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Investigating disease pathogenesis and personalized prognostics are major biomedical

needs. Because patients sharing the same diagnosis can experience different outcomes,

such as survival or death, physicians need new personalized tools, including those

that rapidly differentiate several inflammatory phases. To address these topics, a

pattern recognition-based method (PRM) that follows an inverse problem approach

was designed to assess, in <10min, eight concepts: synergy, pleiotropy, complexity,

dynamics, ambiguity, circularity, personalized outcomes, and explanatory prognostics

(pathogenesis). By creating thousands of secondary combinations derived from blood

leukocyte data, the PRM measures synergic, pleiotropic, complex and dynamic

data interactions, which provide personalized prognostics while some undesirable

features—such as false results and the ambiguity associated with data circularity-are

prevented. Here, this method is compared to Principal Component Analysis (PCA) and

evaluated with data collected from hantavirus-infected humans and birds that appeared

to be healthy. When human data were examined, the PRM predicted 96.9 % of all

surviving patients while PCA did not distinguish outcomes. Demonstrating applications

in personalized prognosis, eight PRM data structures sufficed to identify all but one of

the survivors. Dynamic data patterns also distinguished survivors from non-survivors, as

well as one subset of non-survivors, which exhibited chronic inflammation. When the

PRM explored avian data, it differentiated immune profiles consistent with no, early, or

late inflammation. Yet, PCA did not recognize patterns in avian data. Findings support the

notion that immune responses, while variable, are rather deterministic: a low number of

complex and dynamic data combinations may be enough to, rapidly, unmask conditions

that are neither directly observable nor reliably forecasted.
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INTRODUCTION

Understanding the processes that, later, result in
different outcomes–such as survival or death–, is an elusive
goal. To improve research on disease pathogenesis, new methods
are needed (1, 2), which should consider, at least, eight concepts:
synergy, pleiotropy, complexity, dynamics, ambiguity, circularity,
personalized outcomes, and explanatory prognostics.

Because living creatures are permanently interacting with
the environment, they are both closed and open (3). While
adjustments to changes originated in the environment may lead
to higher costs, the costs imposed by higher complexity can be
compensated with the lower costs induced by synergic pleiotropy,
e.g., mutations in one gene can improve two or more traits
without increasing the overall cost of complexity (4). Therefore,
to assess living creatures that interact with their environment,
new methods should measure both “one-to-many” (pleiotropic)
and “many-to-one” (synergic) relationships, that is, “bow tie”-like
processes (5).

The evidence that “one-to-many/many-to-one” constructs
promote economically efficient biological systems is abundant:
in spite of thousands of microbes potentially pathogenic,
approximately 210 cell types suffice to confer survival (6). A
few combinations of factors (cell types, in this example) perform
many functions better, faster, and/or at a lower cost.

Consequently, the reductionist “one-to-one” (one
structure/one function or “one target”) theory no longer
holds (7). To capture pleiotropic synergies, new methods
should measure two properties observed when living
creatures respond to changes originated in their environment:
complexity and dynamics. In infectious diseases, complexity
refers to the numerous combinations that host-microbial
interactions may generate, which differ over time, i.e., they are
dynamic (2).

Synergy, pleiotropy, complexity, and dynamics can express
ambiguity: the same numerical value of the same variable does
not always have the same meaning nor always performs the
same function. Vice versa, different values of the same variable
may be associated with the same function or meaning (8). For
example, interleukin (IL) 6 is ambiguous. Given its pleiotropy–
IL-6 is both a pro- and anti-inflammatory cytokine (9)–, its
mere detection, in isolation and/or at a single time point,
is error-prone. Similarly, monocytes are ambiguous: because
they both promote neutrophil activity (at the beginning of an
inflammation) and neutrophil destruction (at the end of the
inflammation or recovery phase), measuring monocytes, alone
and at a single time point, cannot distinguish between a new and
a late inflammation (10).

Ambiguity may be characterized by data circularity (11).

