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Galectins are potent immunomodulators that regulate maternal immune responses in

pregnancy and prevent the rejection of the semi-allogeneic fetus that also occurs in

miscarriages. We previously identified a gene cluster on Chromosome 19 that expresses

a subfamily of galectins, including galectin-13 (Gal-13) and galectin-14 (Gal-14), which

emerged in anthropoid primates. These galectins are expressed only by the placenta

and induce the apoptosis of activated T lymphocytes, possibly contributing to a shifted

maternal immune balance in pregnancy. The placental expression of Gal-13 and Gal-14

is decreased in preeclampsia, a life-threatening obstetrical syndrome partly attributed

to maternal anti-fetal rejection. This study is aimed at revealing the effects of Gal-13

and Gal-14 on T cell functions and comparing the expression of these galectins in

placentas from healthy pregnancies and miscarriages. First-trimester placentas were

collected from miscarriages and elective termination of pregnancies, tissue microarrays

were constructed, and then the expression of Gal-13 and Gal-14 was analyzed by

immunohistochemistry and immunoscoring. Recombinant Gal-13 and Gal-14 were

expressed and purified, and their effects were investigated on primary peripheral blood

T cells. The binding of Gal-13 and Gal-14 to T cells and the effects of these galectins

on apoptosis, activation marker (CD25, CD71, CD95, HLA-DR) expression and cytokine

(IL-1β, IL-6, IL-8, IL-10, IFNγ) production of T cells were examined by flow cytometry.
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Gal-13 and Gal-14 are primarily expressed by the syncytiotrophoblast at the

maternal-fetal interface in the first trimester, and their placental expression is decreased

in miscarriages compared to first-trimester controls. Recombinant Gal-13 and Gal-14

bind to T cells in a population- and activation-dependent manner. Gal-13 and Gal-14

induce apoptosis of Th and Tc cell populations, regardless of their activation status.

Out of the investigated activation markers, Gal-14 decreases the cell surface expression

of CD71, Gal-13 increases the expression of CD25, and both galectins increase the

expression of CD95 on T cells. Non-activated T cells produce larger amounts of IL-8

in the presence of Gal-13 or Gal-14. In conclusion, these results show that Gal-13 and

Gal-14 already provide an immunoprivileged environment at the maternal-fetal interface

during early pregnancy, and their reduced expression is related to miscarriages.

Keywords: angiogenesis, glycomics, immune privilege, PP13, trophoblast differentiation, trophoblast invasion

INTRODUCTION

The mechanisms sustaining maternal immune tolerance to
the semi-allogeneic fetus while shielding against microbial
infections during pregnancy as well as the changes and
interplay of maternal, fetal, and placental immune responses
during pregnancy are of major interest in reproductive
research (1–41). These immune tolerance mechanisms are
complex and dynamic given that implantation involves decidual
inflammation; the second trimester of pregnancy is characterized
by a predominantly anti-inflammatory milieu in the womb, while
at the end of the third trimester, the initiation of parturition
requires a transition toward physiologic pro-inflammatory
responses (42–44). Recent evolutionary evidence has shown
that the pro-inflammatory implantation reaction in humans, as
in all eutherian mammals, is derived from an inflammatory
attachment reaction in the uterus of the ancestral therian
mammals that directly leads to parturition, and that a key
innovation in eutherian mammals was the shift from this
inflammatory attachment reaction to the non-inflammatory
mid-pregnancy period, which allowed an extended period of
intimate placentation (45, 46). Although the molecular changes
of this evolutionary shift in uterine immune responses are
not yet explored in detail, these may include the placental
expression of molecules that down-regulate maternal immune
responses (47–67). This is substantiated by the fact that the
dysregulated expression of immunoregulatory molecules at
the maternal-fetal interface and the consequent disturbances
in maternal-fetal immune regulation and pro-inflammatory
processes are associated with the development of the great
obstetrical syndromes, including miscarriage (68–71), preterm
labor (72–80), or preeclampsia (81–87).

Regulation of the immune system is mediated by a complex
network of cellular and molecular interactions, including glycan
recognition by endogenous lectins (61, 88–90). Galectins, a
subfamily of lectins specifically bind β-galactoside-containing
glycoconjugates, also on immune cell surfaces where they modify
immune responses by cross-linking receptors (61, 89, 91–93).
Galectins have pleiotropic functions given their binding to a
diverse set of cell surface ligands on immune and other cells

including trophoblasts (94, 95). In mammals, 19 galectins have
been identified, of which 13 are expressed in human tissues (56,
61, 92, 93). Studies of past decades began the exploration of the
diverse functions of human galectins, primarily galectins-1, -3,
and -9, in innate and adaptive immune responses including the
regulation of leukocyte homing, adhesion, apoptosis, pathogen
sensing, and immune signaling, also observed in reproductive
processes (52, 96–102). Of major interest, several human
galectins have an abundant expression at the maternal-fetal
interface (31, 52, 53, 56, 58, 97, 103–109), and galectins-13, -14,
and -16 are solely expressed by the human placenta (53, 56,
58, 61). These three galectins are expressed from a gene cluster
on Chromosome 19 that had emerged in anthropoid primates
(53, 56, 61, 110).

We recently started to explore the biological functions
of Chromosome 19 galectins in pregnancy (53). Galectin-
13 and galectin-14 (Gal-13 and Gal-14), originally described
as placental protein 13 (PP13) (111) and placental protein
13-like (PPL13) (112), respectively, are strongly expressed
in the syncytiotrophoblast at the lining of the maternal-
fetal interface (53, 106, 110, 113, 114). The expression of
these galectins is dependent on trophoblast differentiation,
and this developmentally regulated process in the trophoblast
emerged during primate evolution (110). Of importance, Gal-
13 is secreted from the syncytiotrophoblast into the maternal
circulation, and low Gal-13 concentration in the maternal
circulation in the first trimester was found in women who
subsequently developed preterm preeclampsia (115–122), a
severe obstetrical syndrome with a strong systemic immune
dysregulation (51, 82, 86, 123–128) that already exists in the
first trimester (129). Our studies have also shown that the
placental expression of Gal-13 and Gal-14 is down-regulated in
preterm preeclampsia (81, 110, 113, 129), where the placental
pathology and the pro-inflammatory changes are similar to that
of miscarriage (130–135).

