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Oesophageal adenocarcinoma (OAC) is an aggressive malignancy with poor prognosis,

and incidence is increasing rapidly in the Western world. Mucosal-associated invariant T

(MAIT) cells recognize bacterial metabolites and kill infected cells, yet their role in OAC

is unknown. We aimed to elucidate the role of MAIT cells during cancer development by

characterizing the frequency, phenotype, and function of MAIT cells in human blood and

tissues, from OAC and its pre-malignant inflammatory condition Barrett’s oesophagus

(BO). Blood and tissues were phenotyped by flow cytometry and conditioned media

from explanted tissue was used to model the effects of the tumor microenvironment

on MAIT cell function. Associations were assessed between MAIT cell frequency,

circulating inflammatory markers, and clinical parameters to elucidate the role of MAIT

cells in inflammation driven cancer. MAIT cells were decreased in BO and OAC blood

compared to healthy controls, but were increased in oesophageal tissues, compared

to BO-adjacent tissue, and remained detectable after neo-adjuvant treatment. MAIT

cells in tumors expressed CD8, PD-1, and NKG2A but lower NKG2D than BO cohorts.

MAIT cells produced less IFN-γ and TNF-α in the presence of tumor-conditioned media.

OAC cell line viability was reduced upon exposure to expanded MAIT cells. Serum

levels of chemokine IP-10 were inversely correlated with MAIT cell frequency in both

tumors and blood. MAIT cells were higher in the tumors of node-negative patients, but

were not significantly associated with other clinical parameters. This study demonstrates

that OAC tumors are infiltrated by MAIT cells, a type of CD8T cell featuring immune

checkpoint expression and cytotoxic potential. These findings may have implications for

immunotherapy and immune scoring approaches.
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INTRODUCTION

Mucosal-associated invariant T (MAIT) cells are a population of
unconventional or innate-like T cells, characterized in humans by
expression of a semi-invariant T cell receptor Vα7.2-Jα33 chain,
and high expression of the C-type lectin CD161 (NKR-P1A)
(1, 2). Human MAIT cells comprise 1–5% of T cells in healthy
blood, are abundant in the mucosa and particularly in the liver,
where they can comprise up to half of all T cells (3). MAIT cells
recognize microbe-derived vitamin B metabolites presented by
the MHC-Ib-related protein MR1 (4, 5). MAIT cells can detect
and lyse microbially-infected cells and are therefore, thought to
play a putative immunosurveillance role in the mucosa (6). Upon
in vitro activation, MAIT cells produce lytic granules such as
granzymes and cytokines such as IFN-γ, TNF-α, and IL-17 (3).
MAIT cells have been implicated in the pathology of several
inflammatory diseases such as inflammatory bowel diseases (7),
rheumatoid arthritis (8), systemic lupus erythematosus (9), type
I diabetes (10), and multiple sclerosis (11, 12), yet their role in
cancer is less clear.

Mucosal-associated invariant T (MAIT) cells have been
detected withinmany tumor types, including gastric, lung, breast,
liver, thyroid, colorectal, kidney, brain, and multiple myeloma
(3, 13–18). MAIT cells are reportedly decreased in the circulation
of patients with colorectal cancer compared to healthy controls,
and are found at elevated levels in tumors, compared to adjacent
non-tumor tissue and normal tissue (14, 16, 17). A standing
question in the cancer field is whether MAIT cells share the
potent anti-tumor capabilities displayed by other unconventional
T cells, such as invariant natural killer T (iNKT) cells and
gamma delta (γδ) T cells (19). MAIT cells possess the pre-
requisite cytolytic machinery for granule exocytosis, expressing,
and granzymes, and perforin (20, 21). Activated MAIT cells
inhibit the growth of colorectal cancer cell lines (17) and
demonstrate cytotoxic activity comparable to that of natural killer
cells, in in vitro experiments using multiple myeloma target cells
(18). Despite this, MAIT cell abundance in colorectal tumors has
been associated with poorer survival outcomes (15) and levels
of serum carcinoembryonic antigen (CEA), a protein used to
measure cancer progression (17). MAIT cell levels in the blood
of patients with mucosal cancers are negatively associated with
serum CEA level and tumor nodal stage (16). So whether MAIT
cells act as cytolytic anti-tumor effector cells within the tumor
microenvironment, or whether their function is subverted into a
pro-tumor phenotype, remains to be determined.

Characterization of the frequency and phenotype of tumor-
infiltrating lymphocytes (TIL) has revealed prognostic roles
for certain cells in solid tumors in recent years, particularly
CD8+ T cells (22–24). Such studies strongly indicate that
unconventional T cells in particular may play a more important
role in anti-tumor immunity than originally thought (22).
One particularly intriguing finding was that KLRB1, the gene
encoding the CD161 molecule, is one of the strongest favorable
prognostic markers in solid tumors (22). Although expressed
by many leukocytes, MAIT cells express particularly high levels
of CD161, warranting further investigation of these cells in the
cancer setting (25).