Because infections are temporal processes, they tend to express

circular and ambiguous data. That is so because the functions
performed by living creatures never stop. Consequently, no

data pattern remains constant: if the individual survives, one
pattern will eventually be replaced by a different (if not the
opposite) pattern –a process that creates an oscillatory or circular
shape. Thus, each value of each variable may, at least, have two
meanings or perform two functions which are associated with

either positive (feed forward) or negative feedback responses.
For instance, similar values of mononuclear cells (MC or
lymphocytes and monocytes) can predict both high and low
MC/neutrophil (MC/N) ratios (8). The apparent ambiguity of
the MC/N ratio may not be so but a valuable new piece of
information: in the example mentioned above, septic patients
that, after showing similar immunological values, exhibited
opposite profiles, were infected by different bacteria, i.e., what
seemed to be ambiguous could be distinguished (8). While
circularity is observed when temporal data are plotted (11), tests
conducted at a single time point may also display circularity
or other non-linear patterns. Therefore, a group of individuals
that experience different inflammatory phases may reveal distinct
spatial patterns even when tested only once.

Randomization, alone, does not prevent ambiguity (11).
However, 3D/4D temporal data directionality (arrows that denote
where the data are coming from) may prevent ambiguity (8).

Because patients that share the same diagnosis may
experience different outcomes, prognosis-oriented methods
are needed (1, 12, 13). When based on personalized phenomena,
prognostics may promote both research on disease pathogenesis
and personalized practices. Such methods could detect
immunomodulation before cytotoxicity occurs (1, 14).

In contrast, population-based models are unlikely to predict
the outcome of a specific patient (15). Personalized prognostics
may also avoid error-prone models. For example, classic statistics
assume that the variables under analysis are independently
distributed. However, immunological variables interact and,
therefore, are interdependent (2). That is the case of pleiotropic
integrins (e.g., CD11b), which participate in many functions,
including cell activation, transendothelial migration and
phagocytosis (16, 17).

Hence, methods meant to prevent ambiguity can use
numbers but should not depend on numerical assumptions.
Pattern Recognition (PR) meets such criteria. Today facilitated
by computerized technologies (e.g., “machine learning”), the
spatial/temporal (4D) recognition of data patterns may apply to
personalized medicine (18).

Biomedical methods can follow reductionist or non-
reductionist theories. While, in the first group, omissions
and/or errors are likely to occur because neither complexity
nor dynamics are explored and dimensions are reduced (19),
the second group does not reduce the number of dimensions
and considers that biological systems are both complex and
dynamic (2).

Methods may also be differentiated by the problem they
investigate, which may be either direct (forward or upstream) or
inverse (downstream). Inverse problem-based research starts with
a result and then, following an inductive approach, goes back in
history and looks for one or several possible cause(s). In contrast,
direct problems start with known causes and, using deductive
reasoning based on established mechanisms, collect new data to
infer effects (20).

The type of knowledge generated can distinguish invention-
from discovery-oriented methods (21). While the first type
implements operations previously unfeasible, discovery-oriented
methods unveil pre-existing but unknown phenomena (22). To
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our knowledge, invention- and discovery-oriented approaches
have not yet been explored in Immunology.

Metrics can describe methods, too. Metrics can be something
directly measurable, which is usually tested in isolation (e.g.,
counts or relative percentages of a given cell type) or
dimensionless indices that capture relationships between two or
more variables, such as the ratio between CD4+ and CD8+
lymphocyte counts or percentages (2, 23).

Methods also differ in the question they address. Dichotomous
questions induce errors when three ormore results are likely (11).
For instance, methods that promote “yes/no” answers cannot
assess inflammation, which can reveal three or more stages (no
inflammation, early inflammation, late inflammation). Because
they can offer polychotomous answers, pattern recognition-
oriented methods prevent dichotomization-related errors (24).

Methods are also influenced by medical needs. For example,
real-time information, as well as data visualizations, are
needed (25, 26).

According to the number of patients under analysis, methods
are cataloged as either population-oriented or personalized (27).
When the number of patients is n = 1 (personalized medicine),
no average (a population metric) can be produced and, therefore,
no statistical analysis is possible. Methods that measure inverse
problems and capture complex dynamics can be validated when
they reveal a property typical of complex systems: emergence (28).