Since we and our collaborators have shown that Gal-13 and
Gal-14 induce the apoptosis of pre-activated T lymphocytes
(53) and that Gal-13 increased IL-1α and IL-6 secretion
from peripheral blood mononuclear cells (PBMCs) in pregnant
women (114), an unanswered question remained: are Gal-13
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TABLE 1 | Demographic and clinical data of the first-trimester placental study

groups.

Groups Control Miscarriage

Number of casesa 30 10

Maternal age (years)b 30 (19–41) 36 (27–42)*

Gestational age at surgery (weeks)b 8.7 (5.0–11.9) 9.4 (7.0–13.0)

Gravidityb,d 2 (1–6) 2 (1–7)

Parityb,d 0 (0–4) 0 (0–1)

Habitual abortionc,d 3 30**

All women were Caucasian
aValues are presented as numbers.
bValues are presented as medians (interquartile (IQR) range).
cValues are presented as a percentages.
dData were available for 29 cases in the control group.
*p < 0.05 compared to gestational age-matched controls.
**p < 0.01 compared to gestational age-matched controls.

and Gal-14 critical regulators of immune processes at the early
maternal-fetal interface that can be considerably dysregulated in
miscarriage? Therefore, we investigated the placental expression
of Gal-13 and Gal-14 in miscarriage and also the effects of
Gal-13 and Gal-14 on human T lymphocyte functions, which
may play a critical role in immune tolerance and rejection.
Indeed, we show herein that these placenta-specific galectins
moderate adaptive immune responses and are down-regulated in
miscarriages, suggesting that their reduced expression is related
to the immunopathology of miscarriage.

MATERIALS AND METHODS

Study Groups, Clinical Definitions, and
Sample Collection
Placental tissue samples, collected from Caucasian women, were
processed immediately after sample collection as previously
described (81, 136), fixed in 10% neutral-buffered formalin, and
were then embedded in paraffin (FFPE). First- (n = 40) and
third- (n = 2) trimester placentas were collected prospectively
at the Maternity Private Department, Semmelweis University
(Budapest, Hungary). Pregnancies were dated according to
ultrasound scans collected between 5 and 13 weeks of
gestation. Patients with a twin gestation were excluded. Women
were enrolled in two groups: those who underwent elective
termination of pregnancy (control, n = 30) and those who
miscarried their pregnancy (cases, n= 10) (Table 1). Miscarriage
was defined according to the American College of Obstetricians
and Gynecologists Practice Bulletin, as a non-viable, intrauterine
pregnancy with a gestational sac containing an embryo or fetus
without fetal heart activity within the first 12 6/7 weeks of
gestation (137).

Clinical samples and data collection were approved by the
Health Science Board of Hungary (ETT-TUKEB 4834-0/2011-
1018EKU).Written informed consent was obtained fromwomen
prior to sample collection and the experiments conformed to the
principles set out in the World Medical Association Declaration
of Helsinki. Specimens and data were stored anonymously.

Histopathologic Evaluation of the
Placentas
Five-micrometers-thick sections were cut from FFPE
tissue blocks and stained with hematoxylin and eosin for
histopathological evaluation at the 1st Department of Pathology
and Experimental Cancer Research, Semmelweis University.
The sections were examined using light microscopy by a
perinatal pathologist blinded to the clinical information.
Histopathologic changes were defined according to published
criteria (136, 138, 139).

Tissue Microarray Construction, and
Galectin-13 and Galectin-14
Immunostainings
As previously described (140–143), representative areas were
selected for the construction of tissue microarrays (TMAs),
which contained 2mm cores in diameter. To investigate protein
expressions, two TMAs were created, using an automated tissue
arrayer (TMAMaster II, 3DHISTECH Ltd.), to contain one block
of each first-trimester (n = 40) placenta as well as a positive
control (third-trimester healthy placenta) and a negative control
(liver) in triplicate.

Five-micrometers-thick sections were cut from TMAs
and placed on silanized slides. After deparaffinization and
rehydration, antigen retrieval was performed using citrate buffer
(10mM Sodium citrate, 0.05% Tween 20, pH = 6) for 5min
at 100◦C in a pressure cooker. Endogen peroxidase blocking
was performed using 10% H2O2 for 20min. Immunostaining
was carried out using the Novolink Polymer Detection System
(Novocastra Laboratories), according to the manufacturer’s
protocol, as detailed in Supplementary Table 1. Slides were
blocked for 10min with Protein Block. To evaluate Gal-13
expression, slides were incubated with anti-galectin-13 mouse
monoclonal antibody (clone 215-28-3) in 1% BSA-TBS for
60min at 37◦C. To evaluate Gal-14 expression, slides were
incubated with anti-galectin-14 recombinant human antibody
in 1% BSA-TBS for 60min at room temperature. In the case of
Gal-14 staining, after three washes with Tris buffer saline with
0.05% Tween 20 (TBST), slides were incubated with anti-His6
mouse monoclonal antibody for 30min at room temperature.
In both circumstances, subsequent steps were the same. Briefly,
after three washes with TBST and Post Primary treatment
(30min, at room temperature), Novolink Polymer was used as
the secondary antibody for 30min at room temperature. This
was followed by three washes with TBST, and then the sections
were developed using 3,3

′

-diaminobenzidine (DAB, Novolink)
in 1:20 dilution. Finally, sections were counterstained with
hematoxylin, and these were mounted with DPX Mountant
(Sigma-Aldrich) after dehydration.

Evaluation of Immunostainings
Gal-13 or Gal-14 immunostained placental TMAs were
digitally scanned by a high-resolution bright field slide scanner
(Pannoramic Scan, 3DHISTECH Ltd.), and cytoplasmic staining
in the syncytiotrophoblast was evaluated on virtual slides using
Pannoramic Viewer 1.15.4 (3DHISTECH Ltd.) by two examiners

Frontiers in Immunology | www.frontiersin.org 3 June 2019 | Volume 10 | Article 1240

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Balogh et al. Placental Galectins Regulate Immune Responses

blinded to the clinical information. All villi were scored semi-
quantitatively. The intensity of immunostaining was graded from
0 to 3. The average intensity was determined for each core as the
representative data for that core. By averaging immunoscores
of the cores, the overall intensity score was assigned to each
placenta and then to each patient group.

