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Preeclampsia is one of the most severe pregnancy complications and a leading cause of

maternal death. However, early diagnosis of preeclampsia remains a clinical challenge.

Alterations in the normal immune adaptations necessary for the maintenance of a

healthy pregnancy are central features of preeclampsia. However, prior analyses primarily

focused on the static assessment of select immune cell subsets have provided limited

information for the prediction of preeclampsia. Here, we used a high-dimensional mass

cytometry immunoassay to characterize the dynamic changes of over 370 immune

cell features (including cell distribution and functional responses) in maternal blood

during healthy and preeclamptic pregnancies. We found a set of eight cell-specific

immune features that accurately identified patients well before the clinical diagnosis of

preeclampsia (median area under the curve (AUC) 0.91, interquartile range [0.82–0.92]).

Several features recapitulated previously known immune dysfunctions in preeclampsia,

such as elevated pro-inflammatory innate immune responses early in pregnancy and

impaired regulatory T (Treg) cell signaling. The analysis revealed additional novel immune

responses that were strongly associated with, and preceded the onset of preeclampsia,

notably abnormal STAT5ab signaling dynamics in CD4+T cell subsets (AUC 0.92, p =

8.0E-5). These results provide a global readout of the dynamics of the maternal immune

system early in pregnancy and lay the groundwork for identifying clinically-relevant

immune dysfunctions for the prediction and prevention of preeclampsia.
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INTRODUCTION

Preeclampsia is a severe complication of pregnancy defined by
the new onset of hypertension and signs of maternal organ
dysfunction after the 20th week of gestation (1). Preeclampsia
affects between 2 and 8% of all pregnant women—over 8 million
women per year worldwide—and is a leading cause of maternal
deaths (9–26%) (2). Preeclampsia also accounts for significant
neonatal morbidity and mortality due to intrauterine growth
restriction, intrauterine fetal demise, and preterm delivery (2).
However, no diagnostic test reliably detects preeclampsia early in
its development, so treatment can be started only after the onset
of signs and symptoms, at which point irreparable harm to the
mother and fetus may already have occurred.

Preeclampsia is a multisystem disorder characterized by
placental and endothelial dysfunction, leading to hypertension
and other end-organ damage such as impaired kidney, liver,

neurological, or hematological function (3). Well-described
placental abnormalities, including in trophoblast invasion and

uterine spiral artery formation, suggest that the roots of
preeclampsia are established in the first weeks of pregnancy,
before the development of signs and symptoms (4). While
markers of placental and endothelial dysfunction—such as
increases in soluble FMS-like tyrosine kinase 1 (sFLT-1) levels,
and decreases in vascular endothelial growth factor (VEGF) and
placental growth factor (PLGF) levels—can be valuable clinically
in ruling out suspected preeclampsia (5), early diagnosis of
preeclampsia remains clinically challenging.

Systemic inflammation and alterations in the normal immune
adaptations necessary for the maintenance of a healthy
pregnancy are central features in the pathophysiology of
preeclampsia (6–11). Accumulating evidence suggests that
preeclampsia is associated with a breakdown of tolerogenic
cellular adaptations, including a shift in T cell distributions
toward Th1 and Th17 and away from Th2 and regulatory
CD4+T cell (Treg) populations (12–14). The potential role of
the maternal immune system in the pathogenesis of preeclampsia
was underscored by a recent multi-omic study of placental,
coagulation, complement and vascular factors, highlighting that
a majority of plasma proteins associated with preeclampsia were
linked to immune functions (15).

Immune dysfunction may be detected well before the clinical
onset of preeclampsia, as early as during the first trimester of
pregnancy (16–18). For this reason, identifying immunological
attributes in maternal blood that predict and help prevent
preeclampsia at a preclinical state is of considerable clinical
interest (3, 18–20). However, due to limitations in assay
technology, prior studies of immune responses associated with
preeclampsia have been restricted to a select number of cell
subsets and may not have captured immune cell behaviors
in the context of the entire peripheral immune system. In
particular, the limited number of parameters available for the
phenotypic and functional characterization of immune cell
subsets may have hampered the detection of important cellular
and functional signatures.

Recently developed, highly multiplex single-cell technologies
such as mass cytometry—a flow cytometry platform that

allows assessment of over 40 parameters on a cell-by-cell
basis—offer unprecedented opportunities for comprehensive
functional studies of the human immune system (21, 22).
Combined with appropriate statistical tools that account for the
high-dimensionality of the data, mass cytometry is uniquely
capable of identifying alterations of the human immune system
associated with normal physiological perturbations and disease
pathogenesis (23–25).

