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Neutrophil extracellular traps (NETs) are a neutrophil defensive mechanism where

chromatin is expelled together with antimicrobial proteins in response to a number of

stimuli. Even though beneficial in many cases, their dysfunction has been implicated in

many diseases, such as rheumatoid arthritis and cancer. Accurate quantification of NETs

is of utmost importance for correctly studying their role in various diseases, especially

when considering them as therapeutic targets. Unfortunately, NET quantification has a

number of limitations. However, recent developments in computational methodologies

for quantifying NETs have vastly improved the ability to study NETs. Methods range from

using ImageJ to user friendly applications and to more sophisticated machine-learning

approaches. These various methods are reviewed and discussed in this review.

Keywords: neutrophil extracellular traps, myeloperoxidase, neutrophil elastase, citrullinated histone,

machine-learning

INTRODUCTION

Publications describing the formation of neutrophil extracellular traps (NET) have increased
exponentially since their initial description in 2004 (1). Formed as a response of neutrophils to
microorganisms and a host of other stimuli, NETs consist of decondensed chromatin released
from the nucleus through the cytoplasm into the extracellular space (1). Nuclear and cytoplasmic
components are mingled in the NETs and include antimicrobial peptides, such as myeloperoxidase
(MPO), neutrophil elastase (NE) and, in certain instances, citrullinated histones (H3Cit) (1–3).
NETs are believed to prevent dissemination and propagation of various pathogens (4–6). However,
even though NETs might be beneficial, inappropriate function and tissue damage have been
implicated in multiple pathologies i.e., pre-eclampsia (2, 7), diabetes and gestational diabetes (8–
11), rheumatoid arthritis (RA) (3, 12, 13), systemic lupus erythematous (SLE) (14), community
acquired pneumonia (15), sepsis (16), thrombosis (17), acute respiratory distress syndrome (18),
and cancer (19, 20).

Clearly, it is evident that NETs are of considerable importance when studying innate immunity,
understanding disease mechanisms or when using them as biomarkers or therapeutic targets. Thus,
accurate, reproducible, high throughput and objective quantification is paramount for the study of
NETs. Unfortunately, quantification is still plagued by a number of issues, such as sampling bias,
insufficient objectivity, low throughput, being tedious, labor-intensive, high in cost and difficult
to compare across laboratories (21–25). Luckily, recent advancements in technology allow for
computational methodologies to circumvent a number of these disadvantages; being either semi
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or fully automated, with fully automated methods being more
advantageous (25) i.e., higher in throughput, lower in cost, more
sensitive and more reproducible across laboratories.

For this review we discuss the different methods for NET
sample preparation followed by various computational solutions
available for NET quantification. These solutions are only
applicable for samples prepared for in vitro and in situ
quantification of NETs. In vivo detection and quantification of
NETs is important and it must be noted that quantification
is usually done using in situ methods. NETs can also be
detected and quantified in vivo by analysing serum or plasma for
specific NET markers (12, 15, 26–29), however, since these do
not involve computational methodologies for more automated
quantification, they are not discussed in this review.

IN VITRO AND IN SITU SAMPLE
PREPARATION FOR AUTOMATED
QUANTIFICATION OF NETS

All available techniques used to visualize NETs for quantification
have comprehensibly been reviewed by de Buhr and Köckritz-
Blickwede (30). Table 1 provides a complete overview of
these methods including their advantages and disadvantages.
Methods include SYTOX/PicoGreen (fluorescence reader or
fluorescence microscopy) (1, 31, 32, 40, 41), immunolabelling
(immunofluorescence microscopy [IFM] (22, 31–39),
microscopy imaging flow cytometry [MIFC] (21), flow cytometry
[FACS] (42), and electron microscopy (SEM and TEM) (31, 43).
The most widely published and accepted techniques are SYTOX
and IFM (24, 30) and thus, are the easiest to implement and with
the best quantitative computational methodologies available.

SYTOX does not pass through intact cell membranes and
detects NETs by staining extracellular DNA (51, 52). Its use has
a number of advantages i.e., low cost and easy implementation.
However, a major disadvantage is the susceptibility to false
positives due to apoptosis or necrosis of neutrophils (24, 30, 53).
Thus, quantification of NETs by SYTOX should always be
supplemented with IFM i.e., specific labelling for NET markers,
such as MPO and H3Cit (24, 30, 53). This is standard practice
for in vitro detection of NETs and for most computational
methodologies developed for these techniques.