Expression and Purification of
Recombinant Galectin-13 and Galectin-14
Recombinant Gal-13/Gal-14 was expressed as previously
described (53) with modifications. Expression plasmids used
earlier (53) were modified by the N-terminal insertion of
maltose-binding protein (MBP) tag on these galectins. These
modified plasmids, containing either full-length Gal-13 or Gal-14
as well as N-terminal maltose-binding protein (MBP)- and C-
terminal His6-tags, were transformed into ClearColi BL21 (DE3)
(Lucigen). For protein expression, cells were grown in LB-Miller
broth to OD600 = 0.6 at 37◦C, induced with 0.4mM isopropyl
β-D-1-thiogalactopyranoside (IPTG), and further grown for
4 h at 30◦C. The following purification steps were applied:
affinity purification on MBPTrap HP column (GE Healthcare
Life Sciences); size exclusion chromatography (Superdex
200 Increase SEC column, GE Healthcare Life Sciences) for
elimination of aggregates (only for Gal-14); MBP cleavage by
Tobacco Etch virus (TEV) protease [expressed and purified
according to Kapust et al. (144)]; affinity chromatography on
HisTrap HP columns (GE Healthcare Life Sciences); desalting
and buffer exchange on Bio-Gel P-6 Desalting Cartridge (Bio-
Scale Mini, Bio-Rad). All steps were carried out in the presence
of 1mM dithiothreitol (DTT). Finally, Gal-13 and Gal-14 in
PBS, supplemented with 1mM DTT, were aliquoted and stored
at−80◦C.

Checking the Purity and Carbohydrate
Binding Properties of Recombinant Gal-13
and Gal-14
The purity of the recombinant galectins was verified by
heating the samples in Laemmli buffer for 10min at 70◦C,
followed by 15% SDS polyacrylamide gel electrophoresis
(SDS-PAGE) (Bio-Rad). After gel electrophoresis, recombinant
galectins were either subjected to Coomassie blue staining
(Supplementary Figure 1A) or transferred to nitrocellulose
membranes. Membranes were blocked with 5% non-fat dry milk
in TBST for 1 h, and then these were incubated overnight at
4◦C with primary antibodies to Gal-13 (clone 27-3-2) or Gal-
14 in TBST with 5% BSA. After repeated washing with TBST,
blots were incubated for 1 h with HRP-goat anti-mouse IgG
antibody (ThermoFisher Scientific) for Gal-13 or with HRP-
goat anti-human IgG F(ab’)2 antibody (Bio-Rad) for Gal-14
(Supplementary Table 2). After repeated washing with TBST,
protein bands were visualized by enhanced chemiluminescence
(ECL; Amersham International) (Supplementary Figure 1B).

To determine their functional activity, the binding of purified
galectins to asialofetuin (ASF), a naturally occurring multivalent
glycoprotein serving as a ligand for several galectins, was assayed
by ELISA (145, 146). Briefly, ASF (50 µL of 10µg/mL bovine

ASF in sodium carbonate buffer pH = 9.6) was immobilized
in microtiter plates overnight. After blocking residual binding
sites with BSA (5% in PBS-Tween, PBST) for 2 h, different
amounts of Gal-13 or Gal-14 were incubated for 1 h in PBST
with 0.5% BSA. Washing with PBS was done three times
between the incubation steps. Bound galectins were detected by
incubation with anti-His6-HRP antibody in PBST with 0.5% BSA
(Biolegend, 1:1,000) and by the subsequent conversion of 3,3′5,5′-
tetramethylbenzidine (TMB; Sigma-Aldrich) with a readout at
450 nm (reference filter: 620 nm). The reaction was stopped by
4N H2SO4 (Supplementary Figure 1C). Additionally, 50µg/mL
recombinant galectins were pre-incubated with gentle rotation
on lactose-agarose beads (Sigma-Aldrich) for 1 h at room
temperature prior to performing ELISA to also check for lactose
inhibition. The inhibition was moderate for Gal-13 and weak for
Gal-14, as we found differential binding of Gal-13 and Gal-14 to
lactose and other carbohydrates in a previous study (53).

Isolation of Primary Immune Cells
Blood samples were obtained from a donor pool of non-pregnant,
healthy, human females (n = 18 in total, n = 4–8 per assay,
median age: 29.5) who were in the pre-ovulatory phase. PBMCs
were isolated by Ficoll-Hypaque (Sigma-Aldrich) density-
gradient centrifugation and washed in RPMI 1640 medium
(ThermoFisher Scientific) before experimentations. T cells were
isolated from PBMCs with the Dynabeads untouched human T
cell kit (ThermoFisher Scientific) according to themanufacturer’s
protocol. PBMCs or T lymphocytes were kept in RPMI 1640
medium supplemented with 10% FBS and gentamycin or
were activated for 48/72 h with the Dynabeads human T-
Activator CD3/CD28 (ThermoFisher Scientific), according to
the manufacturer’s instructions, before treatment with Gal-13 or
Gal-14 for 24 h.

Binding of Gal-13 and Gal-14 to Peripheral
Blood T Cells
Fresh PBMCs from three donors, or PBMCs activated or not
with human T-Activator for 72 h, were used for the Gal-13/Gal-
14 binding study. To measure the binding of recombinant
Gal-13 or Gal-14 to the surface of T cells, 2 × 105 PBMCs
were initially washed in PBS containing 1% BSA. Recombinant
Gal-13 or Gal-14 (4µM), which we conjugated with CF488
fluorophore using the Mix-n-Stain CF488 kit (Sigma-Aldrich)
according to the technical bulletin, was added to the cells,
and samples were incubated for 45min on ice. After washing,
Fc receptors were blocked with human FcR blocking reagent
(Miltenyi Biotec) for 5min on ice. Anti-CD3-APC, anti-CD4-
PerCP, and anti-CD8-APC/Fire750 antibodies (Biolegend) were
applied to discriminate between T lymphocyte populations. All
antibodies and reagents are listed in Supplementary Table 3.
Flow cytofluorimetric measurements were carried out on a
CytoFLEX device (Beckman Coulter) by collecting data from
50,000 cells. Data were analyzed using FlowJo v10 software
(FlowJo, LLC).
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Apoptosis Assay
PBMCs (5 × 105), previously activated or not with human T-
Activator for 48 h, were incubated for 24 h on tissue culture
plates with 0.25 or 4µM recombinant Gal-13 or Gal-14 in RPMI
1640 medium supplemented with 10% FBS. The 105 cells were
stained with anti-CD3-APC and anti-CD8-FITC antibodies, as
described above. Cells were then incubated in 100µL of annexin-
binding buffer containing phycoerythrin-conjugated Annexin
V (Annexin V-PE) and 7-amino-actinomycin D (7-AAD)
(Annexin-V Apoptosis Detection Kit, ThermoFisher Scientific;
Supplementary Table 3) for 15min at room temperature in the
dark. After incubation, 400µL annexin binding buffer was added,
and samples were measured immediately on a FACSCalibur
cytofluorimeter using Cell Quest software (BD Biosciences). The
Annexin V-PE−/7-AAD− population was regarded as normal,
while the Annexin V-PE+/7-AAD− and Annexin V-PE+/7-
AAD+ populations were taken as measurements of early and
late apoptotic cells, respectively. Data were analyzed using FlowJo
v10 software.

