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The epithelial layer creates a chemical and physical barrier at the forefront of

intestinal mucosa, and immune cells beneath the surface epithelium are poised to

react to extrinsic factors, to maintain tissue homeostasis. Importantly, the nexus

of epithelial–immune responses at mucosal surfaces is dexterously modulated by

intrinsic stromal–mesenchymal cells. First, organogenesis of lymphoid tissues, including

Peyer’s patches, requires dynamic interplay between lymphoid cells and stromal cells,

which have become known as “lymphoid organizers.” Second, correct spatiotemporal

interaction between these cell populations is essential to generate the infrastructure for

gut immune responses. Moreover, immune cells at the intestinal barrier are functionally

modulated by stromal cells; one such example is the stromal cell–mediated differentiation

of innate immune cells, including innate lymphoid cells andmast cells. Ultimately, mucosal

stromal cells orchestrate the destinations of epithelial and immune cells to maintain

intestinal immune homeostasis.

Keywords: mucosal immunology, mesenchymal cells, fibroblasts, intestinal stem cells (ISCs), Peyer’s patches

INTRODUCTION

The single layer of epithelial cells at the intestinal mucosa creates both a chemical and
physical barrier to protect the body. Overlying the epithelial surface of the digestive tract are
mucin-containing layers, which play an important role in preventing commensal bacteria from
attaching directly to gut epithelium. A single layer of mucus covers the small intestinal epithelium,
whereas two layers (inner and outer) overlay the epithelium of the stomach and colon (1). Mucus
is net-like in structure and forms a gel due to its glycoprotein components, MUC2 (secreted by
goblet cells in the intestine and colon) and MUC5AC (produced by gastric epithelial glands in the
stomach) (2, 3). In addition, the mucus layer in the intestinal compartment contains anti-microbial
peptides, including α-defensin, which is produced by Paneth cells in the intestinal crypts located
at the base of villi (4), and secretory IgA molecules, which derive from the intestinal mucosa or
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bile duct (5, 6). A lack of either of these secretory components
leads to spontaneous intestinal inflammation or colitis, with
insufficient segregation of pathologic and commensal bacteria
from the intestinal epithelial layer (7, 8). Therefore, the chemical
barriers mounted by mucus layers—the components of which
originate from epithelial cells and are mediated by secretory
systems—are required for both the maintenance of intestinal
homeostasis and protection from infection.

To efficiently absorb nutrients from the ingested diet, the
intestine contains a huge number of villi. The gut epithelial cells
overlying these villi create a physical barrier by sealing the spaces
together with other epithelial cells [reviewed in (9)]. These seals
are the so-called cellular junctions, comprising both adherent
and tight junctions. Various molecules within cellular junctions,
such as E-cadherin, regulate epithelial permeability, such that
disruption or genetic polymorphism of these molecules increases
the susceptibility to intestinal inflammation (10). Stromal cell
populations are located beneath these epithelial cells and the
lamina propria (Figure 1A). One key stromal cell population
called ISEMFs (intestinal sub-epithelial myofibroblasts) is located
subjacent to the basement membranes of the intestinal epithelial
cells (Figure 1A) (11). ISEMFs express Acta2 (α-smooth muscle
actin); are phenotypically similar to smooth muscle; initiate
villous contractions; express various receptors for cytokines,
including TNFα and IL-1β; and sense epithelial barrier damage
and inflammation (11, 12). Consequently, ISEMFs are involved
in several steps of wound healing, including epithelial restitution
and epithelial stem-cell proliferation (13, 14). During the process
of epithelial restitution, epithelial cells from intestinal crypts
rapidly migrate to cover and seal epithelium-denuded areas
of intestine in the absence of epithelial proliferation [reviewed
in (15, 16)]. In addition, ISEMF-like stromal cells are located
beneath the basal membrane of the epithelial layer covering
Peyer’s patches (PPs), which is known as FAE (follicular
associated epithelium) (Figure 1B). FAE includes a unique cell
population harboring short microvilli, named microfold (M)
cells [reviewed in (17, 18)]. These short microvilli are readily
accessible to luminal bacteria, which express ligand molecules
(e.g., on fimbriae) for attaching to the apical surface of M cells
through specific receptors (e.g., glycoprotein 2 [GP2]). Stromal
cells are involved in the development and maintenance of M cells
and in intestinal mucosal immune responses (19). Through these
functions, stromal cells act not only as a second barrier at the
intestinal surface but also as determinants of the destinations of
diverse immune cells to maintain immune homeostasis (20).

