDE circRNAs were performed using the KOBAS 3.0 software
(http://kobas.cbi.pku.edu.cn/index.php) (30).

Correlation Between circRNAs, miRNAs,
and Genes
miRNAs mediated by SDE circRNAs were predicted using
miRanda (31). The number of miRNAs interacting with each
circRNA and the number of circRNAs interacting with each
miRNA were counted. The genes targeted by circRNA-mediated
miRNAs were mapped to the chicken functional interaction
network in the Reactome database using the Reactome FI
network plugin in the Cytoscape 3.5.1 software (32).

Validation of circRNAs Expression Through
qRT-PCR (Quantitative Real-Time PCR)
The RNA samples used for quantitative real-time PCR (qRT-
PCR) validation were the same as those used for sequencing. A

Frontiers in Immunology | www.frontiersin.org 2 May 2019 | Volume 10 | Article 1186

http://cvcc.ivdc.org.cn/
http://cvcc.ivdc.org.cn/
http://www.ebi.ac.uk/swissprot/
http://www.ebi.ac.uk/swissprot/
http://kobas.cbi.pku.edu.cn/index.php
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zheng et al. Chicken CircRNAs With Salmonella Inoculation

TABLE 1 | Sequence of primers used for qRT-PCR validation.

Gene name Primers (5′
→ 3′)

NC_006113.4:2670958|2679178 CCCAGGATTCATGAGACACC

AGAGATCTGCCAGGGCTGTA

NC_006096.4:10814512|10838667 CTCGCACTGTTCACCTTTCA

ACCTGTGAGACCAGCAGCTT

NC_006115.4:3194855|3195107 ACCTCCTTCCCCCTTAGGTT

CACGTAGATGTCCACGGGTA

GAPDH CTACACACGGACACTTCAAG

ACAAACATGGGGGCATCAG

total amount of 10 µg RNA per sample were digested with 20U
RNase R (Epicenter, Chicago, IL) at 37◦C for 1 h and purified with
phenol/chloroform/isoamyl alcohol. One microgram of digested
RNA was reverse transcribed into cDNA using a PrimeScriptTM
RT reagent Kit with genomic DNA Eraser (Takara, Dalian,
China) according to the manufacturer’s instructions. The qRT-
PCR was performed using the 7500 Fast Real-Time PCR System
(Applied Biosystems, Foster City, CA) with a PCR mixture
(20 µL) containing 10 µL SYBR Green qPCR Mix (2x), 0.5
µL (0.2µM) forward primer, 0.5 µL (0.2µM) reverse primer,
2 µL cDNA, and 7 µL ddH2O. The amplification conditions
were as follows: 1 cycle of 95◦C for 10min, followed by 40
cycles of 95◦C for 5 s, 54◦C for 15 s. GAPDH was used as the
internal standard. All reactions were performed in triplicate. The
sequences of specific outward-facing primers used in the qRT-
PCR are listed inTable 1 and were synthesized by Sangon Biotech
(Shanghai, China). The relative expression of the validated
circRNA was analyzed using the 2−11CT method (33). The
data were represented as the mean ± standard deviation. The
student’s t-test was used to assess the difference in expression of
each validated circRNA between the two groups. P < 0.05 was
considered significant.

RESULTS

Data Quality and circRNAs Identification
In total, 83.37 Gb clean data were obtained from the 6 samples.
The percentage of bases with Q30 was 90.95%, 90.42%, 90.49%
and 90.05%, 90.39%, 90.12% in C1, C2, C3 and T1, T2, T3 groups,
respectively. The average number of clean reads in the C group
and T group was 97,780,662 and 91,181,675, respectively. The
clean reads from each sample were aligned with the chicken
reference genome (galGal5.0); the rate of mapped reads was
98.86–99.66% (Table 2).

The CIRI software was used to predict circRNAs. There were
5,118 circRNAs identified across the six samples. The number
of circRNAs in C1, C2, C3, T1, T2, and T3 was 2,239, 3,418,
2,091, 3,264, 2,989, and 2,893, respectively. The distribution of
identified circRNAs on the chromosomes was not even. There
were 96.7% circRNAs mapped on Chr1-28, Chr33, ChrW, ChrZ,
and LGF64. The accumulative number of circRNAs across the
six samples was more than 1,000 on the Chr1-4, 500-1,000
in Chr5-8 and ChrZ, 100-500 in Chr9-15, Chr17-21, Chr26,

TABLE 2 | Information of the clean and mapped data.

