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The neuro-immune axis has emerged as a key aspect to understand the normal function

of the Central Nervous System (CNS) as well as the pathophysiology of many brain

disorders. As such, it may represent a promising source for novel therapeutic targets.

Glial cells, and in particular the extensively studied microglia, play important roles in brain

disorders. Astrocytes, in their reactive state, have been shown to positively and negatively

modulate the progression of multiple CNS disorders. These seemingly opposing effects,

might stem from their underlying heterogeneity, an aspect that has recently come to light.

In this article we will discuss the link between reactive astrocytes and the neuro-immune

axis with a perspective on their potential importance in brain tumors. Based on the gained

knowledge from studies in other CNS disorders, reactive astrocytes are undoubtfully

emerging as a key component of the neuro-immune axis, with ability to modulate both

the innate and adaptive branches of the immune system. Lastly, we will discuss how

we can exploit our improved understanding of the basic biology of astrocytes to further

enhance the efficacy of emerging immune-based therapies in primary brain tumors and

brain metastasis.
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ASTROCYTES IN HOMEOSTASIS AND DISEASE

Astrocytes are involved in a variety of phisiological functions including maintenance of the
blood-brain barrier (BBB) and blood flow (1), modulation of synaptic plasticity (2), and regulation
of energy homeostasis (3). All of these functions have a significant impact on many aspects of our
daily life such as cognition (4), fear (4), sleep (5), and circadian rhythm (6). The heterogeneity
of astrocytes might contribute to these pleiotropic functions. For instance, astrocytes from the
hippocampus differ functionally in multiple aspects when compared to those from the striatum
(7). But even within the same brain area, astrocytes have molecular differences that functionally
correlate with their ability to interact with neurons (8). Single cell-RNA sequencing (scRNAseq)
will undoubtedly help to clarify not only the diversity within what we call today astrocytes as a
whole but also the origin of such heterogeneity. Sources of astrocyte heterogeneity might include
different progenitors during development (9) or the ability to generate new astrocytes upon injury
(10, 11). Especially interesting are novel technologies that allowmapping single cell transcriptomics
within tissue sections (12). Given the link between location and astrocyte function, as shown by the
different biology of juxtavascular astrocytes (13), having spatial resolution of transcriptomic profiles
might be key to properly interpret the many flavors of astrocytes.

In addition to their homeostatic functions in the central nervous system (CNS), astrocytes are
rapidly activated in response to various insults, including brain tumors (14, 15). The activation
pattern of astrocytes and its consequences appear to be dependent on the nature of the initiating
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pathogenic event. Moreover, this is a dynamic process that
evolves throughout the course of the disease. While primarily
limiting spread of the damage in the context of acute phase
brain injury, astrocytes rather appear to worsen disease outcome
in a chronic injury setting (16, 17). This also applies to brain
metastasis, where reactive astrocytes play an anti-metastatic
role that limits disease progression in early stages of brain
colonization (18), while, later on, they become strongly pro-
metastatic (19). Therefore, in order to fully comprehend the
biological significance of astrocytes in brain physiology and
pathology, we need to consider their highly plastic behavior and
heterogeneousmake up. These features allow astrocytes to trigger
a remarkably fine-tuned response to adequately counteract a
broad spectrum of injuries. Given the growing importance of the
immune system and its therapeutic exploitation in many brain
disorders, including cancer, addressing the biological significance
of the cross-talk between immune cells and astrocytes might offer
innovative means to challenge incurable CNS disorders, such as
primary and secondary brain tumors.

INFLUENCE OF ASTROCYTES ON THE
INNATE IMMUNE SYSTEM

Cross-Talk Between Astrocytes and
Microglia
Microglia and astrocytes are resident glial cells that influence each
other under homeostatic conditions (20) but also when the CNS
is affected by pathology.

In vitro, the classical inducer of neuroinflammation LPS
stimulates microglia to produce a secretome enriched in
NFκβ-regulated molecules including IL-1, TNF and C1q. The
microglia-conditioned medium was sufficient not only to turn
non-activated into activated astrocytes, assessed by the gained
expression of GFAP, but also to induce the production of an
unidentified secreted factor/s by astrocytes that compromised
the viability of neurons and oligodendrocytes (21) (Figure 1A).
This particular behavior of activated astrocytes with neurotoxic
properties has been suggested to be present in patients
with neurodegenerative (Alzheimer, Huntington, Parkinson,
amyotrophic lateral sclerosis) and autoimmune (multiple
sclerosis) CNS disorders. This hypothesis was supported by the
increased levels of three proteins (C3, CBF, and MX1) that were
initially found to be upregulated in a transcriptional signature of
microglia-stimulated astrocytes (21).