This study aimed to assess the frequency and function of
MAIT cells in the setting of oesophageal adenocarcinoma (OAC).
OAC is an aggressive malignancy with poor prognosis and is
one of the fastest growing malignancies in the Western world
(26–28). The 5 year survival for OAC is typically <15% and neo-
adjuvant treatment approaches usingmulti-modal chemotherapy
or chemoradiotherapy only result in complete pathological
response for a minority (20–30%) of patients (29, 30). OAC
is an inflammation-driven cancer, linked with gastroesophageal
reflux disease (GORD) and is strongly associated with obesity
(31–33). GORD drives establishment of Barrett’s oesophagus
(BO), a metaplastic disorder where squamous cells of the
oesophagus are replaced with intestinal-type columnar cells in
response to chronic exposure to stomach acid. A progressive
accumulation of genetic mutations then allows for progression
from non-dysplastic BO to a state of low grade dysplasia,
high grade dysplasia, and eventually, invasive OAC (34). BO
is a prime risk factor for OAC development, and therefore,
represents a useful pre-neoplastic model to evaluate cellular
changes in inflammation-driven cancer development (35). We
used this model to study MAIT cells across the progression
sequence from inflammation to cancer. MAIT cell frequency,
phenotype, and functions were assessed in blood and tissues
collected from healthy donors, and BO and OAC patients. MAIT
cell frequency was also assessed after neo-adjuvant treatment
with either chemotherapy or chemoradiotherapy. In this post-
treatment cohort, tissue was also available from the omentum
and liver as well as blood and tumors, allowing assessment of
MAIT cell frequency in different anatomical sites. Cell function
was assessed by analyzing intracellular cytokine production and
cytotoxic capability of MAIT cells activated in the presence
or absence of conditioned media (TCM) generated from OAC
tumor explant tissue, to model the effects of the soluble tumor
microenvironment. MAIT cell frequency was assessed with
respect to serum inflammatory protein levels and patient clinical
parameters; such as tumor stage, nodal involvement, treatment
response, and overall survival.

MATERIALS AND METHODS

Ethical Approval
Ethical approval was granted from the St. James’s Hospital
and Adelaide, Meath, and National Children’s Hospitals
Research Ethics Committee (SJH/AMNCH, reference number
041113/10804). All specimens were collected with prior informed
consent, from patients attending St. James’s Hospital or
from healthy age-matched donors. This study was carried
out in accordance with the World Medical Association’s
Declaration of Helsinki guidelines on medical research involving
human subjects.

Specimen Collection
Whole blood was collected in EDTA Vacutainer tubes (BD
Biosciences) from healthy control donors (n = 14; 8 male; mean
age 57.4 years [range 42–64 years]), patients with BO (n= 35; 27
male; age 60[31–78]) and patients with OAC (n = 79; 70 male;
mean age at diagnosis 65.1[28–92]). Oesophagogastric tissue
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biopsies were obtained from patients undergoing endoscopy at
St. James’s Hospital, from patients with BO (n = 33; 23 male;
age 58.9[25–76]) and patients with OAC (n = 47; 42 male,
age 64.2[28–89]). Barrett segment length was measured as per
the Prague classification system, with an average length 5.1 cm
(range 1–12 cm) and the majority of BO biopsies (27/33) were
assigned a Vienna grade of 1 or 2. Demographic information
for the pre-treatment OAC cohort is shown in Table 1. All
biopsies from this cohort were treatment-naive at the time
of collection and diagnoses were subsequently confirmed by
histopathological evaluation. Specimens returning an alternative
diagnosis (e.g., squamous cell carcinoma (SCC) or gastric
cancer) were removed from the final cohort. Post-treatment
specimens (blood, omentum, liver, tumor) were also collected
from a cohort of n = 24 unmatched OAC patients after neo-
adjuvant chemotherapy (n= 12) or chemoradiotherapy (n= 12)
treatment at the time of surgery.

Whole Blood Staining
Fluorochrome-conjugated antibodies were added to 100 µl
blood at pre-optimized concentrations and incubated for 15min
at room temperature in the dark. Red cells were lysed
using BD Lysing Solution (BD Biosciences, UK), according
to manufacturer’s recommendations and cells were washed
twice in PBS containing 2% fetal calf serum and 0.02% v/v
sodium azide (PBA solution). Cells were fixed for 15min in 1%
paraformaldehyde solution (PFA) (Santa Cruz Biotechnology,
USA) prior to flow cytometric analysis.