In this review, we highlight current knowledge regarding
the crucial and complex roles of stromal cells from intestinal
epithelial homeostasis to surface immune responses.

SPATIOTEMPORAL MUCOSAL
REGULATION BY INTESTINAL STROMAL
CELLS

As indicated earlier, the stromal cells called ISEMFs are located
beneath intestinal epithelial cells (11). ISEMFs express vimentin
and Acta2 and contract after epithelial damage to limit the

exposed wound area [reviewed in (12, 20)]. ISEMFs produce
several growth factors, TGF-β1 and amphiregulin, and support
epithelial proliferation by sensing cytokines associated with
intestinal damage (e.g., TNFα and IL-1β) (21). In fact, in vitro co-
culture of ISEMFs and epithelial cells or intestinal organoids (i.e.,
mini-gut) composed of epithelial cells shows that ISEMFs are
critical for epithelial proliferation (13, 22). Furthermore, ISEMFs
support the morphology of epithelial cells and the intestinal
epithelial lining, because they produce and deposit various types
of collagen, including types I, III, IV, V, and VI (23). Collagen
types I and III are ubiquitous interstitial collagens and enhance
epithelial cell growth (23), whereas type IV contributes to the
formation of epithelial basement membranes, and type V is a
pericellular collagen for thickening of the intestine wall (24). In
addition, loss of collagen VI alters epithelial cell morphology
(25). These cytokine-mediated biologic effects on and collagen-
mediated physical support of epithelial cells by ISEMFs lead us
to consider ISEMFs as a secondary barrier that harmoniously
interacts with and promotes the epithelial cell defense function
in the mucosal surface.

Stromal cell function is precisely regulated by the local
tissue environment. In fact, the genes expressed differ among
stromal cells according to their tissue location (26, 27). This
remarkable difference in gene expression is particularly evident
when comparing stem cell–related molecules (26). Expression
levels of cytokines responsible for maintaining intestinal stem
cell niches—that is, those involved in Wnt signaling (e.g.,
WNTs 2b and 5a and WNT agonists [e.g., R-spondins 1 and
3]) and BMP (bone morphogenetic protein) antagonists (e.g.,
Noggin, Gremlins [GREM] 1 and 2)—differ significantly among
various villous regions (e.g., from tip to crypt) (26). Gene
analysis of dissected human colonic tips and crypt compartments
reveals that genes highly expressed in tips typically are induced
by interruption of Wnt signaling through genes induced by
dominant-negative transcription factor (TCF) 4 (e.g., p21, a gene
that inhibits cell proliferation) and BMP2 (26). Furthermore,
genes highly expressed in colonic crypts usually are repressed
by dominant-negative TCF4 (e.g., MYC and Cell Division Cycle
Associated 7, two genes involved in cell-cycle regulation) and
the BMP antagonists GREM1 and GREM2 (26). Therefore,
in small intestine, Paneth cells primarily and mesenchymal
cells secondarily secrete niche factors (e.g., EGF, WNT3, and
the Notch ligand Dll4); in contrast, mesenchymal cells are
predominantly responsible for maintaining the stem cell niche
in colon, which is devoid of Paneth cells (28, 29). These
findings demonstrate the spatiotemporal regulatory mechanisms
of stromal cells in creating intestinal stem cell niches.

