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The hallmark of human early pregnancy is the accumulation of a unique population

of Natural Killer (dNK) cells at the main maternal-fetal interface, the decidua basalis.

dNK cells play a crucial role in successful placentation probably by orchestrating the

invasion of trophoblast cells deep into the decidua basalis and remodeling of the maternal

spiral arteries. Recent advances in the field emphasize the importance of the local

microenvironment in shaping both the phenotype and the effector functions of these

innate lymphoid cells. Despite slow progress in the field, ex vivo studies revealed that

dNK cells sense and destroy infected cells in order to protect the fetus from invading

pathogens. In this review, we will discuss key features of dNK cells during healthy

pregnancy as well as their functional adaptations in limiting pathogen dissemination to

the growing conceptus. The challenge is to better understand the plasticity of dNK cells

in the maternal-fetal interface. Such insights would enable greater understanding of the

pathogenesis in congenital infections and pregnancy disorders.
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IMMUNOLOGICAL PARADOX OF HUMAN PREGNANCY

Seven decades ago, Sir Peter Medawar wondered: “How does the pregnant mother contrive to
nourish within itself, for many weeks or months, a fetus that is an antigenically foreign body?”
(1). This interrogation highlighted the immunological paradox of pregnancy. Ever since, the
compelling relationship between two mismatched individuals, the mother and her fetus, prompted
the development of a novel reproductive immunology research stream. The original theories
claiming the antigenic immaturity of the fetus, inertness of the maternal immune system, and
the presence of an anatomical barrier between the embryo and its mother have proven wrong.
As a result, the modern concept of active immune crosstalk emerged. Recent advances in the
field advocate a unique bidirectional immune dialogue involving the fetus and mothers’ innate
as well as adaptive immune cells; namely innate lymphoid cells, regulatory T cells, macrophages,
and dendritic cells (2–7). In this review, we discuss the current understanding of how a unique
population of type 1 innate lymphoid cells (ILC-1), the uterine Natural Killer cells found at the
maternal decidua basalis (called hereafter dNK cells), supports the development of the fetal placenta
while maintaining active immune surveillance against invading pathogens.

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.01397
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.01397&domain=pdf&date_stamp=2019-06-28
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nabila.jabrane-ferrat@inserm.fr
https://doi.org/10.3389/fimmu.2019.01397
https://www.frontiersin.org/articles/10.3389/fimmu.2019.01397/full
http://loop.frontiersin.org/people/75437/overview


Jabrane-Ferrat Key Features of Human dNK Cells

HUMAN PREGNANCY

Every month, the uterine mucosa or endometrium undergoes
singular anatomical changes, the most crucial ones occurring
during pregnancy. Implantation of the semi-allogeneic blastocyst
is synchronized with massive adaptations of the uterine mucosa
which transforms into the decidua basalis. The blastocyst
produces large amounts of the chorionic gonadotrophin
hormone (CGH) to maintain high levels of progesterone. These
hormonal changes prevent menstruation, destruction of the
decidualized endometrium, regulate immune cell functions, and
promote angiogenesis. Other factors, such as the leukemia
inhibitory factor (LIF), IL-6, and matrix metalloproteinases, are
also highly expressed during the implantation process.

In humans, the embryo is completely embedded within
the endometrium and the implantation is termed interstitial
hemochorial. The development of the placenta is initiated with
the apposition of the trophectoderm layer of the blastocyst
to the uterine mucosa. The rapid proliferation of this extra-
embryonic cell layer generates a unique type of placental cell,
the trophoblast, which will further develop into the floating and
anchoring chorionic villi of the placenta. The underlying stromal
core of the placental villi originates from the extraembryonic
mesoderm. The proliferative cytotrophoblasts (CTBs) follow two
differentiation programs (8–12). In the first program, CTBs
fuse to form the syncytiotrophoblast (STB), a multinucleated
epithelial outer layer of the floating chorionic villi. The STBs,
in direct contact with maternal blood, ensure nutrient, and
gas exchanges for the conceptus. In the second program,
CTBs in the cell column of the anchoring villi differentiate
into extravillous trophoblasts (EVTs). CTBs and EVTs exhibit
differential expressions of cell adhesion molecules, integrins,
growth factors as well as the immune inhibitory molecules Fas
Ligand, TRAIL, and Indoleamine 2,3-dioxygenase (IDO) (13).
Consistent with the role of some of these factors in dampening T
cell response, it is possible that EVTs contribute to fetal tolerance.