In a recent study, we employed a high-parameter mass
cytometry assay to characterize the dynamic changes in maternal
immune cell distribution and signaling responses during an
uncomplicated pregnancy (26). Here, we report on an in-depth
profiling of the dynamics of the maternal immune system
in healthy (normotensive) pregnancies and preeclampsia. Our
primary goal was to detect characteristic immune dysfunctions
in the maternal blood prior to the clinical onset of preeclampsia.

MATERIALS AND METHODS

Study Design
Pregnant women participating in a cohort study sponsored by the
March of Dimes Prematurity Research Center were prospectively

TABLE 1 | Demographics of study participants.

Control

(n = 12)

Preeclampsia

(n = 11)

DEMOGRAPHICS

Age (years, mean ± SD) 33.4 ± 4.7 30.6 ± 5.4

BMI (kg/m2, mean ± SD) 24.5 ± 5.6 29.4 ± 4.6 *

BMI at delivery (kg/m2, mean ± SD) 28.2 ± 4.7 33.4 ± 4.5 *

GA at delivery (weeks, mean ± SD) 39.3 ± 1.2 37.6 ± 3.0

Gravida (mean ± SD) 3.0 ± 1.5 2.5 ± 2.5

Para (mean ± SD) 1.5 ± 1.5 0.7 ± 1.5

Twin pregnancy 0 1

RACE/ETHNICITY

Asian 0 3

Black 0 1

White 10 4

Other 2 3

Hispanic 3 3

Non-hispanic 9 8

MODE OF DELIVERY

Normal spontaneous vaginal delivery 8 5

Cesarean delivery 4 6

PREECLAMPSIA CHARACTERISTICS

Preeclampsia with severe feature 7

Early-onset preeclampsia 2

COMORBIDITY

Gestational diabetes 1 1

Type II diabetes 0 2

Autoimmune disease 0 3

Chronic hypertension 0 2

*p < 0.05, by using unpaired student t-test.
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FIGURE 1 | Experimental workflow for the deep profiling of immune system dynamics in preeclampsia. Eleven women with preeclampsia and 12 healthy

(normotensive) women were studied. PBMCs were obtained at two time points during the first 28 weeks of pregnancy. Sample collection time (dots), preeclampsia

diagnosis (orange triangles), or delivery (purple triangles) are indicated for individual preeclamptic patients (orange lines) and controls (purple lines). PBMCs were either

left unstimulated or stimulated with a cocktail of LPS and IFN-α. Immune cells were barcoded, stained with surface and intracellular antibodies and analyzed with

mass cytometry. The assay produced three categories of immune features, providing information about cell frequency (Fq) measured in 21 immune cell subsets (blue

bar), basal intracellular signaling activity (green bar), and cell type-specific signaling capacity in response to stimulation with LPS and IFN-α (red bar). The number of

immune features contained within each data category is indicated in parentheses. Correlation network reveals the relationships between immune features within and

across mass cytometry data categories. A correlation network highlights the relationship between measured immune features (Spearman’s coefficient).

examined for an array of environmental and biological factors
associated with uncomplicated and pathological pregnancies (27,
28). Participants all received routine antepartum care at the
Lucile Packard Children’s Hospital at Stanford University and
were eligible for the study if they were 18 years of age or older and
in their first trimester of pregnancy. Peripheral blood samples
were obtained at least at 2 time points during pregnancy. The
study was approved by the Institutional Review Board of Stanford
University, and all participants signed an informed consent.

An in-depth mass cytometry analysis of peripheral immune

cell responses was performed using the first (median 11 ± 1.9

weeks) and last samples (median 25 ± 4.1 weeks) collected from
two subsets of study participants (11 women who developed
preeclampsia and 12 women with a normotensive pregnancy).
Sample selection criteria for analysis included a cell viability
of over 60% and a cell count of over 106 cells. Samples from
the 11 women in the preeclampsia group were selected based
on a diagnosis of preeclampsia made (and verified by a senior
obstetrician) according to the American College of Obstetricians
and Gynecologists criteria (1). Early-onset preeclampsia was
defined as preeclampsia developing before 34 weeks of gestation
(1). Samples from the 12 women in the control group were
selected if study participants had a normotensive pregnancy
leading to the delivery of a healthy neonate at term (gestational
age > 37 weeks), and to ensure matching of gestational age at
time of sampling with the preeclampsia group. One patient in

the control group had well-managed gestational diabetes mellitus
(GDM) with an otherwise uncomplicated pregnancy.

Demographics and pregnancy characteristics for the 23
participants included in the analysis are summarized in Table 1.