FACS and MIFC (immunolabelling for MPO, NE, or H3Cit)
also allow for robust, rapid, specific and sensitive detection
of NETs in suspension (21, 30, 42). However, detection of
neutrophils that have already undergone NETosis is not possible
and thus cannot completely replace IFM (30). In addition, MIFC
has an advantage over FACS since the technique combines FACS
data as well as imaging for single cells (21, 30). Both FACS and
MIFC are more challenging to implement compared to SYTOX
and IFM based methods, because they are slightly more technical
in nature.

As pointed out by de Buhr and Köckritz-Blickwede (30), an
important consideration is the detection of NETs in in vivo tissue
sections i.e., in situ detection. Since NETs are mainly quantified
in vitro using neutrophils from peripheral blood, or ELISA based
methods using serum (12, 15, 26–29), detection of NETs in

localised tissue holds great importance, as was determined in
placenta (7), intestine (1), kidney (27), lung (48), intracoronary
material (49), and skin (50). It is possible in certain conditions
that NETosis might be completely missed if not investigated
in situ. Immunolabelling for NET specific markers on tissue
sections is well-published and automated methods for their
detection exist.

No automated methods for detection of NETs using SEM and
TEM are available to our knowledge.

SEMI AND FULLY-AUTOMATED
COMPUTATIONAL METHODS

Table 2 compares the advantages and disadvantages of all
the computational metholdogies discussed in this review for
easy comparison.

Computational Methodologies Available
for SYTOX Stained NETs
Two methods for semi-automated quantification for NETs
stained with SYTOX exist i.e., DNA Area NETosis Analysis
(DANA) (23) and another using 3-dimensional confocal
scanning laser microscopy (3D-CSLM) (46). DANA involves the
use of a fluorescence microscope, ImageJ macros and a Java
based programme with a batch processing option. Easy to follow
YouTube tutorials for DANA also exist (45). Quantifying NETs
by 3D-CSLM requires skilled confocal operators. No easy to
follow protocols for quantification using ImageJ exist, which
could make it more difficult to implement.

For 3D-CSLM, NETs are quantified based on SYTOX green
area corrected to PKH26 area (binds to membranes indicating
neutrophils). Using this approach, Kraaij et al. (46) successfully
detectedNETs in neutrophils exposed to RA and SLE serumusing
3D-CSLM. Immune complexes produce lower and more subtle
NETs (54) and 3D-CSLM together with ImageJ were successful in
their quantification, making it a highly sensitive semi-automated
technique (46). For DANA, NET-like structures are quantified
on a per cell, per image and per sample basis. DANA can also
sufficiently exclude overlapping cells and fragments, which might
be recognized as false positives (23). These characteristics of
DANA are not possible using 3D-CSLM and ImageJ. Rebernick
et al. (23) were also successful in detecting spontaneous NETs in
RA neutrophils using DANA.

Rebernick et al. (23) went further to show that DANA detected
a similar amount of NETs compared between to two individual
readers and reduced the time for analysis from 7–10 to 1.5 h. The
authors were also able to detect NETs in DAPI stained murine
cells, indicating robustness for the program.

Since only SYTOX is used, time required for pipetting is
significantly reduced. However, in order to confirm results
from the assay, IFM of specific NET markers is likely needed
(24, 30, 53). Bothmethods do provide unintentional bias between
sample quantification, and eliminate inter-individual variability.
For DANA, reproducibility of results across laboratories is also
likely achievable due to its robust nature. It must be noted that
in our experience, DANA still requires a large amount of human
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TABLE 1 | Summary of the main NET visualization techniques used for quantification of NETs and their advantages or disadvantages.

Dye Technique Parameter Advantages Disadvantages Selected references

SYTOX dye/PicoGreen FM, eye Percentage of NET

formation

Visible differentiation

between

necrosis and NETosis

Occasionally biased by selection of

field of view, staining of DNA in NETs

by DNA-intercalating dye can be

blocked by cationic peptides

(1, 31, 32)

Antibody against

histone-DNA

complexes + Dapi

IFM, eye Percentage of NET

formation

Visible differentiation

between

necrosis and NETosis

Occasionally biased by selection of

field of view

(31–36)

Antibody against elastase

and

histone-DNA complexes

+ Hoechst

33342

IFM, Image J Percentage of NET

formation

Unbiased

software-based

quantification

Clump of NETs derived from multiple

cells count as one single event,

occasionally biased by selection of

field of view

(37)

Antibody against

histone-DNA

complexes + Dapi

IFM, Image J Level of NET degradation Unbiased

software-based

quantification

Occasionally biased by selection of

field of view

(38, 39)

Antibody against

histone-DNA

complexes + Dapi

IFM, open source

software

Level of NET degradation Unbiased

software-based

quantification

Occasionally biased by selection of

field of view

(22)

SYTOX dye/PicoGreen FR DNA release (µg/mL) Unbiased No differentiation between necrosis

and NETosis, staining of DNA in NETs

by DNA-intercalating dye can be

blocked by cationic peptides

(31, 40, 41)