Sample Number of

Clean reads

Average

number of

Clean reads

Number of mapped

reads

Average

number of

mapped reads

C1 90,530,234 97,780,662 89,644,352 (99.02%) 96,836,969

C2 110,491,612 109,235,962 (98.86%)

C3 92,320,140 91,630,592 (99.25%)

T1 93,383,800 91,181,675 93,063,694 (99.66%) 90,707,709

T2 85,106,242 84,529,812 (99.32%)

T3 95,054,982 94,529,620 (99.45%)

C1, sample 1 in the control group.

Chr28, and ChrW, 50-100 in Chr16, Chr22-24, and Chr27,
and less than 50 in Chr25, Chr33, and ChrLGE64 (Figure 1).
CircRNAs were mainly located in the exon, intergenic, and
intron regions. There were 86.8% circRNAs mapped to the exon
region (Table 3). The coverage of circRNAs (average length of the
circRNA × number of circRNAs/the length of the chromosome)
on each chromosome ranged from 0.003 to 1.479. The coverage
of circRNAs on Chr16 was the largest (1.479). The coverage of
circRNAs was >0.1 on Chr17 and ChrLEG64, <0.01 on Chr25
and Chr33 (Supplementary File 1).

Differentially Expressed circRNAs
Responding to SE Inoculation
The junction reads in each sample were counted as the expression
level of circRNAs. The expression of circRNAs varied across
different regions within each chromosome and was different
between the T and C groups (Figure 2).

The SDE circRNAs between the treated and control groups
were identified through the DESeq2 software. There were 62 SDE
circRNAs between the two groups including 30 upregulated and
32 downregulated circRNAs (P < 0.05, fold change >2). There
were more than 5 SDE circRNAs located on Chr1, 2, 3, and 4.
There was one SDE circRNA located on Chr8, 14, 16, 17, 20, 24,
28 and W (Supplementary File 2).

The heatmap based on the expression of SDE circRNAs across
the six samples showed that all the SDE circRNAs were clustered
into 4 groups. Group 1 composed of upregulated circRNAs in the
treated group including subgroups B and C, Group 2 composed
of downregulated circRNAs in the treated group (subgroup D).
Group 3 composed of circRNAs with low expression in both the
treated and control groups (subgroup E). Group 4 composed of
circRNAs with high expression in both the treated and control
groups (subgroup A) (Figure 3).

COG Function Classification of Parental
Genes
The COG (Clusters of Orthologous Groups) function
classification showed that the SDE circRNAs were associated
with five categories: general function prediction only (R),
transcription (K), replication, recombination and repair
(L), signal transduction mechanisms (T), and posttranslational
modification, protein turnover, chaperoned (O) with proportions
of 26.32, 15.79, 15.79, 13.16, and 10.53%, respectively (Figure 4).
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FIGURE 1 | The number of expressed circRNAs on each chromosome.

TABLE 3 | Distribution of circRNA parental genes.

Type C1 C2 C3 T1 T2 T3 Sample

average

Exon 80.573 88.849 86.476 87.784 88.410 88.457 86.758

Intergenic 14.208 6.145 8.206 7.567 6.492 7.146 8.294

Intron 5.219 5.005 5.318 4.648 5.099 4.397 4.948

GO and KEGG Pathway Analysis of
Parental Genes
The parental genes of the SDE circRNAs were predicted. The
GO and KEGG pathway analyses were performed for those
parental genes. The results of BP (biological processes), MF
(molecular functions), and CC (cellular components) were
shown in Figure 5. For the GO-BP, the SDE circRNAs were
associated with localization, biological adhesion, immune system
process, reproductive process, growth, signaling, multi-organism
process, rhythmic process, biological phase, and cell aggregation.
In terms of the GO-CC, the SDE circRNAs were mainly located
in the synapse, organelle and the macromolecular complex. For
the GO-MF, the SDE circRNAs were associated with nucleic
acid-binding transcription factor activity and protein-binding
transcription factor activity (Figure 5). The CLOCK gene was the
parental gene of circRNA NC_006091.4: 65510578|65515090 and
was involved in the rhythmic process.

The KEGG pathway analysis results showed that the parental
genes of those SDE circRNAs were enriched in 15 pathways.

Those enriched pathways were divided into three categories.
(1) The metabolism-related including oxidative phosphorylation
pathway, lysine degradation, glycerophospholipid metabolism,
and steroid hormone biosynthesis. (2) The immune-related
including p53 signaling pathway, MAPK signaling pathway,
Notch signaling pathway, VEGF signaling pathway, Herpes
simplex infection, and Adrenergic signaling in cardiomyocytes.
(3) Other pathways including Adherens junction, Phagosome,
Protein processing in the endoplasmic reticulum, Homologous
recombination and Melanogenesis. The RYR2, TPM1, and
TPM2 genes were included in the Adrenergic signaling in
cardiomyocytes pathway. The CLOCK and USP7 genes were
included in the Herpes simplex infection pathway (Figure 6).