Unlike most cells of the body, EVTs express only the less
polymorphic HLA-C and non-classical HLA-E and HLA-G
molecules (14, 15). It is believed that these HLA molecules
mediate recognition of invading EVTs by maternal dNK cells
rather than T cells (16, 17). The recognition of HLA-G molecule
and HLA-G peptides presented in the context of HLA-E may
contribute to NK cell hyporesponsive (18–20). Even if the
detailed mechanisms of EVT invasion of the placental bed are
still largely unknown, progressive remodeling of maternal spiral
arteries by EVTs seems to follow two separate waves (21, 22).
In the first 10–12 weeks, endovascular migration and plugging
of the maternal arteries prevents blood flow to the intervillous
space and creates a hypoxic environment that is necessary
for placental and fetal development (23, 24). These original
claims were confirmed by in vivo monitoring of the oxygen
tension at different gestational ages (25, 26). The second wave
of EVT invasion, starting around 14 weeks, stops at the inner
myometrium. The resulting intramural incorporation of invasive
EVTs into the vessel wall and erosion of the trophoblastic plug
are needed to establish proper blood flow to the intervillous
space of the developing placenta (27–29). These early and late

developmental steps result in the establishment of privileged
sites, where embryonic trophoblasts intermingle with maternal
cells. The best examples are the decidua, hosting a large number
of innate immune cells in early pregnancy, and the intervillous
space, where maternal blood bathes the chorionic floating villi
(Figure 1). Flaws in EVT invasion and arteries’ remodeling can
lead to placental dysfunction andmajor pregnancy disorders such
as preeclampsia, fetal growth restriction (FGR) and recurrent
miscarriage (30).

NATURAL KILLER CELLS

Natural killer (NK) cells are cytotoxic innate lymphoid cells
known for their active role in immune regulation of leukocyte
activation and immune surveillance of microbial infections
and malignancies (31–33). Human conventional NK cells in
peripheral blood (cNK/pNK/) have been extensively studied in
health and disease. NK cells were regarded as innate immune
cells, owing to the lack of expression of antigen-specific receptors.
NK cell responsiveness is governed by the diversity of their
germline encoded activating and inhibitory receptors (NKR).
Originally, cNK cells were subdivided into two main subsets;
the CD56dimCD16+ cytotoxic cells and the CD56brightCD16−

cytokine producer cells. However, recent developments in
the field regarding NK cell educational programs and the
diversification of NKR in response to pathogens, as well as the
development of memory-like capacities, suggest the existence of
more than two NK cell subsets (34).

Similar to the periphery, distinct subsets of resident NK cells
(trNK) have been found in many tissues including the liver,
kidney and uterus (35). While trNK share striking similarities
with cNK cells, these CD56bright cells exhibit different signatures
that are related to their tissue of origin. Similar to tissue-resident
T cells, trNK express high levels of CD69, CD103, and CD49a
(2, 3, 36–38). Here, we will mainly focus on the aforementioned
dNK cells that reside in the decidua.

PREGNANCY AND IMMUNITY:
REGULATORS OF THE MATERNAL-FETAL
INTERFACE

Decidualization requires coordinated contribution of the uterine
glands, stromal cells, and immune cells (4, 39–41). In
early pregnancy, the hallmarks of the decidua include the
accumulation of immune cells that represent up to 40% of
total decidual cells and the histiotrophic nurturing of the
developing placenta by the uterine glands. The distinctive
TbetposEOMESposCD56bright dNK cell population accounts for
almost 70% of total tissue leukocytes (42, 43). Whereas, T cells
account for ∼5–10% of total leukocytes, the quasi absence of
B or plasma cells suggests it is very unlikely that any antibody
response would harm the invading EVTs (44–46). Additional
innate immune cells include CD14pos macrophages and dendritic
cells, which represent ∼20%. Besides dNK cells, other ILCs are
found at the implantation bed including a non-NK ILC1 subset
as well as both NCR+ and NCR− ILC3 (43, 47, 48). These
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FIGURE 1 | Schematic representation of the maternal-fetal interface. Floating chorionic villi are bathed in maternal blood within the intervillous space. A multinucleated

syncytiotrophoblast (STB) outer cell layer covering the chorionic villi. STB layer serves for transport of nutrient and barrier function. A layer of cytotrophoblast cells

(CTBs), underlines the STB. CTBs differentiate into extravillous trophoblast (EVTs) and invade the maternal decidua. Through the release of soluble factors (cytokines,

chemokines, and proangiogenic factors), maternal decidual NK (dNK) cells participate actively in the attraction of invasive EVTs and remodeling of the spiral arteries.

