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Glucocorticoids (GCs) potently inhibit pro-inflammatory responses and are widely used

for the treatment of inflammatory diseases, such as allergies, autoimmune disorders,

and asthma. Dual-specificity phosphatase 1 (DUSP1), also known as mitogen-activated

protein kinase (MAPK) phosphatase-1 (MKP-1), exerts its effects by dephosphorylation

of MAPKs, i.e., extracellular-signal-regulated kinase (ERK), p38, and c-Jun N-terminal

kinase (JNK). Endogenous DUSP1 expression is tightly regulated at multiple levels,

involving both transcriptional and post-transcriptional mechanisms. DUSP1 has emerged

as a central mediator in the resolution of inflammation, and upregulation of DUSP1 by

GCs has been suggested to be a keymechanism of GC actions. In this review, we discuss

the impact of DUSP1 on the efficacy of GC-mediated suppression of inflammation and

address the underlying mechanisms.
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INTRODUCTION

Glucocorticoids (GCs) are steroid hormones with immunosuppressive activity that are used to treat
a wide variety of inflammatory conditions, including rheumatoid arthritis, pulmonary diseases, and
acute inflammation caused by microbial infection.

Anti-inflammatory properties of GCs are partially dependent on their ability to suppress
mitogen-activated protein kinases (MAPKs) (1, 2). MAPKs are a family of protein kinases that
respond to a wide variety of extracellular stimuli. They are activated by phosphorylation of tyrosine
and threonine residues within their active domains and are inactivated by dephosphorylation of
either residue (2–4). MAPK cascades are evolutionary conserved and control a large number of
cellular processes, including proliferation, differentiation, apoptosis, motility, and stress responses.
The three major signaling cascades either involve extracellular signal-regulated kinase 1/2
(ERK1/2), c-Jun N-terminal kinase (JNK), or p38 MAPK (2–4). Dysregulation of MAPK activity
has been suggested to contribute to the onset of many pathologies, including neurodegenerative
diseases, diabetes, cancer, and inflammation (4–7).

MAPKs can be dephosphorylated by tyrosine-specific phosphatases, serine-threonine
phosphatases, or dual-specificity (Thr/Tyr) phosphatases (DUSPs) (8, 9). GC treatment primarily
attenuates MAPK signaling via DUSP1, also known as mitogen-activated protein kinase
phosphatase-1 (MKP-1) (10–12). In this review, we discuss the influence of DUSP1 on GC-
mediated effects (Figure 1).
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FIGURE 1 | Regulation and effects of GC-induced DUSP1 expression (simplified). Red: positive regulation, blue: negative regulation. See text for details. Templates

from Servier Medical Art (http://www.servier.com) were used to generate the figure.

DUAL-SPECIFICITY PHOSPHATASE 1
(DUSP1)

Although DUSP1 was initially identified as an ERK-specific
phosphatase, p38 MAPK and JNK are its preferred substrates in
several cell types, including myeloid cells (13–16). Thus, DUSP1
activity limits p38 and JNK-dependent pro-inflammatory gene
transcription (17–20).

However, DUSP1 is also involved in the regulation of anti-
inflammatory genes. Over-production of IL-10 inDusp1−/− mice
was observed in peritonitis models after lipopolysaccharide (LPS)
challenge or infection with Escherichia coli or Staphylococcus
aureus, and LPS-treated Dusp1−/− macrophages. This can be
explained by the interaction of DUSP1 with the RNA-binding
protein tristetraprolin (TTP, gene name Zfp36): increased p38-
mediated phosphorylation of TTP results in its inactivation,
followed by accumulation of the inactive, but stable, form
of TTP and enhanced stability of TTP target mRNAs.
These target mRNAs comprise pro-inflammatory chemokines
and cytokines, e.g., Tnf, Cxcl1, and Cxcl2, but also the
anti-inflammatory Il10. Approximately 50% of the genes

Abbreviations: AP-1, activator protein-1; CASP, colon ascendens stent peritonitis;