A similar crosstalk between astrocytes and microglia was
probed to be involved in some rare forms of Parkinson with
mutations in the orphan receptor NURR1. Under normal
circumstances NURR1 blocks the activation of NFκβ-dependent
genes, a function that is lost in these patients with Parkinson
disease. The combination of engineered inactivating Nurr1
mutations in glial cells with a background of increased
inflammation (i.e., LPS treatment) lead to the death of
dopaminergic neurons, which is a hallmark of Parkinson (22).
The molecular analysis of this cross-talk probed that Nurr1-
mutant astrocytes had an augmented response to microglia-
derived TNFα and IL1β involving a sustained occupancy of the

iNOS promoter by p65, thus secreting nitric oxide (NO) at levels
that might be responsible for compromising neuronal viability
(22) (Figure 1A).

The dependency of astrocyte activation onmicroglia behavior,
was also validated in vivo in a mouse model of experimental
autoimmune encephalomyelitis (EAE). Activation of the
aryl hydrocarbon receptor (AhR) in microglia promotes the
expression of TGFα. On the contrary, the absence of AhR
signaling limits the expression of the NFκβ negative regulator
Socs2, which increases the secretion of NFκβ-dependent
molecules such as VEGFB (Figure 1A). Microglia secretomes
enriched in either TGFα (when AhR is activated) and VEGFB
(when AhR is inactivated) induced opposite transcriptomic
responses when added to astrocytes by decreasing or inducing,
respectively, the expression of Ccl2, Nos2 and IL1b. Some of
the deregulated genes were enriched in activated astrocytes
with the ability to compromise the viability of neurons and
oligodendrocytes (21). In fact, when AhR was targeted in the
context of EAE, disease worsened. Furthermore, targeting Ccl2,
Nos2 and IL1b using cell-specific loss of function approaches
either in microglia or astrocytes improved EAE outcome (23).
AhR could be activated by tryptophan-derived metabolites (24).
Since tryptophan is an essential amino acid provided by diet that
is processed by the gut microbiome, this suggests the possibility
that diet and the intestinal microbiota could have an impact on
neuroinflammation. Interestingly, depleting tryptophan from
the diet mimicked the phenotype of targeting AhR in microglia
thus worsening EAE. Adding back the amino acid in the diet
rescued the phenotype but only when the AhR receptor was
present (23).

In summary, evidence exists about the critical influence
of microglia on astrocytes in CNS disorders. The degree
of activation of a NFκβ-dependent secretome in microglia
defines the consequences on astrocytes. Microglia-activated
astrocytes could worsen disease outcome by their negative
influence on neuron and oligodendrocyte viability. Although
the influence of microglia on astrocytes have been probed,
whether astrocytes could influence microglia is less well-
characterized (25).

Cross-Talk Between Astrocytes and
Brain-Infiltrating Monocytes
Monocytes are excluded from the healthy brain. However, when
the brain gets injured, CCR2+ circulating monocytes access
the parenchyma (26, 27). As a key component of the BBB,
astrocytes are one of the first cell types encountered by infiltrating
peripheral immune cells, which provides the glial cell a strategic
position to control this transit.

Traumatic brain injury has an impact in the viability of
astrocytes located in the proximity of the damaged area.
Simultaneously to the decrease in astrocytes, there is an
increase in the infiltration of CCR2+monocytes, which suggests
that these cell types could influence each other. Juxtavascular
astrocytes are a subpopulation that interacts physically with brain
vessels and proliferation upon damage (13, 28). Although this
subpopulation of astrocytes has been shown to correlate with
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FIGURE 1 | Astrocytes and innate immunity. (A) Danger and pathogen associated molecular patterns (DAMPS and PAMPs, respectively) are detected by microglia

that become activated secreting NFκβ downstream targets. Activated microglia crosstalk with astrocytes to induce a NFκβ-dependent program responsible for

damaging neuronal components, favoring the access of peripheral macrophages and reinforcing the activation of the microglia. Under basal conditions, astrocytes