Invasive EVTs are also in contact with decidual macrophages (dM) and T cells. Fetal blood vessel (BV), mesenchymal stem cells (MSC), Hofbauer cells

(fetal macrophage).

decidual ILCs share similarities with other tissue resident ILCs.
Upon in vitro stimulation, decidual ILC1 are able to produce
IFN-γ while NCR+ILC3 produce IL-22 and IL-8 and NCR−ILC3
produce TNF and IL-17 (43, 47, 48). Finally, in addition to
the typical T cell populations (CD8, CD4, γδT cells), the non-
pregnant uterine mucosa and first trimester decidua contain a
small fraction of mucosal-associated invariant T (MAIT) cells
[(49) and unpublished data from our laboratory]. Yet, the exact
functional role of decidual ILCs and MAIT cells in pregnancy is
not clear.

Decidual NK Cells
The discovery of dNK cells at the implantation site, even before
the implantation of the blastocyst, has led to the idea that
these cells play a crucial role in normal placentation (50). As a
matter of fact, the uterus is undeniably among the peripheral
organs that exhibit the highest frequency of NK cells. After
ovulation, the surge of IL-15 and prolactin, triggered by the
exposure of stromal cells to progesterone, induces a rapid
proliferation and differentiation program of uterine NK cells
(51). These numbers increase further when implantation is
successful and are maintained throughout the second trimester.
dNK cell numbers decline from mid-gestation onward to reach
a barely detectable level at term. Despite extensive work on
dNK cells, we are still lacking essential information about
their origin and exact functions. The association of dNK

cells with EVTs and their spatiotemporal localization at the
vicinity of maternal arteries suggest that these immune cells
provide a well-balanced microenvironment to enable proper
development and functioning of the placenta yet preclude
excessive trophoblast invasion.

Research, performed by several groups has yielded fascinating
insights into the phenotype and functional plasticity of dNK
cells. In contrast to cNK, dNK cells are poorly cytotoxic and
display a unique repertoire of NKR (2–4, 9, 38, 52–54). dNK
cells are mainly CD56brightCD16−KIR+ cells but they are distinct
from the CD56bright subset found in peripheral blood, both at
the functional and phenotypical levels. dNK cells express the
tissue residency markers CD69, CD49a, integrin β7, and CD9.
Additionally, dNK cells express most of the NKRs including
NKp46, NKp80, NKG2D, CD94/NKG2A. Contrary to cNK, the
CD94/NKG2C heterodimer and NKp44 receptor are found on
a fraction of dNK cells (2–4, 38, 52), although other reports
demonstrated no expression of NKp44 only freshly isolated cells
(55). Nonetheless, similar to cNK, NKp44 expression can be
induced on the large population of dNK cells upon in vitro

stimulation. 2B4 and LILRB, which is expressed at low frequency,
act as inhibitory receptors (54, 55). Likewise, freshly isolated
unstimulated dNK cells express inhibitory isoforms of the NKp44
and NKp30, natural cytotoxicity receptors 2 and 3 respectively
(3). Furthermore, several chemokine receptors including CXCR3,
CXCR4, CCR1, and CCR9 are expressed by these cells (3, 53, 56).
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Fine analysis of the killer-cell immunoglobulin-like receptors
(KIR) has highlighted a skewed repertoire toward the recognition
of the less polymorphic HLA-C, the only classical HLA class
I molecule expressed on EVTs (14). However, several of these
NKR are expressed only by a fraction of cells, suggesting that
dNK cells may come in different flavors. As an example, the
majority of dNK cells express the CD49a residency marker and
the chemokine receptor CXCR3, whereas a sizeable fraction of
cells lacks the expression of CD103 or CXCR4 (3).