Flow Cytometry Measurement of
Activation Markers
The PBMCs (5 × 105), previously activated or not with human
T-Activator for 72 h, were incubated for 24 h on tissue culture
plates with 4µM recombinant Gal-13 or Gal-14 in RPMI 1640
medium supplemented with 10% FBS. To examine cell surface
markers, 2× 105 PBMCs were initially washed in PBS containing
1% FBS. Fc receptors were blocked with human FcR blocking
reagent for 5min on ice; then, specific antibodies to mid-late
and late activation markers CD25 (Interleukin-2 Receptor alpha,
IL-2Rα), CD71 (Transferrin Receptor, TfR), CD95 (Fas Cell
Surface Death Receptor, Fas), and HLA-DR (Human Leukocyte
Antigen, DR isotype; member of MHC-II) were added to the
cells. Anti-CD3-APC and anti-CD8-FITC antibodies were added
simultaneously and samples were incubated for 20min on ice. All
antibodies are listed in Supplementary Table 3. After washing,
cells were measured in a CytoFLEX flow cytofluorimeter. A total
of 20,000 cells were collected and data were analyzed using
FlowJo v10 software.

Measurement of Cytokine Production by
Bead Array
The T lymphocytes were isolated as described above. The
5 × 105 cells, previously activated or not with human T-
Activator for 72 h, were incubated for 24 h on tissue culture
plates with 4µM recombinant Gal-13 or Gal-14 in RPMI
1640 medium supplemented with 10% FBS. Supernatants
were collected in all cases, centrifuged at 400 g for 10min,
aliquoted and stored at −80◦C until use. LEGENDplex bead-
based immunoassays (Biolegend) were applied to measure
the concentration of IL-8, IL-10, IFNγ, IL-1β, and IL-6
cytokines in cell culture supernatants of T cells, according
to the manufacturer’s instruction. Beads were measured in a
FACSCalibur flow cytofluorimeter and data were analyzed using
FlowJo v10 software.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 5.0
(GraphPad Software). An unpaired t-test with or withoutWelch’s
correction was used to analyze demographic data. An unpaired t-
test was also used to analyze Gal-13 and Gal-14 immunostainings
when comparing first-trimester control and miscarriage groups.
The Fisher’s exact test was performed to test the distribution
of Gal-13 or Gal-14 immunoscores between the control and
miscarriage groups. Repeated ANOVA tests with Tukey’s post-
hoc test were used for the analysis of galectin binding and
CD4:CD8 ratio upon different treatments. One sample t-test
was used to compare apoptosis of the Gal-13- and Gal-14-
treated groups to the PBS-DTT-treated group, and to analyze the
binding of Gal-13 and Gal-14 to ASF with or without lactose
pre-treatment. Repeated ANOVA tests with Dunnett’s post-hoc
test were used to compare the non-treated group with Gal-
13/Gal-14-treated groups in activation marker expression and
cytokine production studies. Results were considered statistically
significant at ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

RESULTS

Gal-13 and Gal-14 Are Expressed in
First-Trimester Placentas and Their
Expression Is Decreased in Miscarriage
Immunostainings of TMAs revealed that Gal-13 (Figures 1A,B)
and Gal-14 (Figures 1E,F) are predominantly expressed in the
cytoplasm of the syncytiotrophoblast of chorionic villi in the first
trimester, and there were no stainings in the cytotrophoblasts
and villous stroma, similar to later stages of pregnancy (53, 81,
106, 110, 113). Moreover, chorionic villi exhibited more intense
syncytiotrophoblast cytoplasmic staining in the first trimester
than in the third trimester (Supplementary Figure 2). The
specificity of the galectin antibodies was confirmed by previous
studies and by the lack of Gal-13 and Gal-14 immunostaining of
human livers on our TMAs.

Next, we examined whether the expression of Gal-13 and
Gal-14 is dysregulated in first-trimester placentas obtained
from women who miscarried, as a potential sign of fetal
rejection. There was no significant change in Gal-13 or Gal-14
immunoscores with gestational age in control placentas (R2 =

0.0078 for Gal-14; R2 = 10−5 for Gal-13). However, the average
immunoscore of syncytiotrophoblast decreased by 11.5% for Gal-
13 (p = 0.027, Figures 1A–D) and by 20% (p = 0.001) for Gal-
14 (Figures 1E–H) in miscarriages compared to gestational age-
matched controls. Also, there was a significant difference in the
distribution of Gal-13 and Gal-14 immunoscores (p = 0.002
and p < 0.001, respectively) between the disease and control
groups (Figures 1D,H).