Sample Collection and PBMC Stimulation
Peripheral blood mononuclear cells (PBMCs) were prepared
and cryopreserved according to standard protocols. On
the day of sample stimulation, PBMCs at indicated time
points (Figure 1) were thawed and rested in culture
media containing 10% fetal bovine serum (Gibco)
at 37◦C for 2 h. PBMCs were counted and checked
for viability.

PBMC samples were stimulated with either
lipopolysaccharride (LPS) (1µg/mL) and interferon-α (IFN-α)
(100 ng/mL), or left unstimulated at 37◦C for 15min, then fixed
for further analysis with mass cytometry. The rationale for
choosing the combined stimulation condition LPS+IFN-α in
this study was driven by results from the multivariate model of
normal pregnancy (26) and by experimental constraints. Of the
4 stimulation conditions used in our previous study, the basal
(unstimulated), LPS and IFN-α stimulated conditions provided
the most information to the multivariate model of normal
pregnancy (basal, LPS, and IFN-α and IL-2+IL-6 stimulations
accounted for 25, 46, 17, and 12% of the model features,
respectively). To maximize the information obtained from
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stimulated samples, LPS and IFN-α were utilized together after
ensuring that little overlap was detected in our immunoassay
between immune signaling responses to LPS (restricted to
pERK1/2, pP38, pMAPKAPK2, pS6, pCREB, pNF-κB in
innate immune cells) and to IFN-α (restricted to pSTAT1,
pSTAT3, pSTAT5, pSTAT6 in innate and adaptive immune
cells) (Figure S2).

Sample Barcoding and Minimization of
Experimental Batch Effect
To minimize the effect of experimental variability on mass
cytometry measurements between samples from different
time points and between samples from the control and
preeclampsia groups, samples corresponding from the entire
time series collected from one woman with preeclampsia and
one control were processed, barcoded, pooled, stained and run
simultaneously on the mass cytometry instrument (29, 30).
There was no difference in total cell count, live cell count,
viability, and storage time at time point 1 or 2 between the
two groups.

Antibody Staining and Mass Cytometry
The mass cytometry antibody panel included 22 antibodies
that were used for phenotyping of immune cell subsets and
11 antibodies for the functional characterization of immune
cell responses (Table S1). Antibodies were either obtained pre-
conjugated (Fluidigm, Inc.) or were obtained as purified, carrier-
free (no BSA, gelatin) versions, which were then conjugated
in-house with trivalent metal isotopes utilizing the MaxPAR
antibody conjugation kit (Fluidigm, Inc.). After incubation with
Fc block (Biolegend), pooled barcoded cells were stained with
surface antibodies then permeabilized with methanol and stained
with intracellular antibodies. All antibodies used in the analysis
were titrated and validated on samples that were processed
identically to the samples used in the study. Barcoded and
antibody-stained cells were analyzed on a Helios mass cytometer
(Fluidigm, Inc.).

Derivation of Immune Features
The mass cytometry data was normalized using Normalizer
v0.1 MATLAB Compiler Runtime (MathWorks) (31). Files were
then de-barcoded with a single-cell MATLAB de-barcoding
tool (30). Manual gating was performed using CellEngine
(https://immuneatlas.org/#/) (Primity Bio, Fremont, CA)
according to our previous gating strategy (Figure S1) (26).
The following 21 cell types were included in the analysis:
B cells, Natural Killer cells (NK), CD56hiCD16− NK cells,
CD56loCD16+ NK cells, CD4+T cells, CD4+CD45RA−T
cells (CD4+Tmem), CD4+CD45RA+T cells (CD4+Tnaive),
CD4+Tbet+T cells (Th1), CD25+FoxP3+CD4+T cells
(Tregs), CD8+T cells, CD8+CD45RA−T cells (CD8+Tmem),
CD8+CD45RA+T cells (CD8+Tnaive), CD8+Tbet+CD45RA−

cells, CD8+Tbet+CD45RA+T cells, TCRγδT cells,
CD14+CD16− classical monocytes (cMCs), CD14−CD16+

non-classical MCs (ncMCs), CD14+CD16+ intermediate MCs

(intMCs), monocytic myeloid-derived suppressor cells (M-
MDSCs), myeloid dendritic cells (mDCs), and plasmacytoid
dendritic cells (pDCs).

Cell frequency features
Cell frequencies were expressed as a percentage of gated singlet
live mononuclear cells (cPARP−CD45+CD66−).

Basal signaling immune features
Basal intracellular signaling activities were derived from
the analysis of unstimulated samples. The phospho-signal
intensity of the following functional markers was simultaneously
quantified per single cells: pSTAT1, pSTAT3, pSTAT5, pSTAT6,
pNFκB, pMAPKAPK2, pP38, prpS6, pERK1/2, pCREB. Total
IκB was measured to assess IκB degradation. For each cell type,
signaling immune features were calculated as the mean signal
intensity (arcsinh transformed value) of each signaling protein.