The recent discovery of three main pools of dNK cells
(dNK1, dNK2, and dNK3) with different immunomodulatory
profiles confirmed these findings (57). The dNK1 pool expresses
regulatory CD39 ecto-ATPase, which is involved in shifting the
balance from a pro-inflammatory to an immunosuppressive
environment [reviewed in (58)] and has high levels of the
inhibitory as well as activating KIRs (KIR2DL1, KIR2DL2,
KIR2DL3, KIR2DS1, and KIR2DS4). Furthermore, the
expression of the high affinity receptor for the HLA-G
dimer, LILRB1, and the active glycolytic metabolism allude
to the interaction of the dNK1 subset with fetal EVTs. The
dNK2 pool is characterized by the expression ANXA1 and
ITGB2. Both dNK1 and dNK2 cell subsets express the activating
NKG2C and NKG2E and inhibitory NKG2A receptors. The
third subset expresses CD160, CD161, TIGIT, CD103, and
ITGB2. This unbiased reconstruction of the fetomaternal
interface further highlights key interactions between dNK
cell subsets, invading fetal EVTs and decidual stromal cells
(DSC), all needed for the development of embryonic tissues and
successful pregnancy. Whether dNK cell subsets with defined
characteristics exert common or distinctive functions within the
decidual microenvironment is yet to be defined. dNK cell subsets
shall either promote or restrain EVT invasion. However, doubt
subsists as to whether this would occur through specific ligand–
receptor interaction, metabolic adaptations and expression of
checkpoint inhibitors or through microenvironment paracrine
effect. While additional studies are required to define the exact
function of the three dNK cell subsets, it is clear that maternal
adaptations, during pregnancy, are designed to restrain harmful
dNK cell responses. Thus, a finely tuned dialogue between
a given dNK cell pool, decidual cells and invading EVTs, is
necessary for the establishment of the fetomaternal interface and
for the development of the placenta and fetus.

Origin of dNK Cells
The origin of dNK cells remains subject to controversy. The
discovery of CD34pos progenitors in the maternal decidua would
suggest that dNK cells originate from local self-renewed CD34+

progenitors. This perspective is supported by the ability of
CD34pos progenitors from the decidua to differentiate into
dNK-like precursors, in the presence of DSC and an IL-
15-enriched microenvironment (59, 60). The second possible
explanation would be that dNK cells arise from NK precursors,
as advocated by the presence of CD34negCD117posCD94neg

NK cell precursors within the uterine mucosa (61). Lastly,
dNK cells could originate from cNK cells recruited from the
periphery through chemotaxis (59, 60, 62–64). This latter insight
is supported by a twofold argumentation; (i) both estrogens and

FIGURE 2 | Role of the microenvironment in shaping NK cell phenotype and

functions: cNK cells expressing activating isoforms of the NKp30 and NKp44

receptors (NKp30a, NKp44b) which endows them with cytotoxic function, can

be converted into dNK like cells. Exposure to a combination of TGF-β, IL-15

and IL-18) drives the isoform expression profile toward regulatory profile

(NKp30c, NKp44a,c), a hallmark of dNK cells. This conversion is associated

with the switch from cytotoxic to “helper-like” or tolerogenic effector functions

associated with major changes in the secretome. How micro-environmental

changes during pregnancy disorders or congenital infection might influence

the dNK cell plasticity and effector functions is still an open question.

progesterone induce the secretion of CXCL10, CXCL12, CCL2,
CXCL8, and CX3CL1 chemokines by DSC and endothelial cells,
ensuring the availability of several chemoattractant axes that can
promote the recruitment of cNK cells, and (ii) the conversion of
cNK cells in the presence of the transforming growth factor-β
(TGF-β) or a combination of TGF-β/IL-15 or yet again, TGF-β/5-
aza-2

′

-deoxycytidine into less cytotoxic cells that can promote the
invasion of human trophoblast (65–67). In line, we have shown
that cytokines enriched within the decidual microenvironment
(68–70), namely TGF-β and IL-15, in combination with IL-
18 convert the NKp30/NCR3 and NKp44/NCR2 splice variant
profile of cNK cells into one similar to that of dNK cells (3).
The switch from activating to inhibitory isoforms of NKp44 and
NKp30 was associated with decreased cytotoxic function and
major adaptations of NK cell secretome, the two hallmarks of the
decidual phenotype (Figure 2).