have this NFκβ program shut-down by the action of Nurr1 and AhR receptors. This mechanism involving the crosstalk between reactive astrocytes and microglia has

been described in several disorders affecting the Central Nervous System. (B) Brain macrophages in disease include microglia, non-parenchymal resident

macrophages and infiltrating non-resident macrophages. A subpopulation expressing the CD74 receptor has been reported to be present in all of them, especially

when the brain is affected by disease. (C) In brain metastasis, secretion of MIF by pSTAT3+ reactive astrocytes enrich CD74+ microglia/ macrophages in the tumor

where they produce the NFκβ-dependent molecule midkine that promotes tumor cell survival.

a specific developmental origin, they were not characterized
at the molecular level. Recently, juxtavascular astrocytes have
been shown to preferencially activate AhR. Given that AhR
blocks the production of CCL2, a strong chemokine for CCR2+
monocytes, this subpopulation of astrocytes acts as a selective

barrier modulating the access of peripheral cells into the brain
parenchyma (28).

Monocytes also influence astrocytes. If traumatic injury
is generated in a mouse without CCR2+ monocytes, higher
numbers of proliferative astrocytes are detected, suggesting a
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deleterious influence of infiltratedmonocytes on the proliferation
of juxtavascular astrocytes (28). Interestingly, in spite of the
increased proliferative rates of these astrocytes, the glia scar
and extracellular matrix deposition surrounding the damage
was reduced and consequently, better neuronal recovery was
detected (28). This finding illustrates the importance of defining
at the molecular level newly established cell-to-cell interactions
that occur once peripheral cells from the innate immune
system infiltrate the brain. It also illustrates the importance
of characterizing astrocyte heterogeneity given the impact that
specific astrocyte subtypes have on disease progression (28).

Cross-Talk Between Astrocytes and
Macrophages in Brain Tumors
In spite of the evidences presented in other brain pathologies,
the crosstalk between astrocytes and macrophages had been
barely explored in brain tumors. This is surprising given that the
majority of immune cells within brain tumors are macrophages
either resident or infiltrated from the periphery (27, 29, 30).
Recently, astrocytes have been proved to influence a subtype of
microglia/ macrophage expressing CD74.

CD74 is among the most upregulated genes in human
microglia in the context of brain tumors and other
pathologies (31) (Figure 1B). The association of CD74
in microglia/macrophages and brain disorders have been
recently extended and validated by scRNAseq approaches
comparing healthy and brains affected by autoimmune
disorders, neurodegeneration or ischemia. Cd74 upregulation
was consistently found in disease-associated macrophages
including peripheral macrophages infiltrating the brain, non-
parenchymal resident macrophages (meningeal, perivascular,
and choroid plexus macrophages) as well as in one subclass of
microglia (26, 32) (Figure 1B).

Funtionally, the CD74+ microglia/macrophages were
shown to reduce the secretion of IFN-γ in the tumor
microenvironment, which would contribute to established
an immunosuppressed niche (33). More recently, the increase
of CD74+ microglia/macrophages in the context of brain
metastases was shown to be dependent on the presence of
pSTAT3+ reactive astrocytes, describing a cross-talk between
both cell types (19). The ligand of CD74 receptor, MIF, is highly
enriched in the secretome of pSTAT3+ reactive astrocytes.
CD74+ microglia/macrophages are preferentially located
within the metastatic lesion. At this location CD74 could
be found translocated in the nucleus where it promotes the
expression of NFκβ downstream targets, such as midkine (19), a
secreted molecule that accumulates in the extracellular space to
promote cell viability (34) (Figure 1C). The importance of MIF
binding to CD74+ microglia/macrophages was demonstrated
by the reduction of brain metastasis upon treatment with
the BBB-permeable MIF inhibitor ibudilast in organotypic
cultures (19). Interestingly, ibudilast has been successfully used
in patients with multiple sclerosis (35) and in experimental
models of glioblastoma (36), which inspired a recently initiated
clinical trial (NCT03782415). Although the biology of CD74+
microglia/macrophages remains poorly characterized, its strong

association with different brain disorders and its diverse set
of functions including the role as a chaperone for the MHCII
complex (37), the modulation of migration by interacting with
myosin (38) and the activation of NFκβ pathway (34) suggest
relevant implications in disease.