CCL, CC-chemokine ligand; CLP, caecal ligation and puncture; COPD,

chronic obstructive pulmonary disease; CREB, cAMP response element-binding

protein; CXCL, C–X–C motif ligand; DUSP1, dual-specificity phosphatase; ERK,

extracellular-signal-regulated kinase; EC, endothelial cell; GC, glucocorticoid;

GR, GC receptor; GRE, GR responsive element; ICAM1, intercellular adhesion

molecule 1; ICS, inhaled corticosteroid; IL, interleukin; INF, interferon;

IRFs, interferon regulatory factors; JNK, c-Jun N-terminal kinase; LPS,

lipopolysaccharide; NF-κB, nuclear factor-κB; MAPK, mitogen-activated protein

kinase;MKP-1, mitogen-activated protein kinase phosphatase-1; RANKL, receptor

activator of NF-κB ligand; TNF, tumor necrosis factor; TLR, toll-like receptor; TTP,

tristetraprolin; VCAM-1, vascular cell adhesion molecule 1.

dysregulated in Dusp1−/− macrophages are affected by TTP
inactivation (21).

The promoter region of the Dusp1 gene contains binding

sites for several transcription factors, including activator protein

1 (AP-1), nuclear factor-κB (NF-κB), cAMP response element-
binding protein (CREB), and the glucocorticoid receptor
(GR) (22–25). Hence, DUSP1 can be induced under various
conditions, ranging from inflammatory activation to altered
cellular metabolism and GC excess during stress responses.
GCs may further enhance DUSP1 expression by inhibiting its
proteasomal degradation (12).

DUSP1 has been shown in a few studies to be regulated
via the stability of its mRNA. Several mRNA binding proteins
can influence Dusp1 mRNA stability. TTP-mediated Dusp1
mRNA decay has been suggested to be a feedback mechanism
in inflammatory responses by which TTP limits its own
activity: reduced DUSP1 expression enhances p38 MAPK
phosphorylation, thereby promoting TTP inactivation
(26). Besides, several miRNAs, such as miR-101, have been
shown to modulate DUSP1 expression (27). Posttranslational
DUSP1 modifications include phosphorylation, acetylation,
and oxidation. ERK-mediated phosphorylation of DUSP1
can either lead to increased or decreased DUSP1 protein
stability, depending on the phosphorylation site (28, 29).
Acetylation of Lys57 results in increased phosphatase activity
and more effective suppression of the MAPK signaling
cascades (30, 31). In contrast, oxidation of Cys258 within
the active site inactivates DUSP1 and leads to its rapid
degradation by the proteasome. In this manner, DUSP1
oxidation prolongs MAPK activation, ultimately resulting in
enhanced inflammatory responses (32–34). S-glutathionylation
of Cys258 has similar effects, indicating that DUSP1 activity is
redox-sensitive (35).
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ROLE OF DUSP1 IN INFLAMMATORY
DISEASES AND ITS INFLUENCE ON GC
TREATMENT EFFICACY

Infectious Diseases and Sepsis
In the context of infectious diseases and sepsis, research on
the role of DUSP1 focused mainly on macrophage responses.
Macrophages are a subtype of innate immune cells with high
plasticity that play a crucial role in acute inflammation. They
recognize pathogen- or danger-associated molecular patterns
via pattern recognition receptors, such as toll-like receptors
(TLRs). Stimulation of macrophages initially leads to excessive
inflammation, followed by a phenotypic switch toward an anti-
inflammatory and wound-healing phenotype that promotes the
resolution of inflammation (36, 37).