Directly underneath LGR5-expressing intestinal stem cells
lie myofibroblasts and pericryptal stromal populations, which
lack Acta2 expression but express CD34, podoplanin, and
PDGF (platelet-derived growth factor) receptor α, and the
WNT agonist R-spondin 3 (30). These cell populations also
produce the winged-helix transcription factor named Foxl1
(forkhead box l1) (30), and a deficiency of Foxl1-expressing
stromal cell populations leads to reduced production of niche
factors (e.g., R-spondin 3, GREM1, WNT2b, WNT5a) in the
crypt compartment. Importantly, Foxl1-deficient mice showed
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FIGURE 1 | Cellular localization of gut stromal cells. (A). The colocalization of gut immune cells [e.g., B cells (CD19), red] and epithelial cells (DAPI, green) with stromal

cells (type I collagen, light blue) in murine intestinal villi. (B). Immune cells [e.g., macrophages (lysozyme), red] and stromal cells (type I collagen, green) reside under the

M cells located in the FAE of PPs (GP2, light blue; DAPI, dark blue).

aberrant crypt structure, with ectopic and increased expression
of Ephrin-B2 and Ephrin-B3 in epithelial cells (31). These
factors are important for epithelial cell positioning along the
crypt–villus axis, and their deficiency leads to intermingling of
the proliferative and differentiated epithelial cell populations
(32). These findings indicate various components of the
spatiotemporal regulatory mechanism for stromal cells that
ensures adequate stem cell niches and the maintenance of
epithelial organization and integrity.

Recently identified additions to the stromal cell populations
surrounding intestinal crypts are Foxl1-expressing telocytes (33).
Telocytes are a unique type of interstitial cells, which also are
found in reproductive tissues, including uterus and placenta
[reviewed in (34, 35)]. Telocytes are characterized as having
several very thin and long projections, called telopodes. In
addition, like other stromal cells, telocytes express CD34, PDGF
receptor α, and (typically) c-kit; however, gut telocytes do not
express c-kit, unlike the interstitial cells of Cajal (36). Recent
evidence reveals the importance of telocytes as a key producer
of Wnt ligands in the intestinal crypt (33). Conditional deletion
of porcupine, which shows homology to a family of o-acyl
transferases that are involved in lipid modification and are
required for Wnt production, from Foxl1+ cell populations,
including telocytes, abolishes the proliferation of stem and transit
amplifying cells (33). Indeed, telocytes are absent during the
active stage of Crohn’s disease, and this lack is correlated with
subsequent architectural disruption (37). In addition to those
cellular populations, GLI family zinc finger 1 (Gli1) – and Acta2-
expressing stromal cells similar to myofibroblasts are involved
in maintaining stem cell niches through their production of
WNT2b (38, 39). Disruption of Wnt in stromal populations that

express Gli1 ameliorates colonic stem cell renewal as well as
colonic epithelium integrity (39).

Recently, precise anatomical and immunohistochemical
analyses performed in rat intestinal tissue have confirmed
the presence of CD34+Acta2− populations at the crypt
base, PDGFRhighActa2+ cells laterally along the crypt, and
PDGFRhighActa2− populations at the tips of villi (40). Due
to targeting of porcupine, aberrant secretion of Wnt from
PDGFR-expressing pericryptal myofibroblasts ameliorates
crypt formation in the neonatal mouse gut (41). However,
this experimental system does not exclude the important
contributions of other stromal cell populations (e.g., telocytes),
thus implying that multiple stromal subsets are involved in the
complex and compensative machinery for maintaining both
the stem cell niche in the crypt region and epithelial integrity
(Figure 1).

In addition to cell-targeting experiments, recent single-
cell analysis has revealed precise stromal cell populations
in the colons of humans and mice (27). In addition
to myofibroblasts, at least 4 newly identified subsets of
fibroblasts present in both mice and human colon have been
characterized: SOX6−CCL8+FABP5high; BMP2highWNT5Ahigh;
BCL2high OGNhigh; and CD74highCCL19high (27).
SOX6−CCL8+FABP5high fibroblasts produce elastic fibers
and fibrillar collagen and distribute throughout lamina propria,
indicating the involvement of this population in the maintenance
of structural and mechanical properties of colon tissue (27).
Among those newly identified fibroblasts, BMP2highWNT5Ahigh

fibroblasts express collagen for epithelial basement membrane
(e.g. COL4A5 and COL4A6), predicted as its involvement in
epithelial barrier formation (27). Indeed, those populations
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FIGURE 2 | Diverse roles of stromal cells in the regulation of intestinal immunity and physiology. Stromal cells support intestinal epithelial development, lymphoid

organogenesis, and immune modulation. These stromal cell populations are distinct, and each population plays important roles in the maintenance of gut

homeostasis through their interaction with stem, epithelial, and immune cells.

located near intestinal epithelium. Importantly, this population
reduces in the UC patients, implicating that reduction of
WNT5a production worsen crypt reconstitution and epithelial
integrity (26).