Tissue Dissociation
Oesophagogastric tissue biopsies of approximately 2-3 mm3 in
size were collected in saline-soaked sterile gauze for transport to
the laboratory, immediately transferred to a complete RPMI 1640
solution (Gibco, UK) with Glutamax, supplemented with 10%
v/v fetal calf serum, 100 U/ml Penicillin/Streptomycin, 130 U/ml
collagenase type IV (all from Sigma-Aldrich). Tissue biopsies
were incubated in this collagenase solution at 37◦C for no longer
than 30min, on a shaking incubator set to maximum agitation.
The resulting single cell suspension was then washed through a
40µM sterile filter (BD Biosciences, UK) and cells were washed
twice in PBA solution. Cells were resuspended in 100 µl PBA,
fluorochrome-conjugated antibodies were added and incubated
for 15min in the dark at room temperature. Cells were washed
in PBA solution and fixed for 15min in 1% PFA solution prior
to analysis by flow cytometry. Post-treatment liver and omental
specimens were cut into small pieces using a sterile scalpel on a
Petri dish, followed by enzymatic digestion for 20min at 37◦C
in complete RPMI containing collagenase IV and II, respectively
(Sigma-Aldrich, USA). Cells were then flushed through a 40µM
sterile filter, centrifuged at 1,500 rpm for 10min and any floating
adipocytes were removed from the tube with the supernatant, the
remaining pellet was washed twice with complete RPMI, prior to
staining for flow cytometry.

Flow Cytometry Phenotyping
The following fluorochrome-conjugated antibodies were used to
identify and characterize MAIT cell populations by multi-color

TABLE 1 | OAC cohort demographics.

Biopsies (n = 47) Blood (n = 79)

Gender (M:F) 42:5 70:9

Median age (range), years 64.2 (28–89) 65.1 (28–92)

HISTORY OF BARRETT’S OESOPHAGUS

Yes 14 29

No 17 20

Unknown/Not reported 16 30

TUMOR LOCATION

Type I 21 43

Type II 9 11

Type III 11 16

Not reported 6 9

TUMOR STAGE (CLINICAL)

Tx 0 2

T0 0 1

T1 2 8

T2 4 12

T3 34 45

T4 1 1

Not reported 6 10

NODAL STAGE (CLINICAL)

NX 1 2

N0 16 33

N1 15 19

N2 4 6

N3 5 8

Not reported 6 11

METASTATIC STAGE (CLINICAL)

Mx 5 30

M0 12 10

M1 4 7

Not reported 26 31

PATHOLOGICAL DIFFERENTIATION GRADE

Well 2 3

Moderate 15 37

Poor 30 36

Not reported 0 3

POST-BIOPSY TREATMENT

Neo-adjuvant CROSS 13 23

Neoadjuvant MAGIC 12 27

Other treatment 15 11

Surgery only 3 4

Palliative care 3 6

Unknown 1 8

MANDARD TUMOR REGRESSION GRADE

TRG 1 2 1

TRG 2 2 10

TRG 3 5 10

TRG 4 8 15

TRG 5 7 8

flow cytometry: Vα7.2 FITC (clone REA179, Miltenyi Biotec),
NKG2A PE (clone REA110, Miltenyi Biotec), CD3 PerCP (clone
BW264/56, Miltenyi Biotec), NKG2D PeVio770 (clone BAT221,
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Miltenyi Biotec), CD161 Brilliant Violet (BV)-421 (clone HP-
3G10, BioLegend), CD8 BV510 (clone SK1, BioLegend), PD-
1/CD279 APC-Cy7 (clone EH12.2H7, BioLegend). MAIT cells
were defined as CD3+/Vα7.2+/CD161high lymphogated cells.
Cells were acquired on a CyAn ADP cytometer (Beckman
Coulter) using Summit software (Version 4.0). Gate limits
were determined by using fluorescence minus one (FMO)
controls. Data was analyzed using FlowJo software, Version 10
(FlowJo, LLC).

Tumor Conditioned Media Preparation
Oesophageal adenocarcinoma tumor explants of ∼2–3 mm3

were transferred into 1ml of complete M199 (cM199) medium
(Gibco), made up of M199 supplemented with 1µg/ml insulin
(Sigma) and 10% FCS (Gibco), at one biopsy per well of a 12 well-
plate for 24 h at 37◦C, 5% CO2. The resulting tumor conditioned
media (TCM), or media only (no tumor, cM199 only control)
wells were harvested, snap frozen in liquid nitrogen and stored
at−80◦C until required for experimentation.