Early studies on the role of DUSP1 in the response
of macrophages to bacterial LPS suggested that DUSP1 is
required to balance inflammatory responses in sepsis and
infectious diseases. The ectopic expression of DUSP1 in LPS-
stimulated macrophages accelerated JNK and p38 inactivation
and substantially inhibited the production of TNF-α and IL-
6 (38). Moreover, increased cytokine production and elevated
expression of the differentiation markers CD86 and CD40 were
observed in macrophages from Dusp1−/− mice when activated
by TLR ligands. Dusp1−/− macrophages also showed enhanced
constitutive and TLR-induced activation of p38 MAPK (39).
Moreover, LPS-induced IFN-β production was increased in
Dusp1−/− macrophages, both due to elevated JNK-mediated
activation of cJun and Ifnb mRNA stabilization by TTP
inactivation (20). DUSP1 induction has also been shown to
be involved in endogenous feedback loops initiated by either
adenosine or prostaglandin E2 signaling that skew macrophages
toward an anti-inflammatory phenotype (40, 41).

Several studies confirmed the relevance of these in vitro
findings for the in vivo situation. In LPS-treated mice, DUSP1
is upregulated in various tissues and cell types and limits p38
MAPK activation. In accordance, depletion of DUSP1 led to
the excessive release of inflammatory cytokines, such as TNF-α,
IL-6, CCL3, and CCL4, and increased LPS-induced mortality
(14, 15, 39, 42). Likewise, Dusp1−/− mice showed amplified
inflammatory responses and lethality after infection with either
S. aureus (43) or E. coli (44).

The phenotype ofDusp1−/− mice in two sophisticatedmodels
of sepsis, i.e., caecal ligation and puncture (CLP) and colon
ascendens stent peritonitis (CASP), strongly resembled those
observed after LPS shock, with highly increased levels of IL-6,
CCL3, and CCL4 and excess lethality (45).

Glucocorticoids induce DUSP1 in mouse macrophages, and
DUSP1 is required for the inhibition of JNK and p38 MAPK
by dexamethasone in these cells (10, 38). Consequently, the
GC-mediated shift toward an anti-inflammatory macrophage
phenotype was attenuated in cells from Dusp1−/− mice (10,
46). In a cutaneous air pouch model, the zymosan-induced
production of pro-inflammatory mediators and the infiltration
of leukocytes into a pre-formed dorsal cavity were inhibited
by oral dexamethasone administration in wild-type, but not
in Dusp1−/−, mice, suggesting that DUSP1 is indeed required

to unfold the full anti-inflammatory potential of GCs (10).
In another study, the reduction of TNF-α-induced mortality
caused by pretreatment with dexamethasone was dependent on
the presence of DUSP1: whereas wildtype mice were entirely
protected by dexamethasone administration, Dusp1−/− animals
did not benefit from the GC treatment (1).

In conclusion, both in vitro and in vivo evidence suggests
that DUSP1 critically contributes to the resolution of acute
inflammatory responses and mediates protective GC effects in
this context.

Inflammatory Bone Disorders
The bone mass is subject to constant remodeling orchestrated by
osteoblasts and osteoclasts. In inflammatory bone disorders, e.g.,
autoimmune-driven rheumatoid arthritis or pathogen-induced
periodontitis, the balance of osteoblast and osteoclast activity is
compromised, resulting in bone loss (47).

DUSP1 was strongly downregulated in synovial biopsies
from patients with rheumatoid arthritis and osteoarthritis (GEO
datasets GDS5401 and GDS5403; Figure 2A), suggesting that
DUSP1 deficiency may contribute to disease progression.

DUSP1 indeed effectively reduced osteolysis in studies
utilizing mouse models of LPS-induced inflammatory bone loss
and collagen-induced arthritis (CIA) (48, 49). Dusp1−/− mice
showed excessive bone loss, more inflammatory infiltrates, and
an increase in osteoclastogenesis at the site of LPS-injection in
a model of experimental periodontitis (49). In line with these
findings, adenovirus-mediated overexpression of DUSP1 was
shown to protect against bone loss in a similar experimental
model of periodontal disease (50). Furthermore, Dusp1−/− mice
exhibited higher penetrance, earlier onset, and increased severity
of experimental arthritis, accompanied by higher numbers of
osteoclasts in inflamed joints and more extensive loss of bone
mass. Complementary in vitro experiments showed that DUSP1
acts as a negative regulator of osteoclast formation and activation
via suppression of p38MAPK (48, 51). A recently published study
showed that the presence of calcium crystals, which are critical
factors in the pathogenesis of osteoarthritis, stimulate receptor
activator of NF-κB ligand (RANKL) secretion by osteoblasts via
DUSP1 downregulation, thereby promoting osteoclastogenesis
(52). RANKL induction was also observed in synovial biopsies
from arthritis patients in the GEO datasets mentioned above
(Figure 2B). Moreover, overexpression of DUSP1 in fibroblast-
like synoviocytes from osteoarthritis patients inhibited the
expression of osteoarthritis-associated mediators (53).