Gal-13 and Gal-14 Bind to Peripheral Blood
T Cells
As Gal-13 and Gal-14 are released from the placenta into
the maternal circulation, where they may regulate maternal T
lymphocytes (53), we further characterized their effects on T
cell populations. First, we examined the binding of fluorescent
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FIGURE 1 | The syncytiotrophoblast expresses galectin-13 and galectin-14 in the first-trimester placenta, which is decreased in miscarriage. Five-micrometers-thick

first-trimester placental sections from normal pregnancy (A,B,E,F) or from miscarriage (C,G) were stained for Gal-13 (A–C) or Gal-14 (E–G) by specific monoclonal

antibodies. Chorionic villi exhibited intense syncytiotrophoblast cytoplasmic staining (arrows, STB), while the villus stroma (VS) and cytotrophoblasts were negative

(arrowheads, CTB). Representative images, hematoxylin counterstain, 100x (A,E) and 200x (B,C,F,G) magnifications. Gal-13 (D) and Gal-14 (H) immunoscores

(mean ± SEM) and proportion of staining intensities in control placentas (n = 30) and placentas with miscarriage (n = 10) are displayed on left and right graphs,

respectively (Gal-13: ntotal villus =775 and ntotal villus =106, respectively; Gal-14: ntotal villus =797 and ntotal villus =121, respectively). Unpaired t-test was used for the

comparison of the mean immunoscores of the two groups. Fisher’s exact test was performed to test the frequency difference of Gal-13 or Gal-14 immunostaining

between control and miscarriage groups (*p < 0.05, **p < 0.01, ***p < 0.001).
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Gal-13 or Gal-14 to primary T cells. We found that Gal-13 and
Gal-14 bound to freshly isolated T lymphocytes, either to helper
(Th: 3.4 ± 0.9% and 5.1 ± 1%, respectively) or cytotoxic T (Tc:
3.9 ± 0.8% and 7.7 ± 2.2%, respectively) cells (Figures 2A,B,
Supplementary Figure 3). Upon activation, binding of Gal-13
to Th and Tc cells was increased by 21% (p < 0.001) and 42%
(p< 0.001), respectively (Figure 2B, Supplementary Figure 3B).
Binding of Gal-14 was increased by 20% (p < 0.01) and by 30%
(p < 0.001) to activated Th and Tc cells, respectively, compared
to non-activated ones (Figure 2B, Supplementary Figure 3B).
Of note, both galectins tended to bind more to Tc over Th
lymphocytes, a difference that reached statistical significance in
the case of activated cells (p < 0.001 for Gal-13 and p < 0.05
for Gal-14).

Gal-13 and Gal-14 Increase Apoptosis of
Non-activated and Activated T Cells
Since certain galectins can induce the apoptosis of T cells
depending on T cell subsets and their activation status (147–
149), we investigated the effects of Gal-13 and Gal-14 on
various T cell populations, either in an activated or a non-
activated state. Flow cytometry results, overall, show that 4µM,
but not 0.25µM, of Gal-13 or Gal-14 increased apoptosis
of T lymphocytes either pre-activated or not (Figures 3A,B,
Supplementary Figure 4A). Gal-13 increased apoptosis of both
non-activated and pre-activated T cells by 5.3% (p = 0.010)
and 9%, (p = 0.011), respectively. Gal-14 increased apoptosis
of pre-activated T cells by 8.9% (p = 0.040) compared
to PBS-DTT treated cells. We further analyzed Th and Tc
lymphocytes separately, based on CD3 and CD8 expression.
Tc cell apoptosis was increased for both galectins regardless of
the activation state (Gal-13, non-activated: 3.9%, p = 0.002;
Gal-13, pre-activated: 8.2%, p = 0.022; Gal-14, non-activated:
11%, p = 0.001; Gal-14, pre-activated: 11.2%, p = 0.032),
while Gal-13 increased apoptosis rate (8.3%, p = 0.031) of
non-activated Th cells (Figures 3A,B). The proportion of early
apoptotic (Annexin V+ 7-AAD−) T lymphocytes, Th cells,
and Tc cells as well did not change upon Gal-13 or Gal-14
treatment (Supplementary Figure 4B).

Gal-13 and Gal-14 Treatment Alters Cell
Surface Expression of T Cell Activation
Markers
Next, we investigated the impact of Gal-13 and Gal-14 on
the expression of well-known activation markers—CD25 (IL-
2Rα), CD71 (TfR), CD95 (Fas), and HLA-DR (MHC-II)—of T
lymphocytes. Interestingly, Gal-13 treatment increased both the
percentage of CD95 positive cells and the cell surface expression
of CD95 on Th (% control: 11.3 ± 5.2%, Gal-13: 19.6 ± 7%, p <

0.05; RMFI control: 1.7 ± 0.2, Gal-13: 2.2 ± 0.2, p < 0.01) and
Tc (% control: 6.1 ± 1.7%, Gal-13: 13.7 ± 3.7%, p < 0.05; RMFI
control: 1.4± 0.1, Gal-13: 1.7± 0.2, p < 0.01) lymphocytes. Gal-
14 treatment increased the percentage of CD95 positive cells (18.7
± 8.5%, p < 0.05) and the cell surface expression of CD95 on

Th (2.1 ± 0.3, p < 0.05) but not on Tc lymphocytes (Figure 4A,
Supplementary Figure 5B).

The percentage of cells expressing CD71 and the cell surface
expression of CD71 decreased upon Gal-14, but not Gal-13
treatment on both Th (% control: 96.9± 0.8%, Gal-14: 91± 1.3%,
p < 0.05; RMFI control: 175.1± 17, Gal-14: 129± 6.1, p < 0.05)
and Tc (% control: 97± 0.5%, Gal-14: 95± 1.1%, p< 0.05; RMFI
control: 191.4± 26, Gal-14: 129.3± 33.2, p < 0.01) lymphocytes
(Figure 4B, Supplementary Figure 5B).

Neither the percentage of CD25 nor of HLA-DR positive
cells changed upon galectin treatment (Figures 4C,D,
Supplementary Figure 5B). However, cell surface expression of
CD25 increased upon Gal-13 treatment (Th RMFI control: 59.1
± 8.1, Gal-13: 161 ± 30, p < 0.05; Tc RMFI control: 42.7 ± 9.6,
Gal-13: 103.5 ± 24, p < 0.05), and tended to increase upon Gal-
14 (RMFI Th: 110.6 ± 23.7; Tc: 64.4 ± 9.1) treatment in both T
cell populations (Figure 4C). Of note, treatment of non-activated
cells with Gal-13 or Gal-14 did not change the expression of
these activation markers (Supplementary Figure 5A).

