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Combination antiretroviral therapy (ART) is effective at suppressing HIV viremia to achieve

persistently undetectable levels in peripheral blood in the majority of individuals with

access and ability to maintain adherence to treatment. However, evidence suggests

that ART is less effective at eliminating HIV-associated inflammation and innate immune

activation. To the extent that residual inflammation and immune activation persist,

virologically suppressed people living with HIV (PLWH) may have increased risk of

inflammatory co-morbidities, and adjunctive therapies may need to be considered to

reduce HIV-related inflammation and fully restore the health of virologically suppressed

HIV+ individuals. Cardiovascular disease (CVD) is the single leading cause of death in

the developed world and is becoming more important in PLWH with access to ART.

Arterial disease due to atherosclerosis, leading to acute myocardial infarction (AMI)

and stroke, is a major component of CVD. Atherosclerosis is an inflammatory disease,

and epidemiological comparisons of atherosclerosis and AMI show a higher prevalence

and suggest a greater risk in PLWH compared to the general population. The reasons

for greater prevalence of CVD in PLWH can be broadly grouped into four categories:

(a) the higher prevalence of traditional risk factors e.g., smoking and hypertension (b)

dyslipidemia (also a traditional risk factor) caused by off-target effects of ART drugs

(c) HIV-related inflammation and immune activation and (d) other undefined HIV-related

factors. Management strategies aimed at reducing the impact of traditional risk factors

in PLWH are similar to those for the general population and their effectiveness is

currently being evaluated. Together with improvements in ART regimens and guidelines

for treatment, and a greater awareness of its impact on CVD, the HIV-related risk of

AMI and stroke is decreasing but remains elevated compared to the general community.

Monocytes are key effector cells which initiate the formation of atherosclerotic plaques

by migrating into the intima of coronary arteries and accumulating as foam cells full of

lipid droplets. This review considers the specific role of monocytes as effector cells in
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atherosclerosis which progresses to AMI and stroke, and explores mechanisms by which

HIV may promote an atherogenic phenotype and function independent of traditional risk

factors. Altered monocyte function may represent a distinct HIV-related factor which

increases risk of CVD in PLWH.

Keywords: HIV, monocytes/macrophages, atherosclerosis, foam cells/macrophages, inflammation

INTRODUCTION

For PLWH at the present time, HIV infection is associated
with different outcomes depending on access to care and
treatment. In resource-constrained settings, those without access
to antiretroviral therapy (ART), or with limited access to
expensive, alternative ART that is required when first-line
therapies fail, experience progressive disease with decreased
CD4+ T cell counts ultimately leading to death from AIDS–
related diseases. For PLWH who have access to effective
antiretroviral regimens, current evidence suggests that life
expectancy approaches that of HIV-negative individuals in the
general population. Whilst the risk of AIDS and AIDS-related
mortality may be low, long term health outcomes for these
individuals depend on how soon after infection they are treated,
with the best outcomes predicted for those who present early
in infection with relatively preserved CD4 counts (1–5). Large
cohort studies of persons from the United States, and from
North America and Western Europe, have shown that the gap
in life expectancy between PLWH and HIV-negative individuals
has narrowed as a function of the year in which ART was
initiated (2, 6). This is likely due to use of more potent and
tolerable ART regimens and adoption of treatment guidelines
recommending earlier commencement of ART at diagnosis
of HIV.

CARDIOVASCULAR DISEASE IN PLWH

Despite a reduction in AIDS-related mortality, HIV infection
remains associated with an increased risk of age-related,
inflammatory diseases which cause significant morbidity
such as non-AIDS cancers, neurocognitive impairment and
cardiovascular disease (CVD). Cardiovascular diseases, or
diseases of the heart and vasculature are major causes of
morbidity and mortality. They include ischaemic coronary
artery disease (chronic angina and AMI), cerebrovascular
disease (stroke and transient ischaemic attack), other heart
diseases (including arrhythmias, inflammatory heart disease,
valvular disease, rheumatic heart disease, and heart failure)
and other cardiovascular diseases (peripheral vascular disease,
aortic aneurysms, and hypertensive disease). The incidence
of many of these conditions is increased in PLWH [for
recent reviews see (7, 8)]. The incidence of CVD may be
decreased following ART and the impact of ART will depend
on the degree to which inflammation and immune activation
are decreased following HIV virologic suppression. This
review focuses on coronary artery disease (CAD) in well-
resourced settings since it is the major cause of mortality in

the general population and is an increasing cause of mortality
in PLWH as the median age of this population is increasing.
Specifically, we look at mechanisms that increase the risk
of sub-clinical atherosclerosis which is elevated in these
populations and leads to the major causes of death from
CVD, i.e., AMI and ischaemic stroke, and focus on the role
of activated monocytes as a likely effector contributing to
these mechanisms.