Intracellular signaling response features
For each cell type, the arcsinh difference (arcsinh ratio) in
signal intensity between the stimulated and unstimulated
conditions was calculated for each functional marker.
Stimulation conditions that yielded little or no responses in
optimization experiments (Figure S2) were excluded from
the analysis.

Correlation Network
Spearman correlation analyses were performed between pairs of
immune features measured at each time point. The graphical
representation of the correlation network shows edges for
significant correlations between data pairs (p < 1.0E-12). Edge
length is proportional to –log10 (p-value). The graph layout
was calculated using the t-SNE algorithm and visualized using
the i-graph R package (32). Communities of correlated immune
features were detected by multi-level modularity optimization
algorithm using the “cluster_louvain” function from i-graph R
package (33, 34).

Parametrization of Immune Feature
Dynamics
Parametrization of immune feature dynamics: For each immune
feature, the rate of change between the two sampling time points
was estimated as:

ρ =
immune featureT2 − immune featureT1

GAT2 − GAT1

Statistical Analyses
A multivariate LASSO (least absolute shrinkage and selection
operator) linear logistic regression method was utilized for this
study (35). This method was chosen as it uses an L1 penalization
over the classifier’s coefficients to develop a “sparse” model
that is suitable for the modular and correlated structure of the
immune dataset (35). In addition, the LASSO method utilizes
few free-parameters, which enables effective optimization using
cross-validation.

The feature matrix was constructed using the rate of change of
immune feature (ρ) as follows: For a design matrix P of immune
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feature rates (ρ), and a binary response vector of preeclampsia
Y, a multivariate linear logistic LASSO regression model was
developed to calculate the coefficients β for each entity in P
to maximize the overall log-likelihood using the conditional
likelihood of C given P,

l (β) =

n
∑

i=1

log pyi(ρi ;β)

where

pyi (ρi ; β) = Pr
(

C = yi
∣

∣ P = ρi ;β)

With this convention, log-likelihood can be rewritten as

l (β) =

n
∑

i=1

[yiβ
Tρi − log(1+ exp

(

βTρi

)

)]

An L1 regularization was applied on the β coefficient to reduce
the model complexity, such that

l (β) =

n
∑

i=1

[yiβ
Tρi − log(1+ exp

(

βTρi

)

)]+ λ

p
∑

j=1

|βj|

where lambda λ is selected by cross-validation. This produces
a sparse model in which only a limited number of features are
used (35).

The model was trained on 20 randomly-selected patients and
tested on the remaining three. After 100 iterations, themean of all
predictions for a given patient in the test set was used as the final
blinded prediction. This strategy minimizes the risk of overfitting
by ensuring themodels are always tested on samples that were not
previously seen by the algorithm.

Model Reduction
The relative weights of immune features selected by the LASSO
method were determined using the frequency at which individual
immune features were selected through all cross-validation
iterations. The top ten features were chosen by a piecewise
regression model, a statistical technique used to specify an
abrupt shift over the response variable corresponding to the
explanatory variable.

We used student t-test to compare individual immune
features between control and preeclampsia groups if the data
is normal distributed test by Shapiro-Wilk test, otherwise, a
Mann-Whitney nonparametric test was used.

Confounder Analysis
We analyzed 14 demographic and comorbid conditions,
including age, race, ethnicity, Body Mass Index (BMI), GA
at delivery, total number of pregnancies, multiparity, parity,
gestational diabetes, type 2 diabetes, preeclampsia history,
autoimmune disease, and chronic hypertension. Women with
preeclampsia had higher BMI (p = 2.0E-3) than the controls
(student t-test). Higher rates of type 2 diabetes (p = 4.5E-2),
chronic hypertension (p = 4.5E-2) and autoimmune diseases (p
= 8.0E-3) were found in the patients with preeclampsia, which

were significant by Fisher’s exact test. To test whether these four
comorbidities had an effect on immune features associated with
preeclampsia, multiple linear regression analyses were performed
to determine whether preeclampsia is a significant predictor of
each immune feature when accounting for the four relevant
comorbidities. This confounder analysis was performed using
SPSS version 12.0 (SPSS Inc., Chicago, IL, USA).