Gal-13 and Gal-14 Induce Il-8 Secretion of
T Cells
Next, we sought to explore whether T lymphocytes contribute to
the altered cytokine production, previously measured in PBMCs
(114). IL-1β and IL-6 concentrations were below the detection
limit in cell culture supernatants (data not shown). Surprisingly,
IL-8 production was increased upon treatment with either Gal-
13 (260.7 ± 78 pg/mL, p < 0.01) or Gal-14 (237.4 ± 73.5 pg/mL,
p < 0.05) compared to the control (10.6 ± 9.2 pg/mL), when T
cells were not activated. In the case of activation through CD3
and CD28, galectins could not further increase IL-8 production
(Figure 5). Neither IL-10 nor IFNγ production changed upon
galectin treatment (Figure 5).

DISCUSSION

Principal Findings of the Study
(1) Gal-13 and Gal-14 are mainly expressed by the
syncytiotrophoblast at the maternal-fetal interface in the
first trimester, stronger than in the third trimester of pregnancy;
(2) the syncytiotrophoblastic expression of both Gal-13 and
Gal-14 is down-regulated in miscarriages compared to first
trimester control placentas; (3) recombinant Gal-13 and Gal-
14 differentially bind to peripheral blood T cell populations,
predominantly to Tc over Th cells; (4) Gal-13 and Gal-14
induce the apoptosis of both T cell populations regardless of
their activation status; (5) Gal-14 decreases the cell surface
expression of CD71, Gal-13 and Gal-14 increase the cell
surface expression of CD95 and Gal-13 increases the cell
surface expression of CD25 on T cells; and (6) non-activated
T cells produce larger amounts of IL-8 in the presence of
Gal-13 or Gal-14.

Placental Galectin-13 and Galectin-14
Expression Is Decreased in Miscarriage
This is the first study to characterize the simultaneous expression
of Gal-13 and Gal-14 in first-trimester placentas in healthy
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FIGURE 2 | Binding of galectin-13 and galectin-14 to T lymphocytes is population- and activation-dependent. (A) Detection of Gal-13 or Gal-14 binding to human T

lymphocytes was achieved by flow cytometry with the following cells: freshly isolated PBMCs (0 h) or PBMCs, kept in culture for 72 h in the presence (72 h activated)

or absence (72 h non-activated) of anti-CD3/CD28 microbeads. Cells were incubated with 4µM Gal-13-CF488 or Gal-14-CF488 for 45min on ice. PBMCs were also

stained for CD3 (anti-CD3-APC), CD4 (anti-CD4-PC5.5), and CD8 (anti-CD8-APC/Fire750), in order to distinguish between helper (Th) and cytotoxic (Tc) T

lymphocytes. The gating strategy is shown in (A). (B) Graphs show the percentage of cells, to which Gal-13 (left) or Gal-14 (right) were bound, as mean ± SEM.

Repeated ANOVA with Tukey’s post-hoc test was used for the comparison of groups (*p < 0.05, **p < 0.01, ***p < 0.001). Four non-pregnant female donors were

included in each group. FMO, Fluorescence minus one; PBMCs, peripheral blood mononuclear cells.

and complicated pregnancies. We found that these placenta-
specific galectins are mainly expressed by the syncytiotrophoblast
at the lining of the maternal-fetal interface, similar to these
galectins that are expressed in the placenta in the third
trimester (53, 106, 110, 113). The expression of these galectins
in the syncytiotrophoblast is developmentally regulated during
trophoblast differentiation by transcription factors binding
to non-coding elements upfront of these galectin genes on

Chromosome 19, a process that emerged in anthropoid primates
(110). This is particularly interesting from an immunological
point of view given that these anthropoids had a long
gestation, which necessitated additional immune tolerance
mechanisms at their maternal-fetal interface to prevent fetal
rejection (53). In this latter evolutionary and immune functional
study, we proposed that the emergence of these galectins in
anthropoid primates provided additional immune tolerance
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FIGURE 3 | Galectin-13 and galectin-14 increase apoptosis of T lymphocytes. (A) PBMCs were kept in culture for 48 h in the presence (activated) or absence

(non-activated) of anti-CD3/CD28 microbeads, then treated with Gal-13 or Gal-14 for 24 h. To detect apoptosis of T lymphocytes by flow cytometry, cells were stained

with Annexin V-PE and 7-AAD and were also stained for CD3 (anti-CD3-APC), and CD8 (anti-CD8-FITC), in order to distinguish between helper (Th) and cytotoxic (Tc)

T cells, respectively. (A) The gating strategy (left: CD3+ T gate, CD3+CD8+ Tc gate, CD3+CD8− Th gate) and representative Annexin V and 7-AAD dot plots of

vehicle- (PBS-DTT), Gal-13- or Gal-14-treated T cells (CD3+) are displayed. (B) Graphs show the 1 percentage of double positive (Annexin V-PE+ 7-AAD+) cells as

mean ± SEM. One sample t-test was used for the comparison of galectin-treated groups with the PBS-DTT-treated group of non-activated or pre-activated cells (*p

< 0.05, **p < 0.01). Six-eight non-pregnant female donors were included in each group. PBMCs, Peripheral blood mononuclear cells.

toward the fetus. Previous studies on placentas delivered
by women with preeclampsia, a severe obstetrical syndrome
with an immune rejection component, revealed the down-
regulation of Gal-13 and Gal-14 placental expression, suggesting
that this phenomenon may be linked to altered immune
tolerance (81, 110, 113, 129).

Herein, we report for the first time that the placental
expression of Gal-13 and Gal-14 is also decreased in

first-trimester miscarriages. As most of these cases have a normal
karyotype, our finding suggests that altered maternal-fetal
immune tolerance is not closely associated with chromosomal
abnormalities but can be a separate underlying mechanism
for miscarriages. Indeed, recent publications presented that
miscarriages are associated with immune etiologies (150),
where the development of the fetus and placenta is affected
by either auto- or alloimmune rejection-type activity (151).
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FIGURE 4 | Galectin-13 and galectin-14 affect cell surface expression of activation markers on T lymphocytes. PBMCs were kept in culture for 72 h in the presence of

anti-CD3/CD28 microbeads, then treated with Gal-13 or Gal-14 for 24 h. To detect cell surface expression of CD95 (A), CD71 (B), CD25 (C), HLA-DR (D) activation

markers on T lymphocytes by flow cytometry, cells were stained with anti-CD25-PE and anti-CD71-PerCP/5.5, or anti-CD95-PE and anti-HLA-DR-PerCP/5.5. Cells

were also stained for CD3 (anti-CD3-APC), and CD8 (anti-CD8-FITC) in order to distinguish between helper (Th) and cytotoxic (Tc) T cells. Left graphs show the

percentage of positive cells and right graphs show relative median fluorescence intensity (RMFI) values (mean ± SEM). RMFI was calculated by dividing specific

median fluorescence intensity with the median fluorescence intensity of the isotype control. Repeated ANOVA with Dunnett’s post-hoc test was used for comparison

of the non-treated group with Gal-13/Gal-14-treated groups (*p < 0.05, **p < 0.01). Four-six non-pregnant female donors were included in each group. HLA-DR,