ELEVATED RISK OF CAD IN
VIROLOGICALLY SUPPRESSED PLWH

In virologically suppressed individuals on stable and effective
ART, CAD has become one of the leading causes of death
(9). Early hospital record-based studies that compared the rate
of AMI in large cohorts of HIV-positive and HIV-negative
individuals presenting at the sameUS hospitals between 1996 and
2004, showed that the relative risk of AMI was 1.75-fold higher
after adjusting for age, gender (sic), race, diabetes, hypertension,
and dyslipidemia (10). Similarly, a study of US veterans enrolled
since 2003 and followed-up until 2009, confirmed that the
incidence of AMI was higher [HR = 1.48 after adjustment
for Framingham risk score (FRS), co-morbidities and substance
abuse] in HIV-positive veterans matched demographically to
HIV-negative veterans (11). In both of these studies, participants
were not restricted to those virologically suppressed by ART,
and information on the proportion of successful virological
suppression were not presented. Similar results were obtained
in analyses of incidence of AMI in the French Hospital
Database on HIV (FHDH-ANRS CO4) cohort (12) where
standardized mortality ratios were 1.4 [95% confidence: 1.3–
1.6] and 2.7 [1.8–3.9] compared to the general population
for men and women, respectively. More recent studies have
reported that the incidence is also higher when restricted to
type 1 events, i.e., those associated with atherosclerotic plaque
rupture or thrombosis, which are relevant as inflammatory
co-morbidities in PLWH who are virologically suppressed on
ART (13).

The higher rate of AMI reported in the above studies contrasts
with a gradual decline of incidence in individuals enrolled via the
Kaiser-Permanente health plan (California, USA) as a function
of when HIV patients started ART. In those individuals who
commenced ART between 2010 and 2011, the rate of AMI
decreased to the point where the incidence was not statistically
different from that in HIV-negative controls (14) and also
no difference was observed in rates of AMI in PLWH who
commenced ART at CD4 cell counts of ≥500/µL (15). Other
studies report a reduction in AMI incidence over time as well;
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Masia et al reported a decrease in standardized incidence rates
in PLWH relative to the general population in Spain when the
intervals between 2006–2009 and 2010–2014 were compared
(16). The observed reduction in AMI risk may be, in part,
due to prescription of ART regimens with lower associations
with CVD, adoption of guidelines for earlier initiation of ART,
and increased awareness of traditional risk factors for CVD
in PLWH. The more frequent interactions of PLWH within
healthcare settings, and the consequent impact on CVD risk
monitoring and treatment, is difficult to correct for in cohort
analyses, and may be an important confounder in comparing
CVD risk in HIV-positive and HIV-negative populations. Also,
we have limited long term data on CVD risk in virologically-
suppressed PLWH and the HIV-related CVD risk in virologically
suppressed PLWH on ART for long periods of time remains to
be established.

WHY IS CVD RISK ELEVATED IN
VIROLOGICALLY SUPPRESSED
HIV-POSITIVE INDIVIDUALS?

There are several potential and recognized factors that may
elevate risk of CVD in PLWH.

Traditional Risk Factors
A higher prevalence of traditional risk factors for CVD such
as smoking (17–19), diabetes (20, 21), dyslipidemia (including
hypercholesterolemia, triglyceridemia, low HDL cholesterol and
abnormal fat distribution) and hypertension (22, 23) is found in
HIV-positive populations in well-resourced settings. As many of
these factors are modifiable, reduction in CVD risk attributable
to traditional risk factors is as effective in PLWH as strategies
and treatments for the general population (24). Recently, Althoff
and colleagues have used data from the North American AIDS
Cohort Collaboration on Research and Design to estimate the
contribution of population-attributable risk factors for AMI, in
addition to other non-AIDS comorbidities, and concluded that
considerable reduction in risk could be obtained by reducing total
cholesterol levels and hypertension in PLWH (25).

Antiretroviral Drugs
The risk of AMI associated with ART use was robustly reported
in the Data collection on adverse events of ARV Drugs (D.A.D)
study (26) in which duration of ART was associated with an
adjusted relative risk of AMI of 1.26 [1.12–1.41] per year.
Specific drugs, or classes of drug, have also been associated
with CV events; recent, but not cumulative use, of abacavir
(27) and continued use of protease inhibitors (26, 28) including
some recently-introduced combinations (29). The study by
Ryom and colleagues using data from the D:A:D cohort,
showed that cumulative use of the boosted protease inhibitor
combination darunavir/ritonavir was associated with a 60%
increase in baseline risk of CVD (using a composite endpoint
that included AMI and stroke, and also sudden cardiac deaths
and invasive cardiovascular procedures) over 5 years of use.
In contrast, use of atazanavir/ritonavir was not associated with

an increase in risk. These findings were not explained when
analyses were controlled for effects of dyslipidemia or a protective
effect of hyperbilirubinemia. Deleterious effects of antiretroviral
drugs contribute to traditional CVD risk factors including
increased circulating levels of cholesterol and triglycerides
(26), visceral adiposity (30), reduced high-density lipoprotein-
associated cholesterol (HDLc) levels (31), hypertension (32, 33)
and metabolic syndrome (34–36) shown by studies linking
the prevalence of these syndromes with years of ART (33).
The hypothesized mechanism for the effect of current use of
abacavir on AMI is via increased platelet reactivity, which
reverses when abacavir is ceased (37, 38). Antiretroviral drugs
probably mediate much of their effect on hypertension via their
effects on other components of the metabolic syndrome such
as diabetes, changes in HDL and low-density lipoprotein (LDL)
levels and alterations in fat distribution which are themselves
associated with hypertension; for a more complete discussion
see (23, 33). Risks associated with ART can be ameliorated by
avoidance of abacavir and specific protease inhibitors. Another
factor is the effect that weight gain following ART initiation
with various PI-based, integrase inhibitor-based and earlier non-
thymidine analog-based regimens may have on CAD risk (39,
40). For further information, the reader is referred to a recent
comprehensive review (41).