On the contrary, CD74highCCL19high fibroblasts expand in
the UC patients (27). This population upregulates expression
of TNF superfamily member 14 (LIGHT) and release IL-6
and IL-33 during colonic inflammation (27). IL-6 and LIGHT
stimulation to the intestinal organoid under the condition
mimicking inflammation (lacking Wnt) results in the reduction
of epithelial proliferation and upregulation of stem cell maker
gene expressions (e.g., LGR5) in organoid. Those results imply
that the activation of CD74highCCL19high fibroblasts lead to
the production of quiescent label-retaining cells, precursor
of secretory-type enterocytes (e.g., goblet cells and Paneth
cells) (27).

Furthermore, IL-33 production from fibroblasts is mediated
by IL-1β, IL-6, TNF-α, and bacterial cell components
(e.g., lipopolysaccharide) (42). IL-33, in turn, stimulates
ST2-expressing cryptal epithelial cells and the subsequent
development of secretory-type enterocytes, including Paneth
cells and goblet cells (42) (Figure 2). Collectively, during
inflammation and pathogenic infection, the production of both
anti-microbial peptides and mucus is enhanced by fibroblasts
that sense “danger signals” (e.g., IL-33). In addition, Paneth
cells in the small intestine and a c-kit+ subset of colonic goblet
cells support intestinal epithelial stem cells via secretion of Wnt,
indicating that activation of cryptal stromal cells due to danger
signaling leads to both protection and maintenance of the stem
cell niche through dual pathways (directly and indirectly through
secretory cell–derived Wnt) (43).

However, increase of IL-6 in colonic tissues, produced
by continuously activated CD74highCCL19high fibroblasts, may
strongly influence on the function of macrophages and Th17 cells

leading chronic inflammation. So that, regulation of the function
of this fibroblast population will be useful therapy for IBD.

Stromal cells located the sub-epithelial compartments of PPs
are required for the development of specific epithelial cells,
including antigen-sampling M cells. M cells are considered to
be “gatekeepers” of the mucosal immune system and serve as
entry sites for luminal antigens and bacteria (Figure 1B). M
cells have short microvilli and lack the ability to produce anti-
microbial peptides and mucus, thus facilitating the attachment
of bacteria to their apical surfaces (18). Indeed, M cells
express various receptors and guidance molecules for both
commensal and pathogenic bacteria (9). For example, GP2
is preferentially expressed on M cells and interacts with the
fimbriae of bacteria (44, 45); antigen-presenting cells (e.g.,
dendritic cells) beneath M cells further capture and process
bacterial antigens for the initiation of antigen-specific immune
responses in PPs. Therefore, GP2-mediated translocation of
bacteria leads to efficient induction of antigen-specific mucosal
immune responses (e.g., IgA) (45). The receptor activator
of NF-kB (RANK)–RANKL pathway is critically important
for the development and differentiation of M cells (46). In
particular, stimulation of gut organoids with RANKL revealed
the essential roles of the RANK–RANKL pathway for the
development of M cells from intestinal epithelial stem cells
(47). Whereas, RANK is expressed on all intestinal epithelial
cells, RANKL-expressing cells accumulate in the FAE region,
and mice lacking either of those molecules showed decreased
numbers of M cells in the FAE of PPs (46). Furthermore,
RANKL deficiency in type VI collagen–expressing (Col6a1–Cre)
cell populations, including M cell–inducing populations, led
to the disappearance of M cells (19) (Figure 2). Importantly,
those gene-modified mice showed decreased luminal IgA against
commensal bacteria (19); therefore, M cell development, as
orchestrated through stromal signaling, is a plausible initial
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pathway through which PPs become able to mediate acquired
mucosal immunity.