Thus, whether recruited or tissue resident cells, dNK cells
are undoubtedly different from other CD56bright NK cell
subsets found in the periphery (2). Today, it is undeniably
admitted that microenvironment pressure within the decidua
basalis conditions the education and the generation of dNK
cells with unique phenotypic and functional features; a great
ability to produce large amounts of soluble factors and a
finely tuned cytotoxic function that are both necessary for a
successful pregnancy.
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dNK CELLS IN HEALTHY PREGNANCY

dNK Cell Effector Functions
Large scale profiling of dNK cell transcriptome and secretome
revealed that these cells produce: (i) a large array of cytokines
including IFN-γ, TNF-α, GM-CSF, TGF-β, and IL-10; (ii)
chemokines including CXCL8 (IL-8), CCL3 (MIP1a), CCL4
(MIP1b), CCL5 (Rantes), CXCL10 (IP-10), and CXCL12 (SDF-1);
and (iii) angiogenic factors including Ang-2, PLGF, EGF, VEGF-
A, but also VEGF-C that can induce the expression of inhibitory
ligands on trophoblasts (4, 56). Yet, most of these in vitro studies
were conducted under IL-2 or IL-15 stimulation. In our hands
and in agreement with single cell transcriptomic analysis, freshly
isolated and unstimulated dNK cells barely produce any IFN-γ or
VEGF-A (38, 57). With regard to the cytotoxic effector function,
dNK cells express functional activating receptors and a payload
lytic machinery including granzymes, granulysin, and perforin,
but conversely they lack cytolytic activity in healthy pregnancies
(2, 3, 52, 71, 72). Defaulting assembly of the immunological
synapse and failure of 2B4 receptor to convey activating signals
have been proposed as mechanisms that can explain the poor
cytotoxic function of dNK cells (54, 71). Nevertheless, these cells
are probably educated in the decidua by the binding of their
NKG2A and/or KIR to their cognate ligands expressed by the
fetal trophoblast cells, they are also highly plastic and can acquire
cytotoxic functions upon NKp46 receptor engagement and/or
cytokine stimulation [reviewed in (2)].

dNK Cells Control Trophoblast Invasion
The tight regulation of EVT invasion into the maternal decidua
is essential for the development of the placenta and the outcome
of the pregnancy. Inadequate invasion can have disastrous
consequences and result in pathological pregnancy such as
preeclampsia, FGR, preterm labor, and recurrent miscarriage.
The presence of dNK cells in the vicinity of invasive fetal
trophoblasts and spiral arteries is suggestive of their active
role in regulating the extent of trophoblast invasion and
vascular remodeling. The production of a large panel of soluble
factors is the likely mechanism for dNK cells to regulate
trophoblast invasion. For instance, secreted CXCL8 and CXCL10
bind to their receptors on invasive trophoblasts and promote
trophoblast migration while Ang-2, TNF, and TGF-β inhibit
trophoblast invasion (56, 73–76). Whether through specific
education programs, direct receptor-ligand engagement or
paracrine factors, dNK cells contribute grandly to the appropriate
trophoblast invasion (72, 77–79). Further elucidation of how the
education program shapes dNK cell functions will probably have
upshots in resolving some pregnancy disorders.

dNK Cells Direct Vascular Remodeling
The remodeling of decidual tissue is mandatory to pregnancy
success to ensure minimal vessel resistance and high blood flow
of nutrients as well as oxygen to the growing conceptus. Even
if there are still a lot of controversies regarding different steps
of the vascular remodeling process, the invasive EVTs are very
like to have an active role in the removal of the smooth muscle
media and in the replacement of the endothelium lining deep into

the endometrium by mural trophoblast (28, 80, 81). Although
lessons from mouse studies highlight the contribution of dNK
cells to this process (82), their role is not yet fully elucidated in
humans. However, their accumulation along the vascular wall
of the changing vessels before endovascular invasion and their
production of angiogenic factors is suggestive of an active role
in angiogenesis (52, 56). Similar to the extent of trophoblast
invasion, specific KIRs express on dNK cells may dictate the
fate of vascular remodeling and thus conduct to successful or
pathological pregnancies (79, 83).

Do Decidual NK Cells Remember
Pregnancy?
While NK cells were considered as short lived cells for many
years, accumulating evidence indicate that cNK cells develop
long-lasting memory-like phenotype to viruses marked by high
cytotoxicity and characterized by the expression CD94/NKG2C
and the CD57 terminal differentiation marker (34, 84). Whether
dNK cells develop memory-like phenotypes to pregnancy is
still a major debate. Nevertheless, efficient development of
the fetal placenta in subsequent pregnancies hints to the
existence of a “trained” uterine immunity (85). Pioneer work
showing the association between maternal activating KIRs
expressed on dNK cells and protection against reproductive
failure mediated by fetal HLA-C2 (83), suggest that fine-
tuning of dNK responsiveness is necessary for successful
pregnancy. Later studies provided evidence that dNK cell
response is orchestrated by functional education and expression
of inhibitory receptors (86). Whether education takes place
even before embryo’ implantation and how lessons from first
pregnancy shape the uterine immune landscape remain to
be elucidated.