HIV-Related Chronic Inflammation
Atherosclerosis is an inflammatory disease (42). A recent meta-
analysis has confirmed an association of plasma markers of
inflammation with CVD in PLWH (43) particularly interleukin
6 (IL-6), D-dimer and high-sensitivity C-reactive protein (hs-
CRP), which are the most extensively studied biomarkers.
However, in individual studies measuring various outcomes
related to CVD, biomarkers of myeloid activation such as sCD14
and sCD163 have been more closely associated [(44–46) and
discussed further below].

Monocytes/macrophages possess a full complement of pattern
recognition receptors that promote inflammation by stimulating
production of high levels of pro-inflammatory factors. Measuring
their activation status, most conveniently via soluble plasma
markers or cell surface markers on monocytes, is therefore
a valuable approach to assessing inflammation and innate
immune activation in individuals. Using cross sectional studies
we reported that virologically suppressed PLWH have higher
levels of circulating plasma biomarkers of inflammation and
of myeloid activation compared to age-matched HIV-negative
individuals, but similar to levels found in much older individuals
(47, 48) which is consistent with findings from other laboratories
(45, 49). We further estimated that the increase in immune
activation was equivalent to an additional 2–4 years of aging in
virologically suppressed individuals (50) and reasoned that this
increased the risk of age-related inflammatory co-morbidities
by a commensurate rate. We measured phenotypic markers
on blood monocytes and reported their continued alteration
in virologically suppressed individuals (47), however plasma
biomarkers of monocyte/macrophage activation such as CXCL-
10 correlate with monocyte subset and phenotypic alterations
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(51) and are a more convenient and robust measure in
clinical studies.

The significance with respect to CAD of the extent to which
immune activation and inflammation persist in PLWH on
effective ART is evident from studies showing that measures of
myeloid activation and inflammation are associated with non-
calcified plaque (52, 53), coronary artery calcium (54, 55), carotid
intima-media thickness (46) and predict cardiovascular events
and death (56–59). Expression of tissue factor on monocytes,
important for initiating platelet activation, is increased by TLR
ligands such as LPS elevated in settings of HIV infection (60),
although not at the concentrations found in the plasma of PLWH
(61), and by thrombin (61). Schechter and colleagues further
showed that tissue factor expression was restricted to CCR2+
classical monocytes (a discussion of human monocyte subsets is
given below) although others have implicated CD16+monocytes
(62). While a discussion of late events in atherosclerosis and
mechanisms of plaque rupture are outside the scope of this
review, it is important to note that in a primate model of
HIV, administration of an inhibitor of tissue factor activity
on monocytes, Ixolaris, decreased immune activation (61).
The association of monocyte activation markers and soluble
myeloid activation biomarkers with incidence of CAD and with
cardiovascular events is strong circumstantial evidence for a
mechanistic role of activated monocytes in these processes.
However, the mechanisms by which monocytes may contribute
to CAD are best identified by functional comparisons of
these cells present in PLWH and in well-matched HIV-
negative individuals.

HIV-Specific Mechanisms
HIV produces pathogenic factors such as the Negative Regulatory
Factor, Nef, that are potential mediators of HIV-related
morbidities. HIV-infected foam cell macrophages have been
detected in coronary arteries obtained post-mortem from
HIV-positive individuals, and Nef has been shown to stimulate
their formation by inhibiting reverse cholesterol efflux from
macrophages (63), suggesting a direct mechanistic link.
The significance of these observations is discussed in more
detail below.

HIV-ASSOCIATED ATHEROSCLEROSIS

AMI follows thickening of the arterial wall by atherosclerotic
plaque formation and eventual occlusion of coronary arteries.
Ischaemic strokes result when unstable atherosclerotic plaques
rupture and lodge in the brain, while peripheral artery disease
shares similar initial events to CAD of plaque formation and
narrowing of arteries at other sites. Both are significant co-
morbidities elevated in PLWH.Atherosclerotic plaques identified
in virologically suppressed PLWH are more likely to be non-
calcified plaques considered to be unstable and high risk (64, 65).

As atherosclerosis underlies coronary artery diseases it is
important to understand whether it is more prevalent in
virologically suppressed HIV-positive individuals and how HIV
impacts its development. Early studies reported increased pre-
clinical atherosclerosis assessed by surrogate measures such

as carotid artery intima media thickness (cIMT) in PLWH
compared to HIV-negative controls (66, 67). More recently,
Leon et al. reported that in a well-controlled virologically
suppressed HIV-positive population with a low cardiovascular
risk, as measured using the FRS, of <10%, 21% had sub-clinical
atherosclerosis determined by carotid artery ultrasonography
(68). In this group of patients, who had median FRS of 1% and all
with an FRS<8%, traditional risk factors did not account for the
high prevalence of sub-clinical atherosclerosis, but the authors
found high IL-6 levels (>6.6 pg/mL) resulted in an odds ratio
of 9 for sub-clinical atherosclerosis. These findings suggest an
involvement of inflammation in heightened CVD risk in these
subjects rather than the traditional risk factors accounted for
by FRS (age, smoking, dyslipidemia, total and HDL cholesterol,
systolic blood pressure).