Emergence refers to patterns not directly observed when
simple variables are measured in isolation, which become
distinguishable when complex and dynamic interactions are
analyzed (2). An emergence-based methodology grounds its
reproducibility not on assumptions of unknown validity, but
biologically explicit evidence.

Following an inverse problem approach, a non-reductionist,
pattern recognition-oriented method (PRM) was developed to
(a) capture complex and dynamic interactions (synergy and
pleiotropy) that may express circularity; (b) prevent ambiguity;
and (c) foster personalized prognostics (research on pathogenesis).
This construct was evaluated with retrospective data collected
from hantavirus-infected humans. To compare the informative
ability of PRM, the same data were also explored with
Principal Component Analysis or PCA (29). To estimate the
reproducibility of the PRM, apparently healthy birds were also
tested with both PRM and PCA.

Personalized prognosis is critical in hantavirus infections
because its pathogenesis remains unclear and 20–40% of infected
individuals may die within a couple of weeks (30). With two
major clinical presentations (a hantavirus cardio-pulmonary
[HCPS] and a hantavirus renal [HFRS] syndrome), efforts
aimed at differentiating survival from non-survival are highly
relevant in HCPS, where predictive factors have not yet been
identified (31).

To estimate whether the PRM can capture functions
conserved throughout evolution, avian data were also tested.
Avian leukocyte data can inform on inflammation, a critical
process in infectious and non-infectious diseases (32). For
example, a documented inflammation may support diagnostics
of septic infants (33). Because immunomodulation may occur
in the absence of cytotoxicity, an unambiguous diagnosis of

chronic inflammation is relevant in numerous fields, including
toxicology, gerontology, and cancer (24, 34, 35).

These two datasets helped evaluate this proof-of-concept. Its
purpose was to determine whether the PRM may extract more
information than alternative methods.

MATERIALS AND METHODS

Human Data
Following protocol numbers #13-463 and 16-084, a
retrospective analysis investigated de-identified blood data
collected from 40 humans (26 females and 14 males) admitted
to the Health Science Center of the University of New Mexico
(UNM), United States, where they were diagnosed as hantavirus-
positive and treated, accordingly. These records included
8 fatalities.

Avian Data
Avian blood samples (≤0.2 cc, n = 94) were collected or
analyzed under protocol SGPA/SGVS/12648/13 of the Mexican
Ministry for the Environment and Natural Resources. Clay
colored thrushes (Turdus grayi, n= 72) and great-tailed grackles
(Quiscalus mexicanus, n = 22) were sampled at: (i) an urban
(20◦58′47′′N, 89◦36′53′′W) and (ii) a rural site (20◦47′19′′N,
89◦35′26′′W) of Mexico. The eosinophil counting method
(Unopette Test 5877, Vacutainer Systems, BD Biosciences,
Franklin Lakes, NJ, USA) was used to quantify white blood
cells. Blood smears were stained with a modified Wright-
Giemsa (Hematology Three-step Stain; Accra Lab, Bridgeport,
NJ, USA). Differential cells counts were performed at the
Environmental Health Laboratory of the Advanced Research
Center (CINVESTAV), Merida, Yucatan, Mexico.

Algorithm
Pattern recognition of blood data was facilitated by a proprietary
algorithm (European Patent Office 2959295, 2018), which creates
numerous data combinations among monocyte (M), neutrophil
(N), and lymphocyte (L) counts or percentages. Its process
is described in Supplementary Presentation SF 1–5). While all
combinations are identical in primary (input) data, the number
they generate (a dimensionless indicator or DI) differs for
each combination. DIs –described here with a two- or three-
letter identifier, e.g., AAA– are temporary guides used to
recognize patterns. These acronyms do not refer to any known
biological entity.