However, DUSP1 depletion did not affect age-related
spontaneously occurring osteoarthritis, since knockout
mice showed a similar disease progression compared to
controls at 21 months of age (54). Thus, the modulatory
function of DUSP1 in the context of bone homeostasis
seems to be most evident in the presence of a potent
inflammatory trigger.

Due to their high anti-inflammatory capacity and their ability
to decrease radiologic disease progression, GCs are frequently
used for the treatment of rheumatoid arthritis. Paradoxically,
one common side effect of GC use, primarily when used at
high dosages or over prolonged periods, is a loss of bone mass,
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FIGURE 2 | DUSP1 (A) and TNFSF11 (RANKL, B) expression in synovial

tissues from healthy controls, patients with rheumatoid arthritis, or

osteoarthritis. Data obtained from GEO Datasets GDS5401 (Berlin dataset)

and GDS5403 (Jena dataset) were normalized against their respective healthy

control values before compilation. Data are shown as individual values per

sample, and boxplots show the 25–75th percentiles (box), mean (square),

median (line), and standard deviation (whiskers). P-values were generated by

one-way ANOVA and Bonferroni’s post-hoc test (A, normal distribution) or

Mann–Whitney U-test (B, not normally distributed).

also known as GC-induced osteoporosis. This adverse effect is
associated with increased osteoclastogenesis and depletion of
osteoblasts (55, 56).

DUSP1 has been suggested to contribute to GC-induced bone
loss since GC-inducible attenuation of osteoblast proliferation
involves inhibition of theMAPK/ERK signaling pathway and can
be reversed by the protein tyrosine phosphatase (PTP) inhibitor
vanadate in vitro and in vivo (57–59). The assumption that the
PTP in question might be DUSP1 was, however, not supported
by studies with Dusp1−/− mice, which demonstrated that GC-
induced bone loss was not prevented upon DUSP1 depletion:
after treatment with the GC methylprednisolone for 28 days,
both wildtype and Dusp1−/− mice showed a similar reduction
of osteoid surfaces, volumes, and osteoblast numbers (60).

In summary, loss of DUSP1 favors bone loss, especially under
highly inflammatory conditions. Further studies are required to
clarify whether DUSP1 contributes to the beneficial or adverse
effects of GCs in the therapy of bone-related diseases.

Pulmonary Diseases
GCs are first line anti-inflammatory medicines in chronic
respiratory diseases, including asthma and chronic obstructive
pulmonary disease (COPD), and are commonly used
therapeutically as inhaled corticosteroids (ICS). ICS effectively
control inflammation in asthma but are less effective in COPD.
This is thought to be due to corticosteroid insensitivity, where
the molecular pathways responsible for the effect of GCs have
been modified by oxidative stress or infections (61). Moreover, a
subset of asthmatics (∼10%) are refractory to ICS and classified
as having severe asthma. DUSP1 has been shown to contribute
to the effects of GCs in several in vitro, ex vivo, and in vivo
studies with relevance to respiratory disease (61–63) and in some
key studies, an impact on DUSP1 function has been shown to
be responsible for corticosteroid insensitivity/resistance. For
instance, an ex vivo study examined the repressive effect of GCs
on stimulated production of inflammatory cytokines by alveolar
macrophages from patients with severe asthma to those with
non-severe asthma. GCs were less effective in macrophages from
severe asthma patients, and this GC insensitivity was linked with
increased p38 MAPK activation and impaired inducibility of
DUSP1 (64).