An important factor underlying increased immune activation
in PLWH is that most are cytomegalovirus (CMV) seropositive,
and have an impaired ability to control CMV reactivation. CMV
infection in PLWH has been associated with expansion of a
unique population of adaptive natural killer cells which serve
as a sensitive marker for the presence of CMV infection (69,
70). Using small cross-sectional studies of 93 PLWH and 37
healthy, HIV-negative controls, it has been shown that sub-
clinical atherosclerosis (as measured by cIMT) is correlated
with CD8T cell responses to CMV antigen (pp65) (66). CMV
infection in PLWH is also associated with expansion of CD8+
T cells expressing fractalkine receptor (CX3CR1; involved in
endothelial homing and adhesion) and the PAR-1 receptor which
can be activated by thrombin, although the impact of these
cells on clinical atherosclerosis is unknown (71). Other studies
have found correlations between CMV antibody (IgG) levels
and carotid artery stiffness in HIV-positive women, although
association of IgG with the prevalence of cardiovascular lesions
was restricted to those who achieved virologic suppression
(72). More recently, in a small cross-sectional study of 105
PLWH matched to 105 healthy, age- sex- and smoking-matched
controls, a correlation was observed between CMV IgG levels and
cIMT (73).

There are few well-controlled studies comparing the relative
prevalence of atherosclerosis in well-managed virologically
suppressed PLWH to appropriate HIV-negative controls. One
such study found that the prevalence of coronary plaque as
measured by Coronary Computed Tomography Angiography
(CCTA) was higher in 78 HIV-positive men (of whom 95% were
currently receiving cART and 81% were virologically suppressed)
compared to 32 HIV-negative men recruited from the same
clinics in Boston (59 vs. 34%, p = 0.02) (74). A similar larger
study from the Multicentre AIDS Cohort Study confirmed these
findings with a 1.25-fold higher prevalence of plaque after
adjustment for cardiovascular risk factors (75). In contrast,
studies from the Swiss HIV cohort have reported little or no
increase in prevalence of high risk, non-calcified plaque and
lower coronary atherosclerosis involvement than HIV-negative
persons with a similar FRS (76). A smaller study demonstrated
that HIV-positive women are more likely to have non-calcified
plaque compared to HIV-negative women, after controlling
for known cardiovascular risk factors, although prevalence of
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calcified plaque was not increased (52). The presence of non-
calcified plaque is associated with higher levels of themacrophage
activation marker sCD163 and with CVD in HIV-positive
individuals (52, 53). A meta-analysis of 9 studies involving
1,229 HIV-positive individuals and 1,029 HIV-negative controls,
concluded there was an increased prevalence of non-calcified
plaque in PLWH as detected by CT (OR= 3.26 [1.30–8.18]) (77).
Larger studies are required to measure the relative prevalence
of non-calcified plaque in PLWH who commence ART with
well-preserved CD4 counts.

ACCUMULATION OF ACTIVATED
MACROPHAGES IN THE ASCENDING
AORTIC ARCH IS ASSOCIATED WITH CVD
IN HIV-POSITIVE INDIVIDUALS

[18F] FDG-PET is a technique which uses positron emission
tomography to image uptake of [18F] 2-deoxyglucose into
cells and tissues. There is evidence [for a summary, refer to
papers listed in (44)], and it is assumed, that the main cell
type that accumulates [18F] 2-deoxyglucose is the activated
monocyte-derived macrophage, and that therefore the intensity
of radioactivity detected by PET reflects accumulation and
activation of monocytes to the activated endothelium. More
specific macrophage tracers are being developed which
leverage the fact that macrophages and dendritic cells
express CD206, the mannose fucose-receptor: these include
99mTc-diethylenetriaminepentaacetic acid—mannosyldextran
(Tilmanocept or LymphoSeekTM) (78, 79) and radiolabeled
anti-MFR monoclonal antibodies (80) but they have yet to be
used extensively in studies of CVD risk in HIV.

In a proof-of-concept study, a greater uptake of [18F] FDG
occurred in both the carotid arteries and the aorta of 9 PLWH
compared to 5 HIV-negative participants (81). Similarly, in
27 virologically suppressed HIV-positive individuals without
evidence of cardiovascular disease and age-, sex-, and CVD
risk-matched to 27-HIV-negative individuals, the HIV-positive
participants had greater accumulation of 18F radiolabel in the
ascending aortic arch at levels comparable to those measured
in 27 HIV-negative individuals with cardiovascular disease (44).
These results provide evidence that HIV infection, even with
successful virologic suppression, is associated with similar levels
of arterial inflammation as found in individuals with pre-
existing CVD. Follow-up studies from the same group showed
that the arterial inflammation in a similar group of 41 HIV-
positive patients was associated with higher numbers of high-risk
coronary plaque (82).

The accumulation of [18F] FDG is evidence for activated
macrophages accumulating in the arteries of the heart,
and its association with plaque with low attenuation and
positive remodeling emphasizes the clinical significance of this
accumulation, but it does not provide a mechanism by which
this occurs. In HIV-positive participants, higher accumulation
of FDG was moderately associated with elevated plasma levels
of sCD163, but not D-dimer or hs-CRP (44). This is consistent
with a specific link with activated macrophages but not with