The algorithm consists of three steps, which (i) create and
expand the number of complex data structures, (ii) keep only
data structures that exhibit distinct patterns (data circularity,
orthogonal data subsets, and data clusters), and (iii) retrieve
the immune profile(s) associated with each data pattern. Steps
I and II unmask hidden patterns. Step III identifies biologically
interpretable indicators, removes artifacts, and releases new or
unexpected information.

This procedure was conducted with blood leukocyte counts or
relative percentages (Complete Blood Cell count or CBC). Each
CBC of each patient was transformed into indices that included
at least one interaction that involved at least two leukocyte cell
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FIGURE 1 | No variable, per se, is discriminant. Directly measured variables, such as the relative percentages of lymphocytes (L), monocytes (M), and neutrophils (N)

did not separate outcomes of hantavirus-infected humans when measured in 3D space (A). Complex and dimensionless variables (here identified as BAL, BAJ, BAQ,

BAS, and BBE) also showed overlapping data distributions when survivors and non-survivors were measured (B). The median L, M, and N percentages, as well as

the median BAL, BAJ, BAQ, BAS, and BBE of survivors did not differ at a statistically significant level from those of non-survivors (P > 0.10, Mann-Whitney test).

types, which were then investigated as triplets in 3D/4D plots.
A series of 3D analyses were then conducted, focusing each
on: (i) temporal observations (if available), (ii) outcomes (if
data on two or more outcomes were available), (iii) individuals,
and/or (iv) pathogenesis (the immune profile specific of either
survivors or non-survivors, or some feature of interest, e.g.,
immunomodulation). For comparison, PCA (a classic approach
used in pattern recognition) was also utilized (36).

Principal Component Analysis
Developed in 1901 (29), PCA both reduces the number of
variables under analysis and explains most of the variance. When
variables differ in scale, a correlation matrix is used, which
gives equal weight to all variables. To that end, the data are
standardized, i.e., the mean is subtracted. Thus, the standardized
zero separates observations below the mean (negatives values)
from those above the mean (positive values). Consequently,
“positive” observations will be orthogonal and uncorrelated to
“negative” ones. Otherwise, a covariance matrix is utilized (37).

Validation
Four types of validity were assessed: (i) the ability to extract
more information than alternatives (construct validity); (ii)
the ability to convey similar information when different
data structures are considered (internal validity); (iii) the
ability to demonstrate similar findings when a different
biological condition is tested in a different host, time,
and/or place (external validity); and (iv) the reproducibility
of a method when compared to a statistical alternative
(statistical validity).

Statistical Analysis
Medians were explored with the Mann-Whitney test (Minitab
Inc, State College, PA, USA). The same software package was
used to conduct PCA (including data standardization) and create
3D plots. To allow readers reproduce critical analyses, primary
data, some of the complex variables derived from blood data,
and related classes (e.g., survivor or non-survivor; no, early, or
late inflammation) are shown in Supplementary Tables 1 and 2.

Prognostic redundancy (i.e., whether two or more data structures
assigned the same prognosis to the same person) is reported
in Supplementary Table 3.

RESULTS

Both percentages and complex indicators failed to separate
the outcomes of hantavirus-infected patients (Figures 1A,B).
Other indicators (including blood cell-related parameters,
weight, body mass index, gender, and age) were also
unable to distinguish survivors from non-survivors
(Supplementary Presentation SF 6). Given the de-identified
nature of the data analyzed, the influence of co-morbidities and
prior conditions was not assessed. In spite of such limitations,
several non-overlapping data distributions differentiated
survivors from non-survivors when complex indicators were
measured in 3D space and time, as well as outcomes, were
also considered (Figures 2A–C and Supplementary Video 1).
Analyses conducted with immunological indicators of increasing
complexity validated such findings (Figures 2D–H).

When all the longitudinal data were examined, six data
structures predicted 87.5% of all survivors (Figures 3A-L).
Outcomes were not randomly distributed: several data structures
showed spatially distinct subsets –e.g., orthogonal inflections
of data points–, which were only composed of survivors
(Figures 3A,C,E,G,I,K). Therefore, discrimination was data-,
not hypothesis-driven. While human patients may experience
different disease stages at the time they are hospitalized, two
additional data structures that only included data available at the
first temporal test identified 75% of all survivors (Figures 4A–D).
When eight data structures were considered –two that measured
the first temporal test and six data structures that considered
all temporal data points– 96.9% (31/32) of all survivors were
identified (Figures 3, 4, and ST3).