Overall, current knowledge supports that—as determinants
of epithelial integrity and sentinels of mucosal immune
responses—sub-epithelial and cryptal stromal cells
play indispensable roles in the barrier function of the
intestinal mucosa.

STROMAL NETWORK FOR MUCOSAL
LYMPHOID ORGANOGENESIS

In addition to epithelial regulation, another important role
of stromal cells is their biologic contribution to lymphoid
organogenesis [reviewed in (48)]. The organization of lymphoid
structures is precisely programmed through molecular and
cellular components that are achieved through a stromal network
that orchestrates lymphocyte entry into and migration within
tissues (49); reviewed extensively in Chang and Turley (50), van
de Pavert and Mebius (51), Roozendaal and Mebius (52).

Lymphoid tissue contains 3 types of stromal cells: fibroblastic
reticular cells, follicular dendritic cells, and marginal reticular
cells (52). Analysis of collagen VI reporter mice revealed collagen
VI expression by marginal reticular cells and follicular dendritic
cells located in PPs but not in other secondary lymphoid
organs, thereby indicating the existence of intestine-specific
stromal precursors (53). In addition, M cell–inducing stromal
cell populations are positive for collagen IV, again supporting
the presence of unique stromal cells in mucosa-associated
lymphoid organs (19). Interaction between hematopoietic
lymphoid tissue inducer cells (LTi) and stromal lymphoid
tissue organizer cells (LTo) establishes a microenvironmental
milieu that supports the construction of lymphoid structures
through integrin- and chemokine-dependent recruitment
of lymphocytes (54) (Figure 2). In fact, organogenesis of
PPs is widely accepted to be mediated through interaction
between LTi (or PP inducer cells [PPi]) and stromal LTo cells
[reviewed in (55)]. At embryonic day 16.5 in mice, aggregates
of PPi cells are present at the site of VCAM1+ LTo cells in
gut (55). The LTi in PPs (i.e., PPi cells) are characterized as
CD3−CD4+IL-7Rα+CD44+CD90+c-kit+, and they produce
lymphotoxin. Importantly, another cell population—which
are RET (rearranged during transfection)+CD3−CD4−IL-
7Rα−CD11c+ cells (so-called PP “initiator” cells)—must be
present before clustering of and interaction between LTo and
PPi cells can occur at the site of PP organogenesis (55–57).
RET is an essential tyrosine kinase receptor for generation
of the enteric nervous system; deficiency of RET led to an
absence of enteric ganglia and subsequent development of
Hirschsprung’s disease (56, 58). In addition, the RET ligand
artemin (also known as enovin or neublastin; a member of
the Glial cell-derived neurotrophic factor ligand family) is
produced from LTo cells and recruits PP “initiator” to the
anlagen protein via the GFRα3–RET receptor complex (56).
Importantly, reduction of CD11c+ PP “initiator” cells decreases
PP numbers in the CD11c–DTR mouse model, indicating the
existence of PP “initiator”-dependent and -independent PP.

Whether dependency on CD11c+ PP “initiator” signaling, or the
machinery of PP organogenesis differs according to the anatomic
location of PP (e.g., duodenum, ileum) needs to be investigated.

LTo cells express various adhesion molecules (e.g., VCAM-
1 and ICAM-1) in response to lymphotoxin and its receptor,
both of which are expressed by LTo cells [(54); reviewed in (55)].
PP LTo cells are considered to be heterogeneous populations,
according to their VCAM-1 and ICAM-1 expression levels,
and various chemokines, including CXCL13 and CCL21, are
abundantly released from VCAM-1high and ICAM-1high stromal
cells [reviewed by (59, 60)]. In addition, LTo cells in PP release
CCL19/21 and CXCL13, whereas those in the mediastinal lymph
nodes release CCL7/11 and CXCL1 (61). Furthermore, mice
lacking transcription factors; Id2 and Rorc, which are involved
in the development of LTi cells, fail to organize PP (55).