generalized inflammation or thrombotic disease. Unfortunately,
plasma markers of endothelial activation were not investigated.
Taken together these studies suggest that atherosclerosis is
elevated in PLWH receiving effective ART due to a greater
accumulation of monocyte-derived macrophages in coronary
arteries leading to formation of non-calcified, high risk plaques.
Significantly, it has been reported that whereas treatment of
PLWH with atorvastatin improved lipid profiles and reduced
the prevalence of non-calcified plaque in these individuals
after 12 months, there was no reduction in the accumulation
of FDG measured by [18F] FDG-PET (83). This suggests that
accumulation of activated monocyte-derived macrophages in the
heart is caused by factors other than dyslipidemia and that it may
represent an independent risk factor for CVD in PLWH. This
may be specifically associated with myeloid cell activation. It is
therefore important to understand how effective therapies used
to reduce hypercholesterolemia are at reducing inflammation
and monocyte activation that may contribute to CVD in
PLWH. Initial reports from the SATURN-HIV trial showed that
whereas treatment with the statin rosuvastatin was effective at
reducing LDLc levels in HIV patients after 24 weeks, it was not
effective in reducing inflammatory markers studied including
well-established markers such as IL-6, hsCRP, and soluble
TNF receptor isoforms (84). In contrast, lipoprotein-associated
phospholipase A2 [an enzyme produced by myeloid cells and an
independent predictor of CVD (85)] was significantly decreased
in the statin arm compared to the placebo arm of the trial.
Follow up studies of the same cohort indicated greater reduction
in immune activation as assessed by various biomarkers: after
48 weeks, treatment with rosuvastatin reduced levels of the
inflammatory marker IP-10 (interferon-γ-inducible protein-10
i.e., CXCL10) and the myeloid activation marker sCD14, as
well as the proportion of non-classical monocytes expressing
tissue factor (86). However, even after 48 weeks treatment with
rosuvastatin, inflammatory markers IL-6, hsCRP, D-dimer and
soluble TNF receptors were not reduced in this study (ibid).
These data underscore the importance of monocyte activation
in the mechanism leading to increased atherosclerosis and
emphasizes the necessity of examining the functional properties
of monocytes in these individuals to understand how their
altered behavior might favor atherosclerotic plaque formation.

INITIATION OF ATHEROSCLEROTIC
PLAQUE FORMATION

Atherosclerotic plaques tend to form in arteries at sites of
perturbed blood flow such as near bifurcations in arteries. The
initiation of atherosclerotic plaque formation is accelerated by
the presence of an activated endothelium at these sites. In
individuals with traditional risk factors such as high levels
of triglycerides, total cholesterol, or LDLc in plasma, lipid
accumulates in the intimal layer beneath the endothelium
where it is oxidized by reactive oxygen intermediates produced
by activated endothelial cells and macrophages. The action
of oxidative pathways derived from endothelial cells and
macrophages produce different oxidized species in LDL particles
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FIGURE 1 | The effect of HIV infection on monocyte- and inflammation-mediated mechanisms of foam cell formation. HIV infection causes systemic monocyte

activation (I) due to factors unresolved by ART including residual HIV viremia, CMV reactivation, elevated bacterial ligands and oxidative stress. Gut bacterial ligands

(eg., lipopolysaccharide; LPS) activate classical and intermediate monocytes via CD14/TLR4 receptor while viral ligands activate non-classical monocytes via TLR7/8

(144). Unresolved inflammation also activates the endothelium (II) which secrete chemokines to attract different monocyte subsets (not illustrated) via specific

chemokine receptors, CCR2, CCR5, and CX3CR1 (99). Intermediate monocytes in particular exhibit increased pro-atherogenic properties (127). Activation of the

endothelium and of monocytes results in greater monocyte adherence, rolling, firm adhesion and extravasation, the last via either paracellular, or transcellular

mechanisms (III) [reviewed in (145)]. Cholesterol accumulates in the intima due in part to ART-induced dyslipidemia and to increased traditional risk factors in PLWH

(IV). This is oxidized by the activated myeloid and endothelial cells which produce reactive oxygen intermediates (ROS) (V). Monocytes that have migrated into the

intima ingest LDL and oxLDL via LDL receptor and CD36/SR-A1/II (131), respectively and either mature into monocyte–derived dendritic cells (VI) and reverse migrate

out of the intima or mature into immobile foam cells (VII). Changes in monocytes, including decreased ABCA1 expression (126), favors pathway (VII) over pathway (VI).

Oxidation of HDL (VIII) that also occurs in virologically suppressed PLWH impairs the protective function of this lipoprotein and further increases the risk of

atherosclerotic plaque formation. Direct infection of macrophages in the intima also induces an atherogenic phenotype promoting foam cell formation (IX).

(87, 88) but both lipid species have been found in atherosclerotic
plaque-derived lipids, suggesting that both endothelial cells and
macrophages participate in this pathway (89). Oxidized LDL
(oxLDL) is a known risk factor for CVD which has been shown
in one study of HIV-positive individuals (91% of whom received
ART) (90) and in a second study (of patients with varying degrees
of HIV viremia) (91) to be elevated in plasma, and is associated
with subclinical atherosclerosis in this population (92, 93).

THE ROLE OF MONOCYTE SUBSETS IN
ATHEROSCLEROTIC
PLAQUE FORMATION

Monocytes initiate the process of atherosclerotic plaque
formation following their transmigration from blood into the

intima of arteries at sites of activated endothelium and cholesterol
deposition (“fatty streaks”) (Figure 1). Here they mature into
foam cells which are macrophages containing large numbers of
lipid droplets (94). They also have important inflammatory roles
in atherosclerotic plaque progression and rupture. The present
review focuses on their role in atherosclerotic plaque initiation.