The genes included in the GO terms of the immune system
were retrieved from BioMart (http://asia.ensembl.org/biomart).
Three immune-related genes, TXNDC9, JAG2, and NFATC2,
were parental genes of SDE circRNAs NC_006088.4:13259357
8|132598993, NC_006092.4:52223625|52225021, NC_006092.4:5
2223625|52231585, NC_006107.4:13405274|13406817, NC_0061
07.4:13405274|13430298, NC_006107.4:13405277|13406817,
NC_006107.4:13405791|13406817, NC_006107.4:13405791|13
430298, NC_006107.4:13405791|13448229, NC_006107.4:1
3419173|13420895, and NC_006107.4:13444867|13448229 and
related to cell redox homeostasis, multicellular organismal
development, the B cell receptor signaling pathway, cellular
response to DNA damage stimulus, positive regulation of
transcription from RNA polymerase II promoter, positive
regulation of B cell proliferation, cytokine production, and
response to drug biological process (Table 4).
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FIGURE 2 | Expression of circRNAs in T and C groups. Outline corresponds to the reference genome. The inside corresponds to the average chromosome coverage

across the C and T samples. Blue = C group, red = T group.

Interaction Between circRNAs, miRNAs,
and Genes
CircRNAs can act as miRNA sponges. The miRNAs interacting
with the SDE circRNAs were predicted using miRanda. There
were 1,787 interaction incidents identified between the 60
SDE circRNAs and 624 miRNAs (Supplementary File 3). The
number of miRNAs interacting with different circRNAs was
not even. CircRNA NC_006103.4:242878|309387, NC_00609
9.4:16132825|16236906, and NC_006100.4:16607637|16648476
interacted with more than 100miRNAs. Ten circRNAs interacted

with 50–100 miRNAs. Twenty-seven circRNAs interacted
with 10–50 miRNAs. Twenty circRNAs interacted with <10
miRNAs. CircRNA NC_006101.4:9981009|9981624 interacted
with only one miRNA of gga-miR-1756a (Figure 7). One miRNA

interacted with different circRNAs. Gga-miR-6545-3p, gga-miR-
1696, gga-miR-1768, gga-miR-6553-5p, gga-miR-6573-5p, gga-

miR-34a-5p, gga-miR-449c-5p, and gga-miR-6549-5p interacted

with more than 10 circRNAs. One hundred and nineteen
miRNAs interacted with 5–9 circRNAs. More than one third
(212/624) miRNAs interacted with one circRNA. The immune
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FIGURE 3 | Heatmap of significantly differentially expressed circRNAs. (A) circRNAs with high expression in both the treated and control groups, (B) circRNAs highly

expressed in the treated group with small difference, (C) circRNAs highly expressed in the treated group with great difference, (D) circRNAs with lower expression in

the treated group. The columns represent different samples. The rows represent different circRNAs. The colors represent the level of expression of the circRNA in the

sample (log2TPM). Yellow indicates higher circRNA expression level and blue shows lower circRNA expression level. T1, T2, and T3 are the samples in the T group;

C1, C2, and C3 are the samples in the C group.
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FIGURE 4 | COG annotation of circRNA parental genes. The X-axis shows the COG function classification of the consensus sequence. The Y-axis shows the

percentage of genes in each functional class.

function related gga-mir-34a-5p, located on Chr16, regulated
629 target genes. The interaction network of proteins encoded
by those target genes was constructed through the Reactome FI
network plug-in using Cytoscape 3.5.1. Seven proteins connected
with more than 7 other proteins. PIK3R1 connected with 20
proteins, CBL and ITGB5 connected with 10 proteins, CREBBP
connected with 9 proteins. NFKBIA, ITGAT, and ITGB4
connected with 8 proteins. Thirty-seven proteins connected with
4–7 other proteins, and 94 proteins connected with <4 other
proteins (Figure 8).

Validation of circRNA Expression by
qRT-PCR
Three circRNAs including two upregulated (NC_006113.4:2
670958|2679178, NC_006096.4:10814512|10838667) and
one downregulated (NC_006115.4:3194855|3195107) were
randomly selected for validation by qRT-PCR. The expression
of each of all the validated circRNAs detected by qRT-PCR
was consistent with that detected by the sequencing in
terms of the regulatory direction and significance. CircRNAs
NC_006113.4:2670958|2679178 and NC_006096.4:108145
12|10838667 were upregulated with a fold change of 27.60
and 5.95 by qRT-PCR, respectively. CircRNA NC_006115.4:3
194855|3195107 was downregulated with a fold change of
3.13 (Table 5).