Taking these findings together, stromal cells are involved
in and are necessary for mucosa-associated lymphoid
organogenesis. However, the nature and fate of various
organizer cells (e.g., LTo cells) have not yet been elucidated
and merit further research. The possible heterogeneity of LTo
cells particularly ought to be investigated, given that the local
tissue microenvironment (e.g., stromal cells) may influence
this characteristic.

STROMAL–IMMUNE INTERACTION FOR
STROMAL CELL–MEDIATED PERIPHERAL
DIFFERENTIATION AND FUNCTIONAL
MODULATION OF THE INTESTINAL
MUCOSAL IMMUNE SYSTEM

The seminal influence of stromal cells on the immune
system occurs not only in mucosa-associated inductive or
organized sites (e.g., gut-associated lymphoid tissue) but also
at effector or diffused sites (e.g., intestinal lamina propria).
Precise investigations of the immune cells in peripheral
tissues revealed the direct interaction between stromal and
immune cells (Figure 1). In this regard, activated immune cells
stimulate fibroblasts to express Acta2; these induced fibroblasts—
due to signaling through TGF-β1—subsequently develop into
myofibroblasts [reviewed in (62)].

Several cascades of stromal cell-mediated immune regulation
have been reported but remain poorly characterized as yet (63).
For example, IgA production, which is critically involved in
both innate and acquired mucosal protection (6), is regulated
through stromal cell–derived retinoic acid and TGF-β1; these
two factors directly and indirectly stimulate mucosal B cells
and subsequently lead to the development of IgA-producing
plasma cells (64). Another direct pathway involves the secretion
of APRIL (a proliferation-inducing ligand) and BAFF (B-cell
activating factor) from gut stromal cells; these factors then induce
T cells and CD40-independent IgA class switching (65). In
addition, an indirect pathway has been reported in which stromal
cell-derived type I interferon stimulates plasmacytoid dendritic
cells to produce APRIL and BAFF and subsequently enhance
IgA production (66). Similarly, retinoic acid and GM-CSF
from stromal cells condition dendritic cells to enhance the IgA
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production pathway (64). Intriguingly, comparison of stromal
cell gene expression among tissues reveals that the capability
to produce retinoic acid differs among tissues and organs (e.g.,
colon, small intestine, lung, skin, liver, kidney) (67). Among
stromal cells, preferential producers of retinoic acid reside in the
small intestine and colon, whereas retinoic acid inactivators or
stromal cells that express the enzyme Cyp26b1 occur solely in the
cutaneous compartment (67). These data indicate the opposite
roles of stromal cells in terms of retinoic acid metabolism in the
intestinal mucosa compared with skin (67). Indeed, deficiency of
Cyp26b1 or its inhibition by treatment with liarozole induces the
expression of retinoic acid–dependent molecules (e.g., P2X7, an
ATP receptor) in skin-resident mast cells and T cells, leading to
their undesired activation and consequently inflammation (67,
68). Furthermore, whereas ectopic increases in retinoic acid in
the cutaneous microenvironment induce chronic inflammation
through P2X7 signaling (67), steady-state levels of mucosal
P2X7 support the regulation of commensal dysbiosis to maintain
homeostasis (69). These findings reveal the absolute requirement
of stromal cells for maintenance of tissue-specific homeostasis
and their highly variable roles which reflect the local and unique
microenvironment of the individual tissue.

In addition to homeostatic regulation through the retinoic
acid–dependent pathway, colon stromal cells directly influence
T cell activity during inflammation through the programmed
death ligand 1 (PD-L1)–programmed cell death protein 1 (PD-1)
pathway (70). PD-1–mediated T cell inhibition is an important
mechanism for preventing cancer (71, 72). In colon, stromal
cells are the predominant PD-L1–expressing cells (73), and
co-culture of PD-L1–expressing stromal cells and activated
CD4+ T cells reduced the production of IFNγ by this T
cell population (74). In addition, the expression of PD-L1 at
inflammatory sites was increased during ulcerative colitis but
reduced during Crohn’s disease; these findings indicate that
stromal cell–associated suppression (or downregulation) of Th1
responses is diminished in Crohn’s disease (74). Stromal PD-
L1 expression is increased through TLR signaling (TLR1, 2, 4,
and 5) (74), suggesting that exposure to commensal bacterial
components during inflammation enhances anti-inflammatory
properties of stromal cells-mediated by PD-L1. Importantly,
bacterial stimulation is required for stromal cells to acquire IgA-
inductive properties (66), thus germ-free conditions reduce the
capability of stromal cells to produce IgA-enhancing cytokines
(e.g., BAFF, a B-cell activating factor belonging to the TNF
family) (66). Together, these findings indicate that the unique
properties of intestinal stromal cells depend on input from the
commensal microbiota.