Monocytes are currently classified into subsets based on
the expression of CD14 which is the co-receptor for Toll-
like receptor 4 (a pattern recognition receptor that recognizes
lipopolysaccharide derived from gram-negative bacterial cell
walls) and CD16 (the intermediate affinity IgG receptor,
FcγRIII). The majority of monocytes in circulation are
CD14hiCD16- classical monocytes which represent ∼90% of the
total in healthy individuals, while non-classical or patrolling
monocytes (CD14dimCD16+) and intermediate monocytes
(CD14hiCD16+) are minor subsets which each represent∼5% of
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circulating monocytes. It is likely that monocytes in circulation
represent a continuum of classical monocytes newly emerging
from the bone marrow and gradually maturing into intermediate
then non-classical monocytes (95) or re-emerging from tissue
sites such as the spleen (96, 97).

Monocyte subsets have different functional properties and
must therefore be considered separately with respect to their
roles in inflammation and atherosclerosis. Recruitment of
monocytes to arteries at sites of inflammation is directed by
chemokines released by activated endothelial cells, but the
multiplicity of chemokines and their receptors makes it difficult
to determine the role of individual chemokines. Mouse models
have been particularly valuable in this context: using the
ApoE knockout/western-type diet model of atherosclerosis, early
experiments revealed the importance of the chemokine receptor
CCR2 in atherogenesis (98) and subsequently that the murine
equivalent of the classical monocyte subset (Ly6Chi CCR2+
monocytes) migrates in response to the chemokine CCL2 (99,
100). It was reported by Tacke et al that classical monocytes
also migrate into atherosclerotic plaques in response to the
fractalkine receptor, CX3CR1 which is unexpected since they
do not express high levels of this receptor, and furthermore
that non-classical monocytes (Ly6CloCX3CR1+) mainly migrate
into atherosclerotic lesions in response to CCR5 but not
CX3CR1 even though the latter is highly expressed in this
subset (99). The recruited monocytes were shown in these
studies to differentiate into lesional macrophages and therefore
to potentially participate in disease progression. Neither study
examined the migration of intermediate monocytes which are
not a well-defined subset in mice. Support for the role of
CCR5 in monocyte recruitment into atherosclerotic plaques
has been obtained using the ApoE knockout mouse model of
atherosclerosis, where it was shown that monocyte recruitment
into plaques, and plaque progression, was reduced with treatment
using the CCR5 antagonist Maraviroc, which is of relevance
to PLWH who may be treated with ART regimens containing
this drug (101). Following AMI, monocytes are also recruited
into atherosclerotic plaques with distinct kinetics to co-ordinate
left ventricular repair. In this setting, classical monocytes are
recruited initially in response to CCR2 ligands, where they
phagocytose necrotic debris and orchestrate pro-inflammatory
responses (102). Non-classical monocytes are recruited later and
participate in tissue repair, angiogenesis and extracellular matrix
deposition, although in this study their migration was reported
to be dependent on fractalkine receptor (ibid).

There are no extensive data on how HIV infection, especially
in settings of virologic suppression with ART, affect chemokine
receptor expression on individual monocytes to modulate
monocyte recruitment to atherosclerotic lesions. It is reported
that HIV-infection alters proportions of CCR2- and CX3CR1-
expressing monocytes in circulation, but this may be due
to alterations in the distribution of monocyte subsets. In
a cohort of virologically suppressed HIV-positive individuals
with low cardiovascular risk, we have previously demonstrated
an association between the proportion of CX3CR1+ CD16+
monocytes and cIMT, supporting a potential link between
monocyte recruitment and atherosclerosis (103). We, and others,

have reported that intermediate and non-classical CD16+
monocytes, are expanded in viremic PLWH (104–108) but no
difference in subset proportions is seen in PLWH who are
virologically suppressed (109). Recently, using a well-controlled
longitudinal cohort of PLWH commencing ART, we showed that
intermediate and non-classical monocyte proportions decreased
rapidly on commencement of ART, reaching control levels within
∼6 months of therapy (108). Taken together, these data suggest
that when assessing the roles of individual subsets in CVD risk
and progression, the impact of HIV infection and of ART on
monocyte subsets must be considered.

Recruitment of monocytes to sites of atherosclerotic plaque
formation is favored by increased expression of adhesion
receptors such as ICAM-1 on activated endothelial cells
(110). Systemic inflammation may also activate circulating
monocytes to increase expression of adhesion receptors such
as CD11b/CD18 and CD11d/CD18 (111) which recognize their
cognate ligands such as ICAM-1 and VCAM-1 expressed on
activated endothelium (112). Following attachment, monocytes
transmigrate across the endothelium and enter the intima where
they ingest deposited lipids via scavenger receptors including
CD36 and scavenger receptor A1 and AII, the major receptors
for oxLDL expressed on macrophages. Monocytes can reverse
transmigrate and transfer lipid to acceptor molecules such as
HDL, a process thought to maintain the health of the artery
and regress atherosclerotic plaque development (113, 114) or
they can differentiate into foam cells, which are large, immobile
cells (115) characterized by lipid accumulation in lipid droplets
and lysosomes, and are among the earliest pathogenic feature
of atherosclerotic plaque formation. Lipids derived from oxLDL
accumulate in lysosomes and in this intracellular compartment,
unlike lipids found in lipid droplets, do not readily participate
in cholesterol efflux pathways (116). Lysosomal foam cell lipids
persist as a stable store, as data from the White Carneau Pigeon
model of atherosclerosis indicates, after a change in diet (117).
Thus, the differentiation/maturation pathway of the monocyte,
which is dictated in part by the type of lipid ingested, may
determine the initiation of atherosclerotic plaque development.