RESULTS

Study Cohort
The 11 study participants with preeclampsia were slightly
younger and heavier than the 12 study participants from the
control group (Table 1). Seven of the women with preeclampsia
had severe features, and two had early-onset preeclampsia
(including one patient with severe features). Participants
with preeclampsia had more comorbidities, including arterial
hypertension, diabetes, and autoimmune diseases, including
systemic lupus erythematosus (SLE) (Table 1). Samples were
collected well before clinical diagnosis of preeclampsia: a median
of 13 weeks (interquartile range (IQR), 12 to 14). The gestational
age (GA) at time of sampling did not differ between the two
groups (median at the first time point (T1): 11 ± 1.8 weeks vs.
11 ± 2.0 weeks, p = 0.48; median at the second time point (T2):
25.5± 4.2 weeks vs. 25± 4.2 weeks, p= 0.36).

Deep Profiling of Maternal Immune
Responses in Healthy and Preeclamptic
Pregnancies
PBMCs collected longitudinally during pregnancy were analyzed
using a 41-parameter immunoassay for an in-depth profiling of
peripheral immune cell adaptations. For each patient sample,
371 immune features were quantified on a per cell basis in
21 distinct innate and adaptive immune cell subsets (Figure 1).
Immune features included cell frequencies and the activity (e.g.,
phosphorylation state) of 11 intracellular signaling proteins
measured at baseline (basal signaling activity) as well as in
response to extracellular stimulations with IFN-α and LPS
(Figure 1; Figure S2). Stimulation conditions were chosen to
activate receptor-specific signaling responses (Toll-Like Receptor
(TLR) 4-dependent signaling for LPS, Janus kinase (JAK)-Signal
Transducer and Activator of Transcription (STAT) signaling for
IFN-α) that were most informative in characterizing immune cell
dynamics in our previous mass cytometry analyses of healthy
pregnancies (26).

The high-parameter immunological dataset yielded a
correlation network that emphasized the interconnectivity of
immune responses during pregnancy (Figure 1). The correlation
network segregated into 6 major communities of closely
interconnected immune features, which were identified using
a multi-level modularity optimization algorithm (33, 34).
These statistically defined communities were annotated on the
basis of immune feature characteristics (signaling property,
stimulation, or cell subset) most commonly represented within
each community (Figure 2A).

In the control group, a targeted examination of select
communities revealed peripheral immune cell adaptations that

Frontiers in Immunology | www.frontiersin.org 5 June 2019 | Volume 10 | Article 1305

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Han et al. Peripheral Immune Dynamics in Preeclampsia

FIGURE 2 | Predictive modeling of immune response dynamics associated with preeclampsia. (A) The correlation network segregates into 6 major communities of

correlated immune features. Communities were detected using the Louvain multi-level modularity optimization method (33, 34) and annotated on the basis of immune

feature characteristics (signaling property, stimulation, or cell subset) most commonly represented within each community. (B) A predictive multivariate model built on

immune feature dynamics (rate of change between the first and second time points). LASSO identified patients that develop preeclampsia within 12–14 weeks after

the last sampling time. Red/blue dots highlight immune features that evolve faster/slower in preeclampsia compared to Control. Dot size indicates the –log10 of

p-value of model components compared between preeclamptic women and controls (Student t-test). (C) Boxplots showing model prediction for controls and

preeclamptic women (AUC 0.803, cross-validation p-value = 0.013).

dovetailed with prior immune profiling studies of normal
pregnancy (26, 36, 37). For instance, one of the communities
(Community 1) was primarily defined by the basal activity of
the transcription factor STAT5ab (phospho, pSTAT5 signal) in
CD4+T cells (Figure S3A), which increased during pregnancy
as previously reported (26). Another community (Community 3)
contained features that pointed at increasing pSTAT1 responses
to stimulation in NK cells during pregnancy (Figure S3B),
consistent with prior in vitro and in vivo studies showing
that NK cell-mediated pathogen responses are exacerbated
during pregnancy (26, 36, 38). In addition, Treg cell frequency
increased between the first and second trimesters of pregnancy
(Figure S3C), consistent with prior reports of Treg dynamics
during pregnancy (26, 39). Thus, the immunoassay utilized
in this study was sensitive to detect established hallmarks of
maternal immune adaptations during a normal pregnancy.

Immune System-Wide Dynamics Are
Disrupted in Preeclampsia
A number of observations in humans support the assessment of
immune cell responses over time, rather than a cross-sectional
assessment at a given time point, to understand how the human
immune system adapts to a physiological or a pathological
perturbation (40). We reasoned that an analysis focused on
immune response dynamics would be particularly adapted to
detect immune dysfunctions preceding the onset of preeclampsia.