DISCUSSION

CircRNAs are recently discovered noncoding RNAs and have

attracted significant attention (34). In the current study,

circRNAs related to SE inoculation in chickens have been
revealed through next-generation sequencing. A close number

of upregulated and downregulated circRNAs were identified in
several circRNAs profiling studies (18, 34). Similar results were

found in the current study since the number of significantly
upregulated and downregulated circRNAs was very close

(30 vs. 32) in the chicken cecum following SE inoculation
(Supplementary File 2). It has been reported that the number

of upregulated and downregulated genes (115 vs. 37) was
significantly different; however, the number of upregulated and

downregulated miRNAs (22 vs. 15) following SE inoculation was
similar (35, 36). When a persistent immunity to SE inoculation

is established, the host immune signaling pathways can be
modulated (37). Many immune-related functional terms and
pathways have been found following Salmonella inoculation in
the chicken (38–40). In the current study, only two immune-
related functional terms (response to stimulus and immune
system process) were enriched (Figure 5). The regulatory roles
played by the genes, miRNAs, and circRNAs in the response
to SE inoculation in the chicken were different. It has been
reported that circadian rhythms can influence mammal immune
response through regulating the blood circulation during diurnal

Frontiers in Immunology | www.frontiersin.org 7 May 2019 | Volume 10 | Article 1186

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zheng et al. Chicken CircRNAs With Salmonella Inoculation

FIGURE 5 | Gene Ontology (GO) annotation of circRNA parental genes. The X-axis shows the GO function classification. The Y-axis shows the percentage of genes

(Left) and the number of genes (Right).

sleeping/waking cycles (41, 42). Domestic pigs exhibit diurnal
rhythms in peripheral blood immune cell numbers (43). It
has been reported that the circadian rhythm was significantly
enriched in the chicken cecum following Campylobacter jejuni
(C. jejuni) infection (44). In the current study, the circadian
rhythm-associated circRNAs were significantly triggered by SE
inoculation. A different circadian rhythm regulation mechanism
could exist in response to C. jejuni compared to that of
SE inoculation.

Metabolism is important to facilitate the requirements for
energy and biosynthesis and directly regulate immune cell
functions. A bacterial infection competes for nutrients with
immune cells (45). The differentially expressed circRNAs were
enriched in metabolism-related KEGG pathways including
the oxidative phosphorylation pathway, lysine degradation,
glycerophospholipid metabolism, and steroid hormone
biosynthesis following SE inoculation (Figure 6). Upon
encountering an antigen, lymphocytes switch into the specific
effector state with metabolism changes (46). Those metabolic
changes are required not only for lymphocyte plasticity but
also for T cell fate (47). Salmonella infection induces rapid

and robust T-cell activation in mammalians (48). Changes in
metabolic activity have been shown to intimately support T
cell differentiation and effector functions (49). The oxidative
phosphorylation pathway is the significant energy generating
system in animals and it is highly conserved in insects and
vertebrates (50). Naïve T cells rely on oxidative phosphorylation
to maintain the energy demand; in contrast, activated T cells
engage in aerobic glycolysis consuming massive amounts of
glucose (51). Oxygen and reactive oxygen species metabolism
were enriched following SE infection in chickens (35). The
oxidative phosphorylation pathway is a prime candidate
for cytonuclear genomic incompatibilities, and ATPases are
composed of subunits from both the nuclear and mitochondrial
genomes (52, 53). It has been reported that supplementation with
lysine-yielding Bacillus subtilis in the diet increased intestinal
immune response in Linwu ducks (54). It has been reported the
balance betweenmetabolism and the immune system contributes
to the response to SE inoculation in chickens (36, 55).

CircRNAs were identified as efficient microRNA (miRNA)
sponges (16, 17). Many studies have indicated that circRNAs
regulate the function of miRNAs acting as competing
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FIGURE 6 | KEGG pathway annotation of circRNA parental genes.