While models of atherosclerotic plaque development rightly
emphasize the role of lipid accumulation in the artery wall as the
initial stimulus activating the endothelium, attracting monocytes
and acting as a substrate for foam cell formation, it is also
clear that inflammatory mechanisms intersect this mechanism
by independently activating monocytes and endothelial cells
and oxidizing lipids by promoting oxidative stress pathways
(118) (See Figure 1). However, as discussed above, PLWH
may have elevated risk of atherosclerosis independent of
traditional risk factors such as elevated total cholesterol and
LDLc, and this increased risk may in part be accounted
for by their increased levels of inflammation and monocyte
activation. It is important to realize that foam cell formation
by monocyte-derived macrophages may occur in response
to toll-like receptor ligands including HIV ssDNA (119),
rather than lipoprotein particles [reviewed in (118)] which
is of relevance to HIV infection where there is evidence
for elevated levels of circulating endotoxin as well as other
TLR ligands derived from microbial translocation even in
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virologically suppressed individuals (47, 120, 121). Finally,
as discussed further below, foam cells may be induced
following alterations in macrophage cholesterol metabolism
and efflux and metabolic changes in circulating monocytes
may predispose them to differentiate into foam cells following
transendothelial migration.

HOW DOES HIV INFECTION INFLUENCE
MONOCYTES TO PROMOTE CVD?

The association of plasma biomarkers of myeloid activation
with CVD in HIV-positive individuals, especially where other
markers of inflammation are not strongly associated (44,
53), suggest that activated monocytes or macrophages play a
direct role in promoting atherosclerosis. However, while plasma
levels of molecules released from activated myeloid cells such
as sCD163 may be useful prognostic biomarkers, they do
not provide information about the mechanistic link between
CVD and particular myeloid cell types and their functions.
For this, functional studies of cells obtained from PLWH
are required.

Macrophages containing the major HIV antigen (p24 capsid
protein) have been detected in coronary arteries present in
autopsy material obtained from patients receiving ART (63).
These cells were adjacent to the lipid core of the plaque and
had morphological characteristics of foam cells. Using an in
vitro infectionmodel, Bukrinsky and colleagues showed that HIV
infection of monocyte-derived macrophages impaired reverse
cholesterol transport and down modulated the cholesterol
transporter ATP Binding Cassette family member A type
1 (ABCA1) via a mechanism requiring the HIV accessory
protein, Nef (122). This molecule is the major transporter
through which cholesterol is effluxed from macrophages to
acceptor molecules like apolipoprotein A1 in HDL particles.
It was further shown that injecting Nef protein into mice to
achieve circulating levels reported in viremic HIV+ individuals,
exacerbated dyslipidemia and development of plaque in the
high fat diet ApoE−/− mouse model of atherosclerosis.
This work suggests a plausible mechanism for promoting
atherosclerosis in PLWH, but its significance to their CVD risk
depends on the prevalence of HIV-infected macrophages in
coronary arteries and on the concentration of Nef circulating
in virologically suppressed individuals, for which there is
currently a paucity of information. It would be of interest
to use modern techniques such as DNA- and RNAscope to
evaluate HIV infection in resected coronary arteries and to
accurately determine circulating levels of Nef protein in a current
cohort of PLWH.

Given the persistence of monocyte activation in ART-
treated PLWH and its association with CVD, we reasoned
that monocytes present in PLWH may have pro-atherogenic
functional properties induced via bystander mechanisms
dependent on HIV infection, even if these cells are not
infected with the virus. To address this, we used a static
model of atherosclerotic plaque development in which a type
1 collagen matrix is overlaid with a monolayer of primary

human endothelial cells (HUVEC) and monocytes freshly
isolated from study subjects are added (123, 124). In this model,
monocytes transmigrate across the HUVEC monolayer to
enter the collagen matrix, and the fate of the monocytes is
followed over the subsequent 48 h. This model has been used
extensively to determine the reverse transmigration properties
of monocytes and the endothelial cell-expressed molecules
such as PECAM-1 governing extravasation (113, 125), but
had not previously been used to compare monocyte behavior
from clinical cohorts. Using this model, we have shown that
monocytes isolated from virologically suppressed PLWH have
a higher propensity to mature into foam cells than monocytes
from age-matched HIV-negative individuals, and that plasma
from these individuals contains factors that promote this
functional phenotype (126). In this study, monocytes from
PLWH also exhibited impaired reverse transmigration out of the
collagen and across the HUVEC monolayer, which is possibly
linked to their greater propensity to mature into immobile
foam cells. These functional defects were accompanied with
impaired cholesterol efflux and reduced ABCA1 expression
at the mRNA level. We are currently examining monocytes
isolated from a larger group of virologically suppressed
PLWH with low/medium FRS, to determine whether we can
detect the same monocyte atherogenic phenotype and, if so,
whether interventions to reduce CV risk will improve their
functional properties (Angelovich, Hearps, Trevillyan, Hoy, and
Jaworowski unpublished).

Experiments we have conducted using this in vitro model
have shown that the intermediate monocyte subset has the
greatest propensity of the three monocyte subsets to differentiate
into foam cells (127) and expresses the highest levels of
intracellular TNF and IL-6, both in the steady state and in
response to LPS (128). Thus, to the extent that the proportion
of this monocyte subset is elevated in PLWH, this may
exacerbate the pro-atherogenic properties of monocytes in
these individuals.