Recently, the group of Ofer Mandelboim reported the
existence of a specific population of NKG2ChighLIRB1+

dNK cells in the decidua of multigravid women (87). The
co-expression of NKG2C and the high affinity receptor
for HLA-G dimer suggest that these “trained” dNK cells
belong to dNK1 subset (57). The ability of IL15-primed
“memory-like” dNK cells to produce high amounts of IFN-
γ and VEGF-A upon ligation of NKG2C/E and LIRB1
receptors (87) is a major difference with other “memory”
NK cells that produce only IFN-γ. Previous work has
clearly established that the physiological pool of dNK cells
is governed by the differential expression of NKp30 and
NKp44 alternatively spliced isoforms (3). The expression
of inhibitory isoforms would act as a secondary innate
immune checkpoint that conveys dNK cells with a “support”
function contributing to proper placental development and
successful pregnancy, while activating isoforms trigger NK
cell responsiveness and effector functions. Whether this has
physiological relevance to dNK cell training and “memory-
like” development is yet to be depicted and warrants further
investigations. The development of “memory-like” dNK
cells in subsequent pregnancies may explain why deficient
placentation are less frequent in subsequent pregnancies. dNK
cell hyporesponsiveness in first pregnancies might lead to
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deficient placentation and pregnancy disorders. Elucidating
the potential role of “trained” dNK cell immunity will
constitute a new step toward a better understanding of the
pathophysiology of pregnancy disorders and the development of
new therapeutic intervention.

dNK CELLS DURING VIRAL INFECTIONS

While many aspects of the immune response are circumvented
at the fetomaternal interface to enable an intimate relationship
between maternal and fetal cells, many threatening pathogens
can jeopardize the harmony of this immune-friendly site.
For instance, the growing family of TORCH pathogens
which originally includes Toxoplasma gondii, other (syphilis,
varicella-zoster, parvovirus B19, and others), rubella virus,
cytomegalovirus (HCMV) and herpes simplex virus
can cause severe maternal and fetal morbidity during
pregnancy. Today, the genotype 1 of Hepatitis E virus
(HEV-1) and Zika virus (ZIKV) can also be classified as
TORCH pathogens (88–92). However, how these viruses
reach the developing placenta is still largely unknown
and requires active investigations. Lessons from ex vivo
studies demonstrate that some of these viruses (HCMV,
ZIKV, and HEV-1) can use the fetomaternal interface as a
replication platform before spreading to the placenta and
fetal compartment.

The human cytomegalovirus (HCMV) is a member of the
largest virus specie, Betaherpesviridae, with a DNA genome
encoding more than 150 proteins (93). HCMV is the most
common cause of congenital infections with severe and
permanent birth sequelae (94, 95). Even if the transmission rate is
much higher in the third trimester, primary infection in the first
trimester is associated with high risk of placental pathology and
severe congenital syndrome. Ex vivo studies demonstrated that
replication of HCMV strains in stromal and placental cells results
in impaired function and soluble factor secretion (38, 96–99).

The hepatitis E virus (HEV) is a single-stranded RNA virus
with five genotypes that can cause acute self-limiting illness
in immunocompetent host. During pregnancy, the outcome
of infection is quite devastating in some endemic areas
where HEV-1 prevales. In fact, HEV-1 infection is associated
with a high co-morbidity rate in pregnant women from
northern India, due to fulminant hepatic failure associated with
severe placental diseases (100, 101). Retrospective studies have
estimated vertical transmission in 23–50% of North India cases.
However, the regional differences in the course of congenital
HEV-1 infection remain unclear. It is highly possible that
both environmental and viral factors may contribute to the
devastating pregnancy outcome. To provide insights into the
genotype-specific pathogenicity of HEV during pregnancy, we
ex vivo modeled the pathological HEV-1 and less-pathological
HEV-3 infection at the maternal-fetal interface using organ
cultures of first trimester decidua and fetal placenta. While
both HEV genotypes are able to infect the maternal-fetal
interface, HEV-1 replicates more efficiently in the decidual and
placental tissues as well as in primary isolated stromal cells.

The dysregulation of the cytokine microenvironment by HEV-
1 caused severe damage to the decidual and fetal placenta
tissues (89).