The first to demonstrate that GCs upregulated DUSP1 in
primary airway smooth muscle cells were Issa et al. (65). This
was confirmed in a publication by the Ammit group that showed
that GC-induced DUSP1 controlled cytokine mRNA stability
in a p38 MAPK-mediated manner (66). Notably, knockdown
of DUSP1 with siRNA showed that GC-induced DUSP1 was a
significant contributor to anti-inflammatory effects at the post-
transcriptional level.

Several ex vivo and in vivo studies utilizing Dusp1−/−

mice highlighted the contribution of DUSP1 to GC effects in
respiratory disease. For example, GC-mediated repression of the
contractile response in bronchial rings from mice was abrogated
by Dusp1 depletion (67). Interestingly, the anti-inflammatory
impact of DUSP1 was lost in ozone-exposed mice in a model
that may recapitulate corticosteroid resistance in severe asthma
(68). A plausible explanation is that GC-induced DUSP1 in
the wild-type mice was oxidized by ozone and rendered non-
functional. Oxidization of DUSP1 may prove to be a roadblock
to further development of DUSP1 as a therapeutic target in
respiratory disease as oxidative stress is a well-appreciated
feature of COPD and other conditions where smoking is a risk
factor (69, 70).

Finally, there are publications that note that GC-mediated
effects in respiratory disease are DUSP1-independent. These
include a study that detected gene expression of known GC
targets in biopsies from allergen-challenged asthmatic subjects
(71). Evidence from studies utilizing Dusp1−/− mice in models
with relevance to asthma is somewhat equivocal and does not
fully support the assertion that DUSP1 is a significant contributor
to the effect of GCs in vivo (72).

Atherosclerosis
GCs are not a therapeutic option for the treatment of
atherosclerosis, since side effects of long-term GC treatment
include hyperglycemia, hypertension, dyslipidemia, and obesity
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and may, therefore, promote adverse cardiovascular events
(73, 74). However, as inflammation plays a significant role
in the pathogenesis in atherosclerosis, GCs may exert some
anti-atherosclerotic effects. Early studies demonstrated that
dexamethasone reduced the severity of atherosclerosis in
experimental rabbit models (75–77). Moreover, vein graft
thickening was prevented by short-term dexamethasone
treatment in hypercholesterolemic mice (78). The development
of a drug-eluting bioadhesive gel that allowed to dissociate
the systemic adverse and local anti-inflammatory effects of
GC treatment. In atherosclerotic mice, inflamed plaques
treated with GC-eluting adhesive gels showed reduced
macrophage numbers and developed protective fibrous
caps covering the plaque core. This was paralleled by lowered
plasma cytokine levels and biomarkers of inflammation in the
plaque (79).

The onset of atherosclerosis is triggered by proinflammatory
mediators, which induce adhesion molecules in endothelial
cells (ECs) by activating MAPKs, particularly p38 MAPK.
Dexamethasone-induced DUSP1 upregulation caused
inactivation of p38 MAPK in TNF-α-treated ECs and mediated
inhibition of E-selectin expression, as shown in murine
Dusp1−/− ECs and human ECs upon DUSP1 silencing (80).

The assumption that DUSP1 is atheroprotective via inhibition
of EC activation was further supported by studies investigating
the influence of shear stress. ECs respond to shear stress via
mechanoreceptors that translate mechanical distortions into
various molecular signals, including GR translocation (81, 82).
Regions of the arterial tree exposed to high shear stress
are protected from endothelial activation, inflammation, and
atherosclerosis, whereas regions exposed to low or oscillatory
shear stress, are susceptible (83, 84). The expression of DUSP1
in cultured ECs was elevated by shear stress, whereas vascular
cell adhesion protein (VCAM)-1 levels were reduced; silencing
of DUSP1 restored VCAM-1 expression. In vivo, DUSP1 was
preferentially expressed by ECs in a high-shear, protected region
of the mouse aorta and was necessary for the suppression of EC
activation (84).