During recent years, the importance of stromal cells for the
maturation of immune cells in peripheral sites has emerged
(20). For example, the maturation of mast cells (i.e., acquisition
of granules) requires direct intercellular communication with
stromal cells (20). The interaction of c-kit, expressed on mast
cells, and stem cell factor on stromal cells is essential for mast cell
maturation (75), and a deficiency in c-kit results in a lack of mast
cells (75). In addition, group III phospholipase A2 from mast
cells reportedly stimulates stromal cells (e.g., fibroblasts), which
then produce prostaglandin D2 and bind to DP1 receptors on

mast cells for their further activation (76). These two pathways
collectively induce granule formation in mast cells. The contents
of granules are regulated by stromal cells as well. Co-culture
of mast cells with gut-derived stromal cells induces chondroitin
sulfate and proteases (e.g., mast cell proteases 1 and 2) (67),
all of which are involved in the clearance of parasites (77).
Those properties are not induced through co-culture with skin-
derived mast cells, indicating that the terminal differentiation
and peripheral education of mast cells are tightly regulated by
tissue- or organ-derived stromal cells. In addition to their role
in mast cell development, stromal cells support the maturation
of type 2 innate lymphoid cells (78). Single-cell RNA-Seq analysis
revealed that the development and maturation of type 2 innate
lymphoid cells are regulated by both PDGFR− and PDGFR+

stromal cells through IL-33 and as yet unknown mediators,
respectively (78). Furthermore, cooperation between these two
stromal cell populations is important to the maintenance of type
2 innate lymphoid cells in the periphery.

Overall, it has become apparent that gut stromal cells act on
diverse immune cell populations to support their differentiation
and function. Additional studies that explore the crucial roles
of the stromal–immune cell axis are essential for understanding
how the local microenvironment are regulated. This line of the
study will lead to the creation of new research and development
platforms for the generation of novel preventive and therapeutic
drugs and vaccines that target the stromal–immune cell axis to
control inflammation, hypersensitivity, and infection.

CONCLUSION AND PROSPECTIVES

Due to their multifaceted abilities (e.g., lymphoid genesis,
peripheral education), stromal cells are important for
maintaining the integrity of the intestinal mucosal barrier.
In contrast, during inflammation, stromal cells exacerbate the
pathologic conditions in fibrosis and carcinoma [reviewed in
(79, 80)]. It is important to elucidate the “functional transition”
of each stromal cell population from physiologic to pathologic
states in the intestinal mucosa. In addition to those in the gut
mucosa, stromal cells in other mucosal tissues, such as lung,
have important and unique characteristics; the underlying
functional mechanisms are gradually being uncovered and
are reflecting the anatomic and functional individuality of
these cells. For example, detailed analyses in lung stromal
cell populations are revealing the genetic (e.g., LGR5+,
LGR6+ populations), anatomic (e.g., bronchiolar, alveolar),
and functional (e.g., epithelial differentiation) characteristics
of each stromal cell subset (81, 82). However, in gut, even
though the functional importance of intestinal stromal cells has
gradually been uncovered, the stromal sub-populations are not
yet clearly defined. In addition, epithelial–mesenchymal and
endothelial–mesenchymal transitions are important pathways
that reinforce or compensate for stromal cell populations; these
cascades complicate efforts to clarify the fate and origin of
stromal cells (83, 84). Further analysis to verify the functional
modulations of stromal cells in mucosal health and disease states
are required.
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