Human leukocyte antigen DR isotype; PBMCs, peripheral blood mononuclear cells.
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FIGURE 5 | Galectin-13 and galectin-14 induce IL-8 production in resting T

lymphocytes. T lymphocytes after negative selection were kept in culture for

72 h in the presence (pre-activated) or absence (non-activated) of

anti-CD3/CD28 microbeads, then treated with 4µM Gal-13 or Gal-14 for 24 h.

Supernatants were collected and IL-8, IL-10, and IFNγ cytokines were

measured by flow cytometry using LEGENDplex assays. Graphs show

calculated cytokine concentrations as mean ± SEM. Repeated ANOVA with

Dunnett’s post-hoc test was used for the comparison of the non-treated group

with Gal-13/Gal-14-treated groups (*p < 0.05, **p < 0.01). Six non-pregnant

female donors were included in each group.

Of interest, the expression of other galectins, although in
modest extent, is also decreased at the maternal-fetal interface
in spontaneous and recurrent miscarriages, including Gal-1,
Gal-2, Gal-7, Gal-9, and Gal-10 (152–154). Furthermore, in
good accordance, serum concentrations of Gal-1 and Gal-9
were also found to be decreased in miscarriage (99, 154, 155).

An elegant study revealed that Gal-1 has pivotal functions
supporting maternal-fetal immune tolerance and its decreased
expression leads to fetal loss in a mouse model. Gal-1 prevents
fetal loss and restores tolerance through multiple mechanisms,
including the induction of tolerogenic dendritic cells, which, in
turn, promotes the expansion of IL-10-secreting regulatory T
cells in vivo (107). On the other hand, Gal-9 was found to exert
its functions in non-pregnant and pregnant states on NK cells,
T cells, and B cells (101, 102, 147, 156–159). In addition, Gal-9
promotes trophoblast invasion in a Tim-3 dependent manner
(154). Consistently, a higher proportion of decidual T cells that
express activation markers (CD25, and CD69) was found in
spontaneous abortion than in elective termination of pregnancy,
and decidual lymphocytes from spontaneous abortion increased
the apoptosis of trophoblast cells (160). Since Gal-13 and Gal-14
are only expressed in anthropoid primates, it is not possible to
investigate the role of these proteins in knock-out mammalian
models in vivo. Nevertheless, we can conclude that several
galectins, including Gal-13 and Gal-14, potentially act in concert
and play a role in maintaining pregnancy and that their lower
expression at the maternal-fetal interface in early pregnancy may
lead to an immune imbalance that interferes with implantation,
trophoblast invasion, and placentation, leading to fetal rejection
and miscarriages.

Galectin-13 and Galectin-14 Promote
Apoptosis of T Cells
The majority of the galectin family regulates adaptive immune
responses through the induction of T cell apoptosis, which
then leads to a shift in the innate/adaptive, Th1/Th2, and
Th17/Treg immune balances (161–163). Similarly, we reported
that exogenously added Gal-13 and Gal-14 are able to induce
the apoptosis of activated T cells to a similar extent as Gal-
1 (53). In accord with these findings, the interesting study
from Kliman et al. (114) showed that Gal-13 is secreted from
the syncytiotrophoblast and forms perivenous aggregates in the
decidual extracellular matrix in the first trimester. These Gal-
13 aggregates, found around decidual veins, were associated
with T cell-, neutrophil-, and macrophage-containing “decidual
zones of necrosis” (ZONEs), in which apoptotic T cells were
also found. Based on these findings in normal pregnancies, and
also based on cases in which fewer ZONEs and apoptotic T
cells were found in association with very low serum Gal-13
levels, the authors hypothesized that Gal-13 is a key placental
protein that downregulates maternal immune responses in the
first-trimester decidua to avoid rejection of invasive trophoblasts
at the maternal-fetal interface, and that low Gal-13 expression
leads to heightened immune responses and impaired trophoblast
invasion. It is possible that in cases where this mechanism is
very defective (e.g., due to the concerted downregulation of Gal-
13, Gal-14, Gal-1, and other immunoregulatory molecules in the
placenta or decidua), pregnancies will be miscarried.

To better elucidate the role of Gal-13/Gal-14 in the regulation
of T cells, we further characterized the pro-apoptotic effect of
these galectins on T lymphocytes. We found that both Gal-13
and Gal-14 increased the rate of late-apoptotic T lymphocytes
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with ∼5–10%, which was not affected by the activation status
of the cells, while other galectins promote the apoptosis of only
activated leukocytes (164, 165). Our result suggests that Gal-13
and Gal-14 have a basic pro-apoptotic activity on T cells. Of
note, Tc cells bound more galectins than Th cells and Tc cells
were more susceptible to Gal-13/Gal-14 induced apoptosis than
Th cells, which may be related to the differential glycosylation
pattern on these two T cell populations. This phenomenon has
not been deeply explored in other galectins, which, however, were
studied for their effects on different Th subsets. For example,
Gal-1 selectively induced the apoptosis of pro-inflammatory Th1
and Th17 cell subsets, but not of naïve, Th2, or Treg cells
(166). Moreover, Gal-9 induced the apoptosis of Th1 cells (147)
in a Tim-3 dependent manner. Our results warrant further
characterization of the pro-apoptotic effects of Gal-13 and Gal-
14 on different Th subsets and determination of glycophenotype
on T cell populations.