Apart from its effect on the endothelium, DUSP1
also determines the monocyte/macrophage phenotype in
atherosclerosis (35, 85, 86).

Metabolic stress was shown to induce the S-glutathionylation,
inactivation, and subsequent degradation of DUSP1 in
monocytes. As a result, increased p38 MAPK and ERK
activity primed monocytes for chemokine-induced recruitment,
thereby promoting monocyte adhesion and migration. In
vivo, transplantation of DUSP1-deficient bone marrow into
atherosclerosis-prone mice exacerbated atherosclerotic lesion
formation by sensitizing monocytes to chemoattractants and
polarizing macrophages toward an inflammatory phenotype
(35, 86). Thus, monocyte and macrophage dysregulation by
metabolic stress may drive the progression of atherosclerosis due
to DUSP1 inactivation.

Interestingly, the administration of inhaled GCs has been
suggested to be atheroprotective in asthma patients, although
plasma levels of the drug were presumed to be very low and
were not sufficient to provoke cardiovascular GC side effects

(87). Whether this observation might be due to elevated DUSP1
expression or activity in ECs or the monocyte/macrophage
compartment presently remains elusive.

DUSP1: A THERAPEUTIC TARGET?

As underscored by this review, there are several clinical areas
where targeting DUSP1 (i.e., increasing its amount and/or
activity) would be clinically beneficial. These may also comprise
psoriasis or colitis, as a number of studies suggested an
involvement of DUSP1 downregulation in the pathogenesis of
these diseases (88–91).

Novel ligands to upregulate DUSP1 levels might represent
an attractive anti-inflammatory strategy—particularly in
atherosclerosis, where GCs cannot be used due to their
cardiovascular side effects. Corticosteroid-sparing strategies
to reduce the GC dose while achieving effective disease
control have always been of clinical importance, and this is
also a potential area of focus for DUSP1 upregulators. The
failure of p38 MAPK clinical trials, including those recently
published in COPD (92) could also bolster the search for
DUSP1 modulators. The failure of targeting p38 MAPK is
because while pro-inflammatory cytokines are repressed, so are
the p38 MAPK-driven anti-inflammatory proteins, including
DUSP1 (63, 93, 94).

However, there are challenges to overcome in the drive to
develop DUSP as a therapeutic target. First and foremost, it
is essential to consider that the overall impact of the MAPK-
deactivator DUSP1 within the clinical context will depend on the
role played by the MAPK involved. If the rationale is that MAPK
needs to be inhibited, then there is a need to upregulate DUSP1
(e.g., in respiratory inflammation). Conversely, in some clinical
situations, DUSP1 inhibitors may prove beneficial. For example,
in some cancers, DUSP1 is overexpressed and is considered
responsible for the failure of JNK-driven apoptotic pathways
induced by chemotherapeutics; i.e., adjunct therapeutics with
a DUSP1 inhibitor would have merit (95). The challenge
in drug discovery would, therefore, be developing targeted
therapies that could be delivered to the site of disease without
collateral damage. Secondly, DUSP1 is sensitive to oxidative
stress, and the phosphatase activity can be reduced. Notably,
oxidative stress can be cause or consequence of the disease,
and GCs themselves can contribute to the production of
oxidative stress (96). Thus, although we may find techniques to
increase DUSP1 abundance, it may be non-functional due to
oxidation. Reactivation of oxidized DUSP1 function is worthy
of further investigation. Thirdly, and perhaps most importantly,
we need to get the timing right and ensure that that the
temporal kinetics of the impact on DUSP1 on inflammatory
pathways are considered. Taken together, the future utility of
DUSP1 as a therapeutic strategy depends on it being active
(not oxidized) and present at the right place at the right
time. Treatment with exogenous DUSP1 upregulators would be
akin to the usage of p38 MAPK inhibitors and as they have
failed in clinical trials, restoring physiological DUSP1 activity
in a manner that fully exploits dynamic regulation exerted
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by the p38 MAPK/DUSP1/TTP network might even be the
better option.
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