Dynamics differentiated outcomes. Temporal data inflections
(directionalities revealed by arrows that connected temporal
points) demonstrated, in survivors, at least four data patterns
that non-survivors did not reveal (Figures 5A–H). Spatial
dynamics also identified one non-survivor subset that, later,
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FIGURE 2 | From pattern detection to biological validation. When spatial and temporal patterns were considered, as well as outcomes, emergent and non-random

patterns were noticed since temporal test (TT) 2 (A,B). While survivors displayed a perpendicular data departure at TT2 (A), non-survivors exhibited observations with

values ∼0, at TT 1 and 2 (B). The survivor-only pattern remained at all later testing times (C). Personalized discrimination could be conducted even when the number

of observations was n = 1: any one data point located with the rectangle shown in (C) could be predicted to survive. Validation of these patterns was based on a

series of analyses of increasing complexity, which included biologically interpretable indicators (D–H). While neither the neutrophil (N) nor the lymphocyte (L)

percentages exhibited different intervals between the BAL and non-BAL data subsets (D,E), some differences emerged whern the monocyte (M) percentage was

assessed: a horizontal line, shows that most survivors captured by the BAL pattern displayed a higher M percentage, although a substantial data overlapping

remained (F). Because the sum of L % and N % is 100– M%, when both the L and N% are included in the numerator of a ratio that measures M% in the denominator,

(Continued)
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FIGURE 2 | opposite relationships are expected in the two subsets analyzed, which were documented, although some data overlapping was still observed (G).

Replacing the M% with a relationship that includes two cell types (the M/L ratio), and also considering the ratio previously demonstrated to partially inform, totally

discriminated the two (BAL and non-BAL) subsets (H). Therefore, the subset that only included survivors–and was detectable since the second temporal test– was

explained by a triple interaction, which included (i) the M/L and (ii) the [L+N]/M ratios, and (iii) the overall interaction that considered the two previous relationships.

expressed chronic inflammation (higher [L/M]/[N/L] values;
Figures 6A–H). Spatial-temporal data patterns also revealed
immunological differences. For instance, the high BAL subset
displayed a lower and non-overlapping interval of L percentages
compared to the high BAK subset (Figure 7A). Validations also
informed on pathogenesis: data ranges of immune functions
found in survivors were not observed in non-survivors
(rectangles, Figures 7A,B). These differences were not due to the
4 times larger number of survivors (n = 32) than non-survivors
(n = 8): several data ranges expressed by survivors included
more than 4 observations (Figure 7A). In contrast, PCA did not
separate hantavirus-related outcomes (Figures 7C,D).

Cross-sectional avian data revealed similar information:
classic analyses did not distinguish patterns, even when
avian species and geographical location were controlled for
(Figures 8A,B). Yet, four data patterns were differentiated
when complex indicators were explored in 3D space, which
showed non-overlapping intervals of immunologically
interpretable variables (Figures 8C–E). While the PRM
identified immune profiles compatible with no, early, or
late inflammation (Figure 8F), PCA did not reveal patterns
(Figures 8G,H).

DISCUSSION

Overview
While the ability to predict mortality in other disease states
has been as high as 86% (38–41), the PRM identified 96.9%
of survivors. The similar ranges of neutrophil data found
in survivors and non-survivors (Figures 5A,B), together with
the mononuclear cell-related data differences displayed across
outcomes are compatible with a monocyte-mediated increased
endothelial permeability previously reported in hantavirus-
infected patients (42, 43). As expected, more information was
extracted from structured than non-structured data (9, 44–47).
A deterministic process was suggested by the fact that eight
data structures were enough to prognosticate all but one of the
infected survivors. Such a low number of data structures ruled
out the hypothesis of random interactions –which would result in
a quasi-infinite number of combinations (28)– and also facilitated
a rapid analysis.