Apoptotic cell death in activated T cells is mediated by
signaling through the activation marker CD95 (Fas), following
binding to its ligand CD95L/FasL (167). In addition, another
T cell activation marker CD25 (Il-2Rα), important for T cell
proliferation, is also involved in this process by increasing
the expression of CD95 (168). Herein, we found that the cell
surface expression of CD95 and CD25 are increased upon Gal-
14 and/or Gal-13 treatment. This is important since activated T
cells are more prone to apoptosis (169); thus, Gal-13 and Gal-
14 may increase the sensitivity of activated T cells to die by
the activation-induced cell death. This is concordant with an
earlier study in which Gal-1 increased the percentage of Th1
cells expressing CD95, although the Gal-1-mediated apoptosis
of these cells was independent of CD95 (149). Interestingly,
we found decreased expression of another activation marker
(CD71) on T cells treated with Gal-14. This is seemingly
contradictory, however, CD71 transiently associates with the
TCR in response to TCR engagement (170) and is an essential
factor for proliferating T cells (171, 172). Thus, galectins may
inhibit T cell proliferation, which still needs to be tested in
later studies.

Galectin-13 and Galectin-14 Regulate
Cytokine Production of T Cells
Several galectins have been shown to alter cytokine production
of immune cells. For example, Gal-1 induces IL-10 production
in Treg cells (107, 173) and Gal-9 promotes IL-2 and IFNγ

production in T cells (164). Herein, we found in the applied
experimental settings that Gal-13 and Gal-14 did not alter most
pro-inflammatory (IFNγ, IL-1β, and IL-6) or anti-inflammatory
(IL-10) cytokine production of T cells; however, both of these
galectins induced IL-8 production in non-activated T cells. This
is particularly interesting since IL-8 exerts a pro-angiogenic
effect on endothelial cells by decreasing the apoptosis of
endothelial cells and increasing their proliferation and capillary
formation (174). In addition, a novel neutrophil population
was identified by recent studies in second-trimester human
deciduas, which promoted in vitro angiogenesis in an IL-8-
dependent manner (175, 176). Furthermore, decidual NK cell

subsets release significant amounts of pro-angiogenic factors,
such as VEGF and IL-8, necessary for spiral artery formation
during decidualization (177–179). Of note, the pro-angiogenic
effects of other galectins during gestation have been discovered,
as reviewed recently (180). Therefore, it is tempting to speculate
that Gal-13 and Gal-14 may induce angiogenesis at the maternal-
fetal interface through increasing IL-8 production of T cells.
This finding is related to the in vivo vasodilator effect of Gal-13
(181–184). In this context, reduced Gal-13 and Gal-14 expression
may play a role in the disturbed vascular changes in preterm
preeclampsia (58, 185–194). All our data discussed above support
the idea that Gal-13 and Gal-14 also have immunoregulatory
and vascular effects, as found for galectin-1 or galectin-3 (195,
196). Since the immunomodulatory effects of Gal-13 and Gal-
14 could be observed on a broad scale, changing the habit
of adaptive immune cells may affect innate immune cells, as
well. More experiments are warranted in this direction to
comprehensively elucidate the effects of these galectins at the
maternal-fetal interface.

Strengths and Limitations of the Study
The strengths of the study are as follows: (1) strict clinical
definitions and homogenous patient groups; (2) standardized,
quick placental sample collection during pregnancy
terminations; (3) standardized histopathological examination
of the placentas based on international criteria; (4) protein
expression profiling on placentas with tissue microarray and
immunostaining followed by semiquantitative immunoscorings
and statistical analysis; (5) expression and purification of large
amounts of recombinant galectins with standardized methods;
and (6) an array of functional experiments with primary cells
and recombinant proteins.

Limitations of the study are as follows: (1) the relatively
modest number of cases in each patient group due to the
strict clinical and histopathological inclusion criteria used
for patient enrollment. On the other hand, this was one
of the most important strengths of our study; (2) for in
vitro experiments, only non-pregnant donors were included
in the study given the conditions in our patient recruitment.
However, this was also a value of our study, since we used a
“naïve” population of immune cells to test the effects of Gal-
13 and Gal-14, while experiments with PBMCs isolated from
the peripheral circulation or decidua of pregnant women pre-
exposed to placental Gal-13/Gal-14 might not have revealed
the true effects of these molecules. Nevertheless, our results
warrant further characterization of the effects of Gal-13 and
Gal-14 on peripheral blood and decidual leukocytes isolated
from pregnant women, as pregnancy hormones, especially
estrogen and progesterone, may impact glycosylation pattern
and galectin-biding capacity of these cells; (3) Gal-13 and Gal-
14 concentrations applied in our in vitro experiments were
supraphysiologic, similar to experimental settings in previous
studies on the functional effects of galectins (7, 165). The use
of higher galectin concentrations is due to the fact that blood
concentrations of galectins do not reflect their effective local/cell
surface concentrations. In fact, these studies usually applied
recombinant galectins between 10 and 100µg/mL, representing
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a reasonable range of the local galectin concentration expected
in the tissues (197). Another technical reason to use higher
galectin concentrations is to prevent their subunit dissociation
in the solvent that contains DTT (198); and (4) the evaluation
of blood concentrations of Gal-13/Gal-14, which may change
in parallel with their placental dysregulation in miscarriages,
as also seen in the case of Gal-1 (99, 153, 155, 184), was
beyond the scope of this study, but our results warrant
further investigation.

CONCLUDING REMARKS

The causes and consequences of the down-regulation of
placental Gal-13 and Gal-14 expression in miscarriages still
have to be uncovered by later functional studies. This
work suggests that Gal-13 and Gal-14 down-regulate adaptive
immune responses at the maternal-fetal interface through T
cell apoptosis, and that their impaired expression leads to
fetal rejection in miscarriages. Another process in which these
galectins may function is angiogenesis, which is altered in
both miscarriage and preeclampsia, in which Gal-13 and Gal-
14 expression is decreased. Since galectins have pleiotropic
functions on various immune and non-immune cells given
their promiscuous binding to various cell surface receptors
via glycan binding, we envision that both actions may be
functional in human pregnancy. In conclusion, our results
suggest that Gal-13 and Gal-14 provide an immunoprivileged
environment at the maternal-fetal interface, already in early
pregnancy, either through down-regulating maternal immune
responses or via the support of placental development, and
their reduced expression is related to the immune pathology
of miscarriages.
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