PicoGreen after nuclease

digestion

FR DNA release (µg/mL) Unbiased Staining of DNA in NETs by

DNA-intercalating dye can be blocked

by cationic peptides, less sensitive

compared to antibody-mediated

detection of NETs

(31, 36)

Antibody against MPO +

Hoechst

MIFC Percentage of NET

formation

Unbiased, automated,

enables

differentiation between

suicidal

NETosis and vital NETosis

Imaging of cells currently undergoing

NETosis and thus this method may

miss those that have already lysed

(21)

Antibody against H3cit +

MPO

Flow cytometry Percentage of NET

formation

Unbiased, automated,

can be combined with

sorting

Does not detect H3cit-independent

events

(42)

Uranyl-acetate, osmium

tetroxide,

ruthenium red-osmium

tetroxide,

Cuprolinic Blue

TEM Morphology of

NET-releasing cells

Visible differentiation

between

necrosis and NETosis,

can be

used in combination with

immunostaining of certain

structures in NETs

Occasionally biased by selection of

field of view

(31, 43, 44)

Osmium tetroxide/gold SEM Amount and structure of

NETs-releasing cells

Visible differentiation

between necrosis and

NETosis, can be

used in combination with

immunostaining of certain

structures in NETs

Occasionally biased by selection of

field of view

(31, 43, 44)

Adopted from de Buhr and Köckritz-Blickwede (30). IFM, immunofluorescence microscopy; FM, fluorescence microscopy; FR, fluorescence reader; MIFC, microscopy imaging flow

cytometry; MPO, myeloperoxidase; TEM, transmission electron microscopy; SEM, scanning electron microscopy; H3cit, histone citrullination.

input for optimization of the program and large datasets with
many different individual donors can still be time-consuming
to analyse.

A more fully automated and high-throughput way to quantify
NETs involves quantification of extracellular DNA using SYTOX
green in a plate assay. However, this technique is known for
being susceptible to false positives (24, 30) since NETs are not
quantified based on morphology, but rather RFU. Even though
this method is considered to be unbiased, non-visualization of

NETs and non-specific staining of DNA prevents differentiation
of necrosis and NETosis, and blocking of staining can occur due
to the presence of cationic peptides (30).

Computational Methods Available for IFM
For NET quantification using IFM, one semi-automated
method (37) and two fully automated methods exist
(22, 25). For the semi-automated method, NETs are
quantified based on morphological and spatial distribution
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TABLE 2 | Advantages and disadvantages of the main computational methodologies available to quantify NETs in vitro and in situ.

NET staining

technique

Compatible

quantification method

Advantages Disadvantages Selected references

SYTOX DANA Easy to follow tutorials, individual cell analysis,

exclusion of false positives, high reproducibility

and robustness, reduced analysis time

Human optimisation required, confirmation

with additional NET markers required

(23, 45)

3D-CSLM Highly sensitive, robust Skilled 3D-CSLM operator required, false

positives, confirmation with additional NET

markers required

(46)

Plate assay Fully automated, high-throughput, robust False positives, non-visualization of NETs,

confirmation with additional NET markers

required

(24, 30)

IFM ImageJ Use of freeware, robust Possible reproducibility problems across

laboratories, possible sampling bias,

difficult to implement, human input

required, clumping cells quantified as one

(37)

NETQUANT Fully automated, easy to implement,

reproducible and robust, individual cell analysis

with multiple NET criteria, exclusion of false

positives, high-throughput, advanced

post-analysis data

MATLAB licence required (25)

Machine learning Fully automated, high-throughput, sensitive,

reproducible, exclusion of false positives

Informatics knowledge required, training

for new conditions required, clumping cells

quantified as one

(22, 47)

MIFC Machine learning Fully automated, high-throughput, sensitive,

reproducible, exclusion of false positives

Informatics knowledge required, training

for new conditions required

(46)

In situ

sections

Machine learning Fully automated, high-throughput, sensitive,

reproducible, exclusion of false positives

Informatics knowledge required, training

for new conditions required

(48)

CSLM Specific, easier to implement than machine

learning protocols

Specific software required (49)

ImageJ Use of freeware, robust Additional NET markers required, subject

to false positives

(50)

using ImageJ (37). Fully automated methods for NET
quantification include using a supervised machine-learning
algorithm (regression model) trained on visually annotated
images (22) or NETQUANT, a MATLAB application
that quantifies NETs based on a number of criteria i.e.,
increases in cell surface area of single cells, deformation
of DNA circularity, increase in DNA:NET bound protein
ratio (25).