INFLUENCE OF ASTROCYTES ON THE
ACQUIRED IMMUNE SYSTEM

In contrast to the long-term dogma that defined the brain as an
immune-privileged organ, the presence of primary or secondary
brain tumors correlates with a significant infiltration of CD8+
and CD4+ T cells (39–41). Given that brain infiltrating T cells
and reactive astrocytes co-exist in the same spatial location
surrounding the tumor (19) and the strong secretory nature of
astrocytes, it is quite likely that both cell types could influence
each other. The molecular regulation of this cross-talk and its
consequences are emerging linked to several brain disorders
including cancer.

Cross-Talk Between T Regulatory Cells
and Astrocytes
T regulatory cells have been described to actively modulate
astrocyte behavior in ischemia (42). After stroke there is amassive
accumulation of T regulatory cells in the brain that promotes
neurological recovery. T regulatory cells are initially attracted to
the ischemic brain by CCL1 and CCL20 produced by astrocytes
and oligodendrocytes and later expanded by the combined action
of IL-2 or IL-33 and T cell receptor recognition. Expanded T regs
secrete the EGFR ligand amphiregulin (AREG) that decreases the
expression of several astrocyte markers associated with potential
negative effects on neuronal viability (42) (Figure 2A). In fact,
intraventricular administration of AREG reduced neurological
dysfunction associated with Treg-depleted-mice (42). Thus, T
regulatory cells contribute to the control of brain damage by
modulating astrocyte behavior.

Additional evidences of the crosstalk between T regulatory
cells and astrocytes exist in EAE. Administration of an anti-
CD3 antibody intranasally in this experimental model was shown
to activate IL-10-producing T regulatory cells in the cervical
lymph nodes (43). These T regulatory cells moved and became
enriched in the CNS where they influence reactive astrocytes
expressing the IL-10 receptor subunit alfa (Il10ra). Activation
of IL10R1-dependent signaling in astrocytes decreased gene
expression patterns typically associated with different aspects of
EAE pathophysiology such as BBB degradation (Mmp3, Mmp9),
monocyte recruitment (Ccl2), and microglial regulation (Csf2)
(Figure 2B). Interestingly, astrocyte-specific downregulation of
Il10ra fully impaired the clinical benefit provided by the
administration of the anti-CD3 antibody in a pre-clinical model
of multiple sclerosis (43).

Primary and secondary brain tumors are infiltrated with
CD4+ CD25+ Foxp3+ T regulatory cells (44, 45). In addition,
Treg signatures seem to predominate over those related to T-
cell function involved in their activation or TCR antigen binding
even when measured systemically (46). Consequently, dissecting
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FIGURE 2 | Astrocytes and acquired immunity. (A) Ischemia induces the production of CCL1/CCL20/Serotonin that attracts T regulatory cells. Once in the brain, Tregs

increase their numbers activated by IL-2 and IL-33 and produce AREG that reduces the neuronal damage by impairing STAT3 activity in astrocytes. (B) Treatment with

an anti-CD3 blocking antibody intranasally stimulates the production of a subpopulation of T regulatory cells producers of IL-10 at the cervical lymph-nodes. After

reaching the brain these cells are responsible for decreasing the expression of genes linked to the pathology by activating the IL-10 receptor in astrocytes. (C)

Infiltrating CD8+ T cells are exposed to immune checkpoint ligands and an immunosuppressive secretome generated by pSTAT3+ reactive astrocytes that surround

established metastasis. (D) In contrast, pSTAT3- reactive astrocytes produce IL-15 that binds to NKG2D leading to their increased activation and destruction of myelin.

the biology of the Treg compartment in brain tumors and
its cross-talk with other components of the microenvironment
including reactive astrocytes might help to develop novel
strategies of immunotherapy.

Cross-Talk Between Astrocytes and CD8+

T Cells
Physical Interactions

Cell-to-cell contacts between astrocytes and T cells have been
well-documented at the subcellular level (47). Virally infected
astrocytes have been imaged in vivo when they initiate contacts
with T cells in immunized animals (48). These contacts
have all the components to be considered an immunological
synapse including the central supramolecular activation complex
(c-SMAC), composed of the TCR bound to the peptide within
the MHC, which is surrounded by the peripheral supramolecular

activation complex (p-SMAC), a ring of adhesion molecules
including LFA-1 and ICAM-1 (48). The synapse between
astrocytes and T cells activates in the later Talin, integrins, and the
cytoskeleton that polarizes the T cell to secrete of IFN-γ, perforin,
and granzyme-B on the virus-infected astrocyte (48). However,
this does not only apply to virally infected astrocytes since the
same behavior has been reported in models of multiple sclerosis
targeting the gray matter (49) and between transformed glial cells
and T cells (50).