Emergent immunological patterns were both informative
and explanatory. In humans and birds, the PRM identified
chronic inflammation. In agreement with reports that describe
human persistent inflammation is associated with late (≥14
days) in-hospital death (48), a subset of non-survivors
exhibited higher [L/M]/[N/L] values at or after the third
temporal test (Figures 6A–H). Birds also displayed a subset
characterized by statistically significantly higher median blood
monocyte percentages than those characterized by no or

early inflammation (Figure 8F). While the mere detection
of late inflammation is not a cause of concern, it should be
explained when it persists, i.e., when late inflammation becomes
chronic (34, 35).

While only cellular variables were investigated in this proof-
of-concept, earlier studies have shown that other biological
scales –e.g., cell surface molecules– can also be assessed with
this method (45, 46). Thus, this multi-scale method can
both reveal “one-to-many” and “many-to-one” interactions
(“inventions”) and perform validations that unmask (“discover”)
complexity (2).

Discoveries
To both visualize underlying patterns and prevent false results,
complexity was artificially created and, then, validated. Following
established computational approaches (49), the data were
artificially augmented with complex indicators. The temporary
use of artifacts is a strategy reported in the History of Science:
Euclid developed Geometry using a definition (a line is a
length or distance lacking thickness) known to be false, although
operationally useful (50). To reveal functions that operate
over different temporal scales, complex dynamics were not
measured with chronological scales, but with biological concepts
(e.g., individualized history, complex interactions, and discrete
outcomes). To prevent errors, three strategies were applied: (i)
pattern recognition, (ii) noise reduction, and (iii) redundancy.

Recognition of immunological patterns occurs when
indicators are designed to show some features, such as those of
‘anchors’ and/or ‘amplifiers’ (11). Pattern recognition is further
fostered when large numbers of data combinations are derived
from the primary (directly measurable) data (45, 47). Noise
reduction is one special case of pattern recognition, in which one
data point-wide lines of observations are created (44). Because
no data variability exists in one data point-wide lines (except
along the line), noise is reduced, discrimination is enhanced,
temporal changes will be detected because they can only occur
along the line, and –when ratios are used– they will be noticed
earlier than when counts or percentages are evaluated (44).

“Discoveries” were induced when outcomes were measured
and redundancy was practiced (28). To “discover”, neither
conceptualizations were essential nor hypothesis-driven research
was required. Instead, inferences were based on perception-
centered learning, such as data visualizations (51–53). Findings
supported the view that evolution is not a random process (54):
eight data combinations sufficed to identify all but one of the
hantavirus-infected survivors.

The Invention/Discovery Connection
To promote “discoveries” that change over time, two “inventions”
were needed. The first “invention” was the artificial complexity
introduced in the first step of the analysis. Yet, the PRM
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FIGURE 3 | Outcome-specific discrimination. Six data structures revealed distinct patterns among surviving hantavirus-infected humans (A–L). Redundancy

(detection of a similar finding, when a different data structure is considered) was demonstrated. For instance, patient #11 was identified as a “survivor” by four data

structures (B,F,J,L). Numbers refer to patient identifiers. “Other” refers to both other survivors and all non-survivors.
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FIGURE 4 | Personalized prediction for survival at admission. Two data structures clustered, at the first temporal test (TT1), 75% (24/32) of all survivors within data

ranges that did not include non-survivors. (A,B) denote the patterns and patient identifiers of the first data structure, while (C,D) display those of the second data

structure. Twenty of the twenty-four survivors (83.3%) were redundantly predicted.

construct, alone, did not foster “discoveries” (Figure 1B). Pre-
existing but previously unknown phenomena –e.g., information
on pathogenesis– were only released when >1000 data
combinations were plotted with a spatial and temporal (4D)
format. The second “invention” was a movie–like presentation.
Only the composite (double invention- and discovery-oriented)
method provided a combinatorial and yet, concise operation,
which solved numerous problems, including the need for rapid
analyses. The combination of hundreds of dynamic plots and
a few static figures exposed cloistered patterns, providing a
visual process that uses blood leukocytes and concludes within
minutes (Supplementary Video 1).