In our experience, NETQUANT is the most user friendly and
easiest to implement with the user interface being extremely
easy to use (25). The machine-learning method of Coelho
et al. (22) is more technically challenging since knowledge in
Python is required, even though a guide on GitHub exists
(47). Furthermore, since the algorithm was trained using PMA
stimulated neutrophils, new training would be required for new
conditions to be investigated since NETs differ by stimuli (55),
whereas for NETQUANT, metadata from images is used allowing
the app to adapt to different conditions and thus be really robust.
The semi-automated method requires multiple steps involving
ImageJ, such as segmentation, thresholding, and particle analysis
to quantify NETs, making it more difficult to implement
compared to NETQUANT. These additional steps could also risk
sampling bias or reduce reproducibility across laboratories.

Another advantage of NETQUANT is the inclusion of the
watershed algorithm (56). This allows the app to differentiate

NETs in contact with each other, a feature not available in other
methods. Other methods would segment clumps of neutrophils
or NETs as one and not individually. The batch processing
option of NETQUANT also allows for image analysis of large
datasets within minutes, providing detailed single-cell data and
thus allowing formore advanced post-analysis of NET formation.

All methods were successful in NET detection in varying
conditions, such as PMA stimulation, cytokine induction and
even in the presence of pathogens. Coelho et al. (22) and
Mohanty et al. (25) went one step further and showed that
their methodologies correlated well to the detection of NETs
comparing two individual experts.

Currently, NETQUANT appears to be the most unbiased and
uses the most stringent, biologically relevant NET definition
criteria that can be applied rapidly over many different datasets.

Computational Methods for MIFC
Apart from using the software provided for MIFC (IDEAS,
considered to be semi-automatic, with batch processing
possible) (21), only one fully automated methodology for
NET quantification using MIFC data exists (48). The method
developed by Ginley et al. (48) is a supervised machine
learning algorithm for NET detection (chromatin staining only)
using MIFC data. With a support vector machine (SVM), it
provided a more well-rounded performance than an alternative
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convolutional neural network (CNN) approach. This was due
to the amount of training data required. Since the algorithm
only considered cells stimulated with PMA, additional training
for different conditions would be necessary. Moreover, similar
to Coelho et al. (22), the technical nature of the protocol can
make it difficult to implement for persons lacking knowledge
in informatics.

Computational Methods Available for in
situ Prepared Sections
The same authors as above (48) used an unsupervised learning
method on confocal images obtained from thin sections of
lung tissue in a murine fungal pneumonia model stained
for DNA, MPO and histone H1. The percent pixels of
H1, present in decondensed nuclei colocalised with MPO,
was the classification criteria. Applying deep CNN to this
co-localisation data, a supervised approach can be applied. The
pixel wise sensitivity/specificity was 0.99/0.98 for NET detection
on 14 images using the unsupervised learning method. Their
supervised CNN method uses object patches that had an object-
wise holdout sensitivity/specificity of 0.86/0.90 on 631 object
patches (from two images). This is the most automated method
for NET detection in tissue sections. Unfortunately, as with
other machine-learning methodologies, it can be challenging
to implement.

Santos et al. (49) developed a semi-automated method for
NET detection in paraffin-embedded intracoronary thrombus
aspirate samples. Using confocal microscopy, NETs in the
sections are detected by staining for DNA, MPO, and H3Cit.
Thus, the method is highly specific and easier to implement
than that of machine-learning algorithms proposed by Ginley
et al. (48). Naturally, analysis is slightly more tedious and slower
than the fully automated methods of Ginley et al. (48). A
disadvantage is the requirement for specific analysis software i.e.,
SF SOFTWARE VERSION 2.6.07266 (LEICA). Since the method

is largely based on co-localisation, development of methods
using Imaris might provide more robust methods for cross-
laboratory application.

NETs were also generated in vivo using a Mycobacterium
tuberculosis guinea pig model and quantified in situ using semi-
automated methods (50). Using ImageJ, the authors quantify
NETs based on pixel density per area. Tissue sections were
stained using Hoechst. Thus, NET quantification was based
on an increase in the observed DNA area. As mentioned, this
is not specific to NET formation which requires additional
staining for NET markers, such as MPO, elastase etc. Thus, the
authors went further to prove that the increase in DNA area is
colocalised with certain NET markers. A more accurate method
involving the quantification of NETs based on specific markers,
such as MPO would prove to be more accurate i.e., that of
Santos et al. (49).

CONCLUSION

Imaging of NETs can be a tedious task subject to sampling
bias. Fortunately, a large number of groups are working towards
high quality and easy to implement software packages that allow
for high throughput and accurate quantification of NETs. This
further will allow for reduction in sampling bias and allow for
better reproducibility across laboratories.
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