Zika virus (ZIKV) is a mosquito-borne Flavivirus initially
isolated in the Zika forest in Uganda in 1947. The recent epidemic
wave of ZIKV in the Americas revealed an unprecedented
association with a severe congenital syndrome (102, 103).
Investigations using decidua and placenta explants have
demonstrated that ZIKV replicates in a wide range of cells.
In the basal decidua, ZIKV targets EVTs as well maternal
macrophages and stromal cells. In the anchoring villi, ZIKV
targets the proliferative CTBs and stromal cells of the villous
core (90, 91, 104, 105), but not STBs owing to intrinsic antiviral
defense mechanisms involving IFN-λ (106). Thus, ZIKV should
either overcome the STB restriction mechanisms or exploit
alternative strategies to access the fetal compartment.

To date, our understanding of how viruses reach the fetal
compartment and whether they exploit common infection routes
is still in its infancy. Usually, the vertical transmission rate is
quite low in the first trimester of pregnancy, which coincides with
high numbers of dNK cells within the placental bed. Whether
these immune cells are able to restrain viral spread at the
maternal-fetal interface and what is the contribution of placental
intrinsic defense mechanisms and restriction factors are yet to be
demonstrated in vivo.

The first evidence of the involvement of dNK cells in
controlling viral infection was described for HCMV. Indeed,
we have shown that dNK are able to infiltrate HCMV-infected
tissue and to co-localize with infected cells. The exposure
of dNK cells to HCMV-infected cells was associated with
phenotypic changes and the acquisition of a cytotoxic function
involving the NKG2D and CD94/NKG2C-E activating receptors
(2, 35, 38). The combination of maternal KIR, namely the
expression of KIR2DS1, also increases dNK cell cytotoxic
response to HCMV-infected HLA-C2+ maternal DSC and
prevents viral spread and placental pathology (78). However,
even if dNK cells are able to clear HCMV infection from
the decidual stroma, placental cells are more resistant to NK
cell cytotoxicity.

Beside viruses, the fetomaternal interface can be also
threatened by other microbial pathogens such as Listeria
monocytogenes and Toxoplasma gondii. The fact that dNK
cells, as well as decidual macrophages and dendritic cells,
constitutively express the antimicrobial peptide granulysin (37,
107), would suggest their involvement in controlling these
infections. However, it is not clear whether dNK cells can
destroy the pathogen while sparing infected maternal DSC and
fetal trophoblasts.

Collectively, these findings underscore the importance of
early activation of dNK cells in reducing and/or preventing the
spreading of pathogens to the fetal placenta. However, we still
have to further our understanding on (i) whether dNK cell
response can be generalized to other TORCH infections, (ii)
whether an exacerbated dNK cell responsiveness and/or changes
in the microenvironment would maintain fetal development, (iii)
what is the role of “trained” dNK cells in viral confinement and/or
spreading, and (iv) how the maternal immune system-dNK cells
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as well as others innate and adaptive cells—manages immunity to
infections while promoting fetal development.

CONCLUDING REMARKS

Through their wide secretome, dNK cells play a crucial role in the
regulation of tissue homeostasis and optimal fetal development.
Lessons from ex vivo studies demonstrated that these cells are
highly plastic and may overcome the negative control of their
lytic functions in order to control viral dissemination to the
fetal compartment. However, the molecular and functional basis
underlying the transition from a poorly cytotoxic status during
healthy pregnancy to a fully active one during viral infection are
yet to be revealed. It is clear that inhibitory receptors participate
actively to the education of cNK cells and to the acquisition of
their effector functions.

In addition to being educated and endowed with high
functional plasticity, dNK cells can also develop “innate memory-
like.” As basic knowledge expands, we should envision how to
exploit these later developments innate immune memory toward
the prevention pregnancy disorders. An example within this
notion is the established correlation between the recurrence of
miscarriages, FGR or preeclampsia and (i) the KIR repertoire

skewing, (ii) KIR/HLA-C match or mismatch, and the (iii)
changes in the interval between pregnancies and partners.
Another open question is whether dNK cells can expand in
response to infected cells and generate a “memory-like” response.
Such a memory may generate a natural vaccine against viruses
and contribute to the control of viral transmission to the fetus.
Beyond pregnancy, understanding mechanisms that regulate the
plasticity of dNK cells will be helpful to customize NK cell
responsiveness in line with therapeutic requirements.
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