TABLE 4 | Immune-related significantly differentially expressed circRNAs.

gene_ID circRNA_ID Gene name Regulation GO-BP KEGG pathway

gene2149 Chr1:132593578-132598993 TXNDC9 Down Cell redox homeostasis (GO:0045454)

gene10321 Chr5:52223625-52225021 JAG2 Down Multicellular organismal development (GO:0007275); Notch signaling pathway

gene19025 Chr20:13405274-13406817 NFATC2 Up B cell receptor signaling pathway (GO:0050853);

Cell migration (GO:0016477);

Cellular response to DNA damage stimulus

(GO:0006974);

Positive regulation of transcription from RNA polymerase

II promoter (GO:0045944);

Positive regulation of B cell proliferation (GO:0030890);

Cytokine production (GO:0001816);

Response to drug (GO:0042493);

VEGF signaling pathway

endogenous RNAs (ceRNAs) (16, 56, 57). miR-143 and miR-26
are differentially expressed in whole blood after Salmonella
inoculation in pigs (58). Gga-miR-101-3p and gga-miR-155 were
identified as candidates potentially associated with SE infection
in the chicken (59). It has been reported that gga-miR-125b-5p,
gga-miR-34a-5p, gga-miR-1416-5p, and gga-miR-1662 play an

important role in SE infection (55). miRNAs buffer and alter
the variance of relatively low expressed genes in response to
Salmonella infection in pigs (60). In the current study, gga-miR-
125b-5p and gga-miR-34a-5p interacted with 3 and 10 circRNAs,
respectively (Supplementary File 3). Proteins encoded by gga-
miR-34a-5p-mediated genes had close interaction (Figure 8).
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FIGURE 7 | Correlation between miRNAs and circRNAs. The X-axis represents the number of miRNAs interacting with circRNA. The Y-axis represents the circRNA

name.

The results showed that circRNA may have interacted with
miRNA in the response to SE inoculation in chickens.

In poultry, circadian rhythms are generated from the
transcription/translation-based oscillatory loop including Per2,
Per3, CLOCK, and Bmal1 (61–63). Circadian disruptions
have been well-documented in adverse effects on human
health through influencing lipid and glucose homeostasis,
inflammation, and cardiovascular functions (64). Studies
have shown that a set of cytokines, IL-6, IL- 1β, IL-18,
IL-2, TGF-β4, K60, and IL-8, and circadian clock genes
(cry1/2, per2/3, Bmal1/2, and CLOCK) have a 24-h periodic
expression pattern in response to bacterial colonization (65, 66).
Furthermore, the CLOCK gene was involved in the herpes

simplex infection pathway and related to human disease.
The CLOCK gene was significantly changed post C. jejuni
inoculation (67). In the current study, the SDE circRNA
NC_006091.4:65510578|65515090 originated from the CLOCK
gene was significantly upregulated (Supplementary File 2) and
could play an important role in response to SE inoculation.

Forkhead box proteins (FOXP) are part of a large
transcription factor family with diverse functions in
development, metabolism, organogenesis, and cancer (68).
FOXP1, a member of the “FOXP” subfamily, is an essential
transcriptional regulator for B lymphopoiesis (69, 70) and
the generation of quiescent naïve T cells during thymocyte
development (71). Disruption of FOXP1 leads to cognitive
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FIGURE 8 | Protein-protein interaction network of potential genes targeted by gga-miR-34a-5p.

TABLE 5 | Fold change of three differentially expressed circRNAs by qRT-PCR

and NGS.

CircRNA ID qRT-PCR NGS

NC_006113.4:2670958|2679178 27.60** 2.80*

NC_006096.4:10814512|10838667 5.95* Inf

NC_006115.4:3194855|3195107 −3.13** −16.70**

*P < 0.05; **P < 0.01.

dysfunction including intellectual disability and autism
spectrum disorder together with language impairment
(72). A gene could be spliced into one or more circRNAs

(73). circ-SHKBP1 regulated the angiogenesis of glioma-

exposed endothelial cells through the miR-544a/FOXP1
and miR-379/FOXP2 Pathways (74). The level of miR-

152 and FOXP1 was inversely correlated in grade 3 and 4
ovarian tumor tissues (75). Two circRNAs NC_006099.4:1

6132825|16236906 and NC_006099.4:15993284|16006290
originated from FOXP1 were significantly expressed

with reverse regulatory direction (Supplementary File 2).
Those two circRNAs could regulate the response to SE

inoculation through FOXP1 and miRNAs in the chicken. The
mechanism of interaction between circRNAs and FOXP1 in

the response to SE inoculation in the chicken needs to be
further warranted.
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CONCLUSIONS

In conclusion, circRNAs were involved in the response to
SE inoculation in the chicken. CircRNAs associated with the
immune system process, the rhythmic process and metabolic
process contribute to the response to SE inoculation. CircRNAs
NC_006091.4:65510578|65515090, NC_006099.4:16132825|1
6236906, and NC_006099.4:15993284|16006290 play critical
roles in the response to SE inoculation. The findings herein
will provide fundamental information on the mechanism
of circRNAs regulating the response to SE inoculation in
the chicken.
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