To parameterize the dynamic changes in the peripheral
immune system during pregnancy, the rate of change between
the first and second sampling time points was calculated
for each immune feature. The least absolute shrinkage and
selection operator (LASSO) method (35) was applied to
the dataset of immune feature dynamics. The predictive

analysis identified a multivariate model that accurately
differentiated women who developed preeclampsia from
controls (Figures 2B,C). Components of the LASSO model
were visualized on the correlation network as red or blue nodes
highlighting immune features with accelerated or decelerated,
respectively, dynamics in women who will develop preeclampsia
(Figure 2B). The generalizability of the model was established
using a stringent cross-validation method that accounts for the
high-dimensionality of the dataset. No significant association
was found between the LASSO model prediction and the
presence of comorbid conditions, including autoimmune
diseases, gestational diabetes, chronic hypertension and body
mass index (BMI). When excluding patients with autoimmune
disease and gestational diabetes, the LASSO model remained
highly significant (cross-validated p-value = 0.016) and robust
(AUC = 0.83). The results suggest that specific aspects of
peripheral immune system dynamics, detectable 12–14 weeks
before the clinical diagnosis of preeclampsia, are disrupted in
preeclamptic pregnancies.

Pro-inflammatory Immune Responses
Early in Pregnancy Contribute to Abnormal
Immune System Dynamics in Preeclampsia
The LASSO method allowed a system-level analysis of immune
dysfunction in preeclampsia anchored by a statistically-stringent
multivariate model. To highlight the most informative features of
the multivariate model and facilitate biological interpretation, we
applied a piecewise regression method that reduced the model
to 10 components (Figure 3A) that were highly discriminating
between control and preeclamptic pregnancies: the median area
under the curve (AUC) was 0.90, within an IQR of 0.81 to
0.92. Most (90%) of the informative immune features were
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intracellular signaling responses (AUC 0.80-0.92), while the cell
frequency features had a much weaker predictive performance
for preeclampsia (AUC = 0.65). Eight out of these ten immune
features remained highly significant as predictors of preeclampsia
after controlling for demographic and clinical variables (BMI,
presence of autoimmune disease, hypertension, and type 2
diabetes) in a multivariate linear regression analysis (Table S2).

These eight informative immune features appeared within
3 of the 6 communities, consistent with dysregulated immune
dynamics that spanned multiple immune compartments
(Figure 3B). The most informative feature was the pSTAT5
signal (basal) in CD4+Tbet+Th1 cells (AUC = 0.92, p = 8.0E-5,
Figure 4A). The pSTAT5 signal increased consistently in Th1
cells between the first and second trimesters in the control
group but decreased consistently in women who developed
preeclampsia (Figure 4A). Further examination of individual
time points revealed that the pSTAT5 signal in Th1 cells was
higher in women with preeclampsia compared with controls
in the first trimester and then gradually decreased during the
second trimester (Figure 4A, inset). These results are consistent
with the prevailing theory of the presence of a predominance of
Th1 in preeclampsia (41), given that STAT5 can potentiate Th1
differentiation (42).

Because the JAK/STAT5 signaling pathway is implicated in
multiple aspects of CD4+T cell differentiation, notably in the
differentiation and stability of peripheral Tregs (43–45), we tested
whether observed pSTAT5 dynamics were restricted only to Th1
cells. In Community 1 (defined by the STAT5 signaling response)
the abnormal pSTAT5 dynamics were shared among several T
cell subsets including CD4+ Tnaive cells and CD25+FoxP3+

Tregs (Figure S4). The pSTAT5 signal in Tregs increased between
the first and second trimesters in the control group, but did
not change in the preeclamptic women. The results highlight an
important role for STAT5-dependent responses across multiple
CD4+T cell subsets that are disrupted prior to the clinical onset
of preeclampsia.

The remaining immune features of the reduced model
suggested that, overall, strong pro-inflammatory cell responses
early during pregnancy altered the immunologic trajectory
of women who went on to develop preeclampsia. In innate
immune compartments, the pSTAT1, pSTAT5, and pNFκB
signals (basal) were elevated in intermediate monocytes
(intMCs) (AUC = 0.93, p = 4.0E-4), myeloid dendritic
cells (mDCs) (AUC = 0.92, p = 0.0026), and classical
monocytes (cMCs) (pSTAT1: AUC = 0.90, p = 4.1E-4;
pNFκB: AUC = 0.82, p = 4.0E-3), respectively, during
the first trimester in preeclamptic women compared with
controls (Figures 4B–E). These responses gradually decreased
during preeclamptic pregnancies, but increased in the control
group. In adaptive immune compartments, elevated pro-
inflammatory signaling responses in Th1 cells (pSTAT5) during
the first trimester of pregnancy were coupled with abnormal
signaling dynamics in CD4+Tnaïve cells (pMAPKAPK2,
AUC = 0.91, p = 3.2E-3), TCRγ δ (pP38, AUC = 0.9, p =

2.0E-4) and CD25+FoxP3+Tregs (pP38, AUC = 0.82, p
= 0.032) (Figures 4F–H). Of note, the pP38 signal, which
is required for Treg suppressive function (46), increased

in Tregs during pregnancy in controls but not in women
with preeclampsia.