It is interesting that monocytes isolated from virologically
suppressed PLWH possess similar functional defects in
cholesterol transport as the HIV-infected monocyte-derived
macrophages described by Bukrinsky and colleagues, although
there is no evidence to date that Nef is the circulating factor
causing this functional change in the subjects we studied.
Monocytes from relatively old but healthy HIV-negative
individuals have similar properties (127) strengthening the
view that there are similarities in monocyte inflammatory
behavior induced by HIV and by healthy aging, and
suggesting that mechanisms apart from Nef contribute to
this phenotype.

The model we use to study monocyte atherogenicity in
vitro involves activation of the endothelial monolayer with
TNF, simulating an inflammatory milieu in vivo. TNF can
decrease expression of ABCA1 (129) and via this mechanism
promote foam cell formation, but in the above experiments
it was removed from the culture medium before monocytes
were added. Furthermore, ABCA1 expression was decreased
in freshly isolated monocytes from HIV-positive subjects.
The factors that reduce ABCA1 expression in monocytes
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from PLWH in vivo remain to be established. As a static
model, this system does not provide reliable information about
the adhesion and transmigration properties of monocytes
ex vivo, only their behavior post migration. Measurements
conducted under shear flow conditions will need to be
made to address whether monocytes from virologically
suppressed PLWH have abnormal endothelial adhesion and
transmigration properties.

ABNORMAL LIPOPROTEINS IN PLWH MAY
INFLUENCE MONOCYTE BEHAVIOR

It is important to consider that the pro-atherogenic phenotype
of monocytes from virologically suppressed HIV-positive
individuals revealed using the atherosclerotic plaque model is
evident in the absence of added exogenous lipid or lipoprotein
particles. However, we have used the same model to show that
transmigrated monocytes can be induced to differentiate into
foam cells by the addition of known atherogenic lipids such
as oxLDL (124) and by LPS (127) into the culture medium.
This may, in part, explain the pro-atherogenic properties
of plasma from these individuals. LDL is oxidized (89) and
taken up by macrophages via scavenger receptor A and
CD36 (130–132) and since their expression is not regulated
in a cholesterol-dependent manner, this promotes foam
cell formation.

HDL is normally a protective lipoprotein with respect to
CVD since its major protein component, apolipoprotein A1,
functions as a cholesterol acceptor from cells. However, HDL
in plasma of PLWH exhibits an increased level of oxidation,
and the levels of oxidized HDL (oxHDL) correlate with
markers of systemic inflammation such as IL-6 and hsCRP
(133). We have isolated HDL particles from plasma obtained
from a limited number of virologically suppressed PLWH,
incorporated the isolated particles into the atherosclerotic plaque
model and showed that they promote foam cell formation
by monocytes from healthy, HIV-negative individuals. This
behavior was associated with defective redox properties of
the HDL particles (134). Functional defects in HDL particles
isolated from PLWH have been reported by others, specifically
a decreased level of the enzymes Paraoxonase (PON) 1
and 3 and a decreased level of PON redox activity (135).
PON enzymes have important anti-inflammatory properties:
in the context of atherosclerosis they inhibit the oxidation
of LDL particles (136–138) and reduce monocyte-attracting
chemokine expression by the endothelium (139, 140). PON
also inhibits cholesterol biosynthesis (141) and stimulates
cholesterol efflux from macrophages (89), properties that reduce
the propensity of macrophages to develop into foam cells.
While human macrophages do not express PON1 or PON
3 these effects can be mediated by PON delivered via HDL
particles (ibid).

The behavior of monocytes isolated from virologically
suppressed PLWH and of monocytes from healthy subjects in

response to HDL particles from PLWH are consistent with the
observation of lower PON1 and 3 levels in these particles. As
PON can be displaced from HDL particles by inflammatory
proteins such as serum amyloid A in circumstances such as acute
infection (142, 143) it will be critical to understand which factors
promote loss of PON1 and 3 in chronic HIV infection.

CONCLUSIONS

While the relative risk of death from AMI has decreased
significantly for PLWH and has approached that for comparable
members of the general community, CVD will become an
increasing cause of morbidity and mortality as the HIV-
positive population ages. It is still unclear to what extent the
risk of atherosclerosis is elevated in patients who commence
ART at high CD4 counts, especially as individuals may
be treated with ART for many decades, which is longer
than follow up studies conducted to date. Monocytes are
principal effectors that initiate atherosclerotic plaque formation
at sites of endothelial activation and damage. The “decision”
of monocytes to differentiate into foam cells rather than
extravasate from the intima influences the chance that initiation
and progression of atherosclerotic plaques occurs. Functional
studies using freshly isolated monocytes from virologically
suppressed HIV-positive individuals are consistent with a
phenotype that promotes atherosclerosis and therefore suggest
that therapies designed to target this phenotype will prove
beneficial. Future studies should assess the impact of therapies
that reduce inflammation including statins and agents that target
pathogen-induced monocyte/macrophage activation to reduce
the tendency of monocytes to migrate across activated endothelia
and differentiate into foam cells. A better understanding of the
transcriptional changes in monocytes in PLWH, especially those
involved in cholesterol/lipid metabolism and accumulation, will
inform pathways that need to be targeted to prevent this.
Emerging technologies such as improvements to [18F] FDG-
PET might be useful in assessing how successful interventions
are at reducing the accumulation of activated macrophages in
the heart. PLWH should be monitored for CV risk, encouraged
to reduce modifiable risk factors and treated appropriately. The
use of novel biomarkers such as oxLDL and oxHDL to improve
risk prediction in the setting of HIV infection should also
be considered.
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