However, the presence of immunological synapses between T

cells and transformed glial cells do not necessarily correlate with
anti-tumor effects, suggesting that astrocytes could negatively
modulate T cell activity (51). As part of the neurovascular
unit, astrocytes have the important role of blocking potential
threats that might get access to a poorly regenerative organ such
as the brain. Several mechanisms have proved the efficacy of
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this natural defense such as the induction of FasL-dependent
killing of T cells by reactive astrocytes (52). Interestingly, this
mechanism also applies to the elimination of the majority of
extravasated metastatic cells that are not adapted to the brain
(18). In addition, reactive astrocytes have been shown to inhibit
T cells by expressing B7, the ligand of the CTLA-4 checkpoint,
whose activation is sufficient to trigger downstream inactivating
signals (53). PD-L1 is also present in astrocytes of experimental
models of viral encephalitis, where they contribute to limit the
function of CD8+ T cells (54), as well as in brain metastases,
where the known driver of Cd274 expression, STAT3, has been
shown to be enriched in a subpopulation of these glial cells (19)
(Figure 2C). This last finding (the presence or absence of STAT3
in seemingly different astrocyte subpopulations) might underlie
the different outcomes after astrocytes and T cells get in contact,
emphasizing the importance of dissecting astrocyte heterogeneity
in disease.

Paracrine Interactions

Astrocyte heterogeneity was initially detected regarding the
ability of some of these glial cells to suppress the activation
of T cells by unidentified secreted factors (55). More recently,
this suppressive activity was linked to the subpopulation of
reactive astrocytes activating STAT3 pathway (pSTAT3+) in the
context of brain metastasis (19). Although the specific molecular
mechanisms mediating these phenomena is still unknown, the
secretome of pSTAT3+ reactive atrocytes contained known
immunosuppressive molecules and, when evaluated functionally,
it impaired the activated state of CD8+ T cells limiting
their cytotoxic activity on brain metastatic cells in vitro (19)
(Figure 2C). The accumulation of reactive astrocytes and CD8+
T cells within the same peri-tumoral area suggests that the
paracrine crosstalk between these cell types might play a role
in vivo (19). In fact, in the context of brain metastasis, where
pSTAT3+ reactive astrocytes have been demonstrated to play
a critical pro-tumor role, targeting STAT3 in astrocytes and
blocking CD8+ T cells simultaneously reverted the decrease in
metastasis derived from the loss of function of the transcription
factor (19). This finding strongly suggests an important role of
pSTAT3+ reactive astrocytes suppressing CD8+ T cells (19).

In contrast, reactive astrocytes in EAE have been shown to
produce IL-15, which, upon binding to NKG2D in NK cells
and CD8+ T cells (56), stimulates their cytotoxic behavior
contributing to increase the damage associated with multiple
sclerosis (Figure 2D). Interestingly CD8+ T cells in EAE
infiltrate the damaged area leaving the glial cells behind (56),
suggesting that the nature of astrocytesmight be different to those
present in brain metastasis, which retain T cells away from the
cancer cells (19).

EXPLOITING THE INFLUENCE OF
REACTIVE ASTROCYTES ON THE
IMMUNE SYSTEM

The crosstalk between reactive astrocytes and different
components of the immune system could have multiple

and diverse consequences from neuronal viability to cancer
cell proliferation. Thus, in order to target this complex cross-
talk therapeutically, it is crucial to understand the role of
reactive astrocytes in the specific pathology that is to be
challenged. For instance, promoting the crosstalk between Tregs
and astrocytes might be a valuable strategy in ischemia and
autoimmune disorders but the benefit in the context of cancer is
less predictable.