Similarities, Differences, and
Complementation With Alternative
Approaches
While both PRM and PCA aim at discovering occult patterns,
their strategy differs: while PCA emphasizes dimension
reduction, the PRM increases the number of data structures
available for analysis (2). The inability of PCA to discriminate
was not unexpected: PCA is sensitive to linearity and sample
size and, in addition, is not well-suited to capture dynamics
(36, 55, 56).

It is suggested that the invention- and discovery-oriented
method could facilitate the first step (“unsupervised” learning) of
machine learning (57). The movie-like features of the PRM could
also circumvent the central limitation of printed formats: static
information (58).

A Three-In-One Approach
The expanded assessment of biological systems could
start a new testing paradigm. If, in addition to the few
variables analyzed here, the geo-referenced location of
the host and genomic information on the pathogen
were also recorded, the three dimensions that involve
infections could be simultaneously assessed: the host,
the pathogen, and the environment. By capturing many
environmental scales –ranging from multi-cellularity (as
shown here) to biogeography (59)–, such a method could
(i) prognosticate outcomes; (ii) explore pathogenesis;
(iii) detect super-spreading pathogens; and (iv) control
epidemics (60–62).

FUTURE STEPS

Inverse problems were examined with several (although not
too many) data structures, which assessed well-conserved
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FIGURE 5 | Dynamic pattern-related prognostics (I): survivors. When only the temporal order –not the actual dates– in which patients were tested was plotted, the

spatial-temporal patterns created by the directionality of the data distinguished non-survivors (A,C,E,G) from survivors (B,D,F,H).
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FIGURE 6 | Dynamic pattern-related prognostics (II): non-survivors. Spatial-temporal patterns of non-survivors revealed two subsets (A–H): a subset detected at later

times showed lower N/L and higher [L/M]/[N/L] values, i.e., a chronic inflammation (G,H).
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FIGURE 7 | Validation of data patterns and assessment of pathogenesis. The data ranges of some biologically interpretable variables or relationships were explored

with data collected at all time points, from all patients (n = 135). Supplementary Video 1 shows a temporal assessment of pathogenesis. Rectangles show some

data ranges contributed by survivors (A), which were not displayed by non-survivors (B). While the number of survivors (n = 32) was 4 times higher than non-survivors

(n = 8), some differences exceeded the 4:1 ratio, e.g., survivors reported 10 observations within a monocyte percentage interval within which no non-survivor

contributed any data point (rectangles, A,B). Unlike the PRM, PCA did not discriminate hantavirus-related outcomes: while the loading plots displayed distinct

differences between the three input variables (C), such differences did not result in pattern recognition (D). Because the PCA conducted with the covariance

alternative yielded similar results, it is not shown. Initials are defined in Figure 1.
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FIGURE 8 | Avian data—PRM and PCA assessments. Simple blood leukocyte indicators did not distinguish geographical sites or avian species (A,B). Several

complex data structures revealed the presence of up to four subsets (C–E). When analyzed with biologically interpretable indicators, the data subsets displayed

patterns consistent with no, early, or late inflammation (F). The late inflammation group (subset B) showed a significantly higher median M% than the early

inflammation group (subset A, P < 0.01). Subset B exhibited a significantly higher median M/H than subset A (P<0.01, F). In contrast, PCA did not discriminate (G,

H). Initials: lymphocytes (L), monocytes (M), and heterophils (H, the avian counterpart of mammalian neutrophils).
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properties of biological systems (28, 63, 64). While direct
or forward problems have historically predominated in
Biomedicine, when the goal is to “discover” what, usually, is
not observable, inverse problem-oriented methods may yield
more information even when the size of the data analyzed
is small–as demonstrated here. Thus, “discovery”-oriented
methods may offer an alternative to approaches that require
very large datasets, such as “deep learning” (65). It is suggested
that, to fully validate, prospective data and interdisciplinary
collaborations that include clinicians and methodologists
are required.
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