DISCUSSION

We employed a high-parameter mass cytometry immunoassay
for an in-depth assessment of the dynamics of the peripheral
immune system during normal and preeclamptic pregnancies.
Analysis of the high-dimensional immunological dataset
identified immune system dysfunction detectable in the maternal
blood 12–14 weeks before the clinical signs of preeclampsia
were evident. Individual components of the multivariate
model highlighted profound dysregulation of intracellular
signaling dynamics that were strongly associated with the
subsequent development of preeclampsia (median AUC 0.91,
IQR [0.82, 0.92]).

High-parameter flow cytometry technologies such as

mass cytometry have transformed the ability to profile the
human immune system. However, the high dimensionality
of the resulting data presents a major analytical challenge to
conventional statistical analysis (47). Application of regularized
regression algorithms (such as LASSO) combined with a
cross-validation method to ensure generalizability of the model
outputs provided a robust statistical solution to this analytic

challenge (48). In this study, the LASSO analysis provided a
statistically stringent multivariate model that distinguished
healthy pregnancies from those with preeclampsia, while
simultaneously assessing over 370 immune features. The
performance of individual model components in stratifying
women who develop preeclampsia was also remarkable. Using
the AUC as a metric, the individual performances of the top
five model components to predict preeclampsia were each above
0.9, which signifies excellent predictive performance. These
results may be due to several aspects of our analysis that differ
from prior studies reporting on immunological biomarkers of
preeclampsia (6, 7, 18–20, 49). The functional interrogation
of signaling responses, rather than cell distribution may have
been more informative; the simultaneous survey of multiple
innate and adaptive immune cell subsets allowed for agnostic
identification of the most informative immune features; and the
analysis, which focused on immune cell dynamics rather than
static immunologic events, may have allowed a more sensitive
detection of pregnancy-related immune dysfunctions.

The most informative features of our analysis were the
basal pSTAT5 signals in CD4+T cell subsets (AUC = 0.92,
p = 8.0E-5). Notably, the pSTAT5 signal in CD4+T cells
was also the most informative component of a multivariate
model predictive of the age of gestation in a prior study of
normal pregnancy (26, 27). These findings, derived from two
independent studies, suggest that assessing pSTAT5 dynamics in
CD4+T cell subsets early in pregnancy may be a key feature of an
immuno-assay predicting the risk for developing preeclampsia.

The JAK/STAT5 pathway has been implicated in multiple,
and seemingly conflicting, aspects of CD4+T cell development.
Downstream of IL-2, in vivo and in vitro studies show that the IL-
2/STAT5 pathway controls Th2 differentiation [by inducing the
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FIGURE 3 | Identification of the most informative features classifying patients who develop preeclampsia. (A) The bar graph depicts the frequency of immune feature

selection across all cross-validation iterations. Blue line indicates piecewise regression fit for identification of a breakpoint indicating ten immune features that are most

informative to the multivariate LASSO model. (B) The most informative immune features and their respective immunological communities are highlighted on the

correlation network.
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FIGURE 4 | Model components reveals disrupted innate and adaptive immune cell dynamics in preeclampsia. Boxplots (left panels) depict the rate of change (ρ) of

indicated immune feature for the eigth most informative model components. AUC and p-values are indicated on each graph (ROC analysis). Insets (right panels)

depict immune feature values (arcsinh transform of the mass cytometry intracellular signal mean intensity) at individual time points (T1, T2) and for each patient. Color

code: purple = controls, orange = preeclampsia.
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expression of the IL-4 receptor (50)] as well as Th1 differentiation
[by inducing the expression of Tbet and the IL-12 receptor
(42)]. The IL-2/STAT5 pathway is also critical for promoting
peripheral Tregs (44) and inhibiting Th17 differentiation (51).
Therefore, the decreasing pSTAT5 signal—which was higher
during the first trimester in the preeclamptic group than in
the control group—observed in CD4+T cell subsets early in
preeclamptic pregnancies likely reflects multiple dysfunctional
processes affecting T cell differentiation, including increased
Th1 over Th2 differentiation during the first trimester as
well as decreased Treg differentiation between the first and
second trimesters.