Thus, in primary and secondary tumors the priority is to
challenge the survival of cancer cells, which usually hijack
mechanisms that are also present in other pathologies andmisuse
them for their own benefit. There might be associated risks with
strategies that look to boost anti-tumor responses by modulating
the cross-talk between astrocytes and immune cells such as
potential side effects regarding increased direct (due to astrocyte
production of neurotoxic molecules) or indirect (due to an
overactivation of CD8+ T cells) neuronal damage. Consequently,
it is necessary to dissect in great detail the consequences of
modulating this cross-talk in pre-clinical models to develop the
best strategy for each brain disorder.

Clinical trials have used different strategies that modulate the
immune system to treat brain tumors (57–59). Some efforts have
reported encouraging results both with primary (58, 60–62) and
metastatic tumors (63–65). Nevertheless, response rates remain
modest and the question is whether taking into account the
specific biology of the brain microenvironment could help to
increase them. Given that reactive astrocytes have been proved
to influence both branches of the immune system (see above),
preclinical studies are needed to define the value of targeting
astrocyte-derived local immunosuppression to boost intracranial
efficacy of immunotherapies.

In the first place, limited efforts have been devoted to
determine the amount of blocking antibodies against immune
checkpoints that reach the brain parenchyma compared to
extracranial locations (66). Given the presence of the BBB, it is
expected that antibody concentrations, if any, will be lower in the
brain than elsewhere. The still common argument that the mere
presence of a tumor mass involves a disruption of the BBB, which
would grant the immediate increase of drug permeability, is far
from the reality as reported in exhaustive studies probing that this
only affects 10% of fully established metastases (67). Rather than
fully disrupted, the BBB seems to be modified into a brain-tumor
barrier (BTB), whose biology has just started to be dissected (68).

Thus, if the levels of blocking antibodies reaching the brain
parenchyma is a limiting factor, then the anti-tumor effects of
such therapeutic approaches will depend on the ability of T
cells, activated elsewhere by the action of immune checkpoint
inhibitors, to first reach the brain and then get access to tumor
cells to apply their cytotoxic activity. Two indirect findings argue
in favor of this hypothesis. In experimental brain metastasis
models, the presence of systemic disease favors the efficacy
of immunotherapy in the brain (69) and, on the contrary, if
there is only local disease in the brain, immune cells seem
to be sequestered in the bone marrow (70). In other words,
immunotherapy based on blocking antibodies solely is not
optimized to the particular biology of the brain. Alternatively, the
ability of astrocytes to negatively influence immune cells might
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be exploited to develop novel strategies against brain tumors that
could be combined with immune checkpoint blockade.

Reactive astrocytes with activated STAT3 pathway express
PD-L1, which could contribute to the local immunosuppressive
microenvironment present in brain metastasis (19) (Figure 2B).
In fact, cancer cells with glial origin have been shown to
induce T cell exhaustion partially due to their expression
of PD-L1 (71). In addition, pSTAT3+ reactive astrocytes
produce a secretome that impairs the activation state and
the cytotoxic phenotype of CD8+ T cells in vitro while
at the same time promotes the enrichment of pro-tumoral
macrophages/microglia that favor the viability of tumor cells
(19) (Figures 1C, 2B). In fact, an enriched STAT3 signature
brain tumor patients with partial responses to immunotherapy
(61). This finding could be interpreted as an active cancer cell-
induced mechanism to promote pSTAT3+ reactive astrocytes,
which would be responsible for limiting the full potential
of anti-tumor T cells thus preventing complete responses.
Consequently, BBB-permeable inhibitors targeting STAT3 as
well as other inhibitors targeting downstream mechanisms that
negatively influence anti-tumor CD8+ T cells and/or impair
pro-tumorigenic CD74+ microglia/ macrophages might be
explored as a potential combination strategies with immune
checkpoint blockade.

Studying the biology of the immune system in the CNS
is fundamental to improve therapeutic strategies against brain
tumors. The interaction between astrocytes and different
branches of the immune system, as extensively proved in
other CNS pathologies, suggests a potential avenue to increase
the quantity and quality of anti-tumor approaches applied to
the brain. The analysis of similar experimental therapeutic
approaches across several brain disorders in pre-clinical models

might also help to understand the role of astrocytes. For
instance, pSTAT3+ reactive astrocytes have been described
in brain tumors (19), traumatic injury (72), ischemia (73),
neurodegenerative disorders (74, 75) as well as autoimmune
diseases (76). However, inhibition of STAT3 in astrocytes is
beneficial for some disorders (19, 77–79) while detrimental for
others (72).
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