However, IL-2 is not the only factor regulating the JAK/STAT5
signaling pathway. In fact, multiple inflammatory, but also
hormonal, and placental factors implicated in pregnancy
converge onto the JAK/STAT5 pathway, including prolactin,
chorionic somatomammotropin hormone (CSH)-1, IFN-γ and
IL-3 (52, 53). Leptin, which has consistently been associated with
preeclampsia in multiple large-scale proteomics studies can also
activate the JAK/STAT5 pathway (54). Assessment of JAK/STAT5
signaling dynamics may therefore provide a sensitive cellular
readout of immune dysfunction that reflects the integration
of multiple signals ultimately driving abnormal CD4+T cell
responses early in the pathogenesis of preeclampsia.

Several other results of our analysis resonated well with
prior knowledge of immune system dysfunction associated with
preeclampsia, notably among innate immune cell subsets. In
general, observed differences in the rate of change of innate
immune responses (decelerated in the preeclampsia group
compared to the control group) were driven in part by higher
signaling responses during the first trimester of pregnancy in
the preeclampsia group. In cMCs, the basal pNFκB signals
was increased in the preeclampsia group in the first trimester
compared to the control group (Figure 4E). A similar finding was
observed for the pSTAT1 signal in the pro-inflammatory intMCs
monocyte subtype (Figure 4C). An elevated signaling activity
in innate immune cells early during pregnancy is consistent
with previous studies suggesting exaggerated activation of
proinflammatory innate immune responses in patients who
develop preeclampsia (55, 56).

Interestingly, the majority of dysregulated immune responses
were signaling responses rather than frequency changes. In this
regard, some of our findings differ from previous analyses of
peripheral immune responses associated with preeclampsia. For
instance, neither the frequency of Tregs or of Th1 cells (13, 14,
41)—which have previously been shown to differ between normal
and preeclamptic pregnancies—were selected as informative
features of the multivariate model. Instead, measurement over
time of signaling responses in Tregs (pP38 and pSTAT5) and
in CD4+Tbet+Th1 cells (pSTAT5) were among the strongest
individual classifiers for preeclampsia. These results suggest that
a functional read-out of proximal signaling responses may be
more informative than the assessment of cell distribution alone
in identifying immune dysfunction associated with preeclampsia.

This study has several limitations. The recruitment of study
participants at a single hospital limits the generalizability of
the results. Larger, multicenter studies will be required to

generalize our findings to women from various demographic,
ethnic, and socioeconomic backgrounds. The sample size
was also too small to allow us to distinguish between
early (GA < 34 weeks, n = 2) and late (n = 9) onset
preeclampsia. Determining whether immune system dynamics
differ between subtypes of preeclampsia will be important,
since different pathophysiological mechanisms may underlie
the clinical spectrum of preeclampsia. The study did not
exclude patients with autoimmune diseases, such as SLE,
which are known risk factors for preeclampsia (57–59). In
particular, the pathogenesis of SLE involves an imbalance
between Tregs and Th17 cells (60), which is also associated
with immunological dysregulation in preeclampsia (13, 61,
62). Interestingly, our LASSO model and its major individual
components remained strongly associated with preeclampsia
when excluding patients with autoimmune diseases from our
analysis. These results are in line with previous observations
showing differential transcriptomic immune profiles in pregnant
women with SLE who do or do not develop preeclampsia,
suggesting that certain immune responses associated with
preeclampsia are independent of SLE (63). While our study
is underpowered to detect immune responses associated with
SLE and other comorbidities (such as gestational diabetes),
our results suggest that reported differences between the two
study groups are not driven by the presence of these known
immunological confounders.

In addition, while mass cytometry offers unprecedented
informational content at the single-cell level, the technology
remains limited to the measurement of ∼50 pre-selected
phenotypic and functional parameters per immune cell. For
instance, selected antibody panel did not allow for the analysis
of intracellular cytokines, which would be helpful for further
characterization of Th1, Th2, and Th17 cell subsets. We cannot
exclude that additional phenotypic markers not included in
the current analysis will allow detecting more informative
and predictive cell frequency features. Similarly, the choice
of stimulation conditions was limited by sample availability.
Finally, the analysis was limited to immune cell dynamics
that vary linearly with time, and did not capture non-linear
immunological adaptations which are known to occur during
pregnancy. However, the approach provides an analytical and
statistical framework for future studies aimed at exhaustive
characterizations of immune cell dynamics in normal and
preeclamptic pregnancies.

In summary, our study reveals significant alterations in
the dynamics of maternal immune system adaptations months
before the clinical onset of preeclampsia. The data and
analytical approaches presented here suggest that measures of
maternal immune system dynamics early in pregnancy hold
significant promise for identifying women at risk for developing
preeclampsia later during pregnancy.
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