Intracellular Cytokine Analysis
Peripheral blood mononuclear cells (PBMC) were prepared
from whole blood collected in EDTA Vacutainer tubes
(BD Biosciences) by density gradient centrifugation over
LymphoprepTM (Stemcell Technologies) from n = 4 healthy
donors. PBMC were plated at a concentration of 2 × 106

cells per ml in cRPMI media and stimulated using a T cell
activation/expansion kit (Miltenyi Biotec) composed of bead
particles bound with biotinylated antibodies specific for
CD2, CD3, and CD28 (at concentration recommended by
manufacturer), and with recombinant human cytokines IL-12
(50 ng/ml, R&D Systems) and IL-18 (50 ng/ml, R&D Systems).
PBMC were stimulated in the presence of 50% TCM from
stage III OAC patients, or with 50% cM199 medium only
control. Each PBMC donor received TCM from at least two
different donors, with a total of six TCM donors was used in
total. Media controls were derived from the same cM199 batch
as TCM and received the same handling as TCM, with the
exception of tumor exposure. PBMC were treated with brefeldin
A (eBiosciences) (at 1× concentration, as per manufacturer’s
recommendation) and cells were incubated overnight (18 h) at
37◦C, 5% CO2. Cells were harvested, washed in PBA solution
and accumulated intracellular cytokines were measured using
a Fixation/Permeabilisation Solution kit (BD Biosciences),
as per manufacturer’s recommendations. In brief, cells were
stained with cell surface antibodies (PD-1 PE, CD8 PerCP, Vα7.2
PEVio770, CD3 VioGreen, CD161 APC), (Miltenyi Biotec),
were washed, permeabilised, and then stained for intracellular
cytokines (IFN-γ FITC, IL-17A VioBlue, and TNF-α APCCy7),
(Miltenyi Biotec). Cells were acquired on a FACS Canto flow
cytometer (BD Biosciences). Gating cut-offs for cytokine
production were determined using unstimulated controls.

Generation of Expanded MAIT Cells
Peripheral blood mononuclear cells from healthy donors were
cultured with vitamin B metabolite antigen 5-ARU (1µg/ml)
and the intermediate methylglyoxal (100µM) and maintained

in complete RPMI media supplemented with IL-2 (100 U/ml).
MAIT cells were expanded for an average of 10 days prior to
harvesting. MAIT cells were removed from IL-2 media for 24 h
prior to experimentation. The purity of expanded MAIT cells
ranged from 73 to 92%.

Cytotoxicity Assay
The oesophageal adenocarcinoma cell line OE33, obtained
from the European Collection of Authenticated Cell Cultures
(ECACC), was used as a cell target, and expanded MAIT
cells were used as effector cells. Expanded MAIT cells were
stimulated prior to co-incubation, using TCR beads (T cell
activation/expansion kit, Miltenyi Biotec) with and without
added cytokines IL-12 (50 ng/ml, R&D Systems) and IL-18
(50 ng/ml, R&D Systems), or were given media only mock
stimulation. MAIT cells were then washed prior to co-incubation
to remove stimulators. OE33 cells were seeded at a density
of 2 × 106 cells/ml in 24 well-plates. Cells were co-incubated
at an effector:target ratio of 10:1 for 4 h at 37◦C, 5% CO2,
with or without TCM from a stage 3 OAC donor. Incubation
of OE33 cells with 4µg/mL camptothecin for 4 h was used
to create an apoptosis-positive control. For the generation of
necrosis positive controls, target cells were incubated at 56◦C
for 6min. OE33 target cells were then harvested from wells by
trypsinisation. Target cells were identified using CFSE labeling,
and cell death was measured by expression of 7-AAD and
annexin V, using the Total Cytotoxicity and Apoptosis Detection
Kit (BioLegend). Cells were acquired on a FACSCanto II flow
cytometer (BD Biosciences).

Multiplex ELISA Analysis of Serum Proteins
Levels of 54 serum proteins were quantified using a V-plex
Human Biomarker 54-plex kit (Meso Scale Diagnostics), as per
manufacturer’s recommendations. Proteins analyzed included;
CRP, Eotaxin, Eotaxin-3, FGF, Flt-1/VEGFR-1, GM-CSF, ICAM-
1, IFN-γ, IL-10, IL-12/IL-23p40, IL-12p70, IL-13, IL-15, IL-16,
IL-17A, IL-17A/F, IL-17B, IL-17C, IL-17D, IL-1RA, IL-1α, IL-1β,
IL-2, IL-21, IL-22, IL-23, IL-27, IL-3, IL-31, IL-4, IL-5, IL-6, IL-
7, IL-8, IL-8 (HA), IL-9, IP-10, MCP-1, MCP-4, MDC, MIP-1α,
MIP-1β, MIP-3α, PlGF, SAA, TARC, Tie-2, TNF-α, TNF-β, TSLP,
VCAM-1, VEGF-A, VEGF-C, VEGF-D. Levels of circulating
proteins were compared to percentage MAIT cell data available
for n = 26 OAC patient blood samples, n = 16 OAC tumor
samples, and a subset of n = 12 OAC patients for whom both
matched blood and tumor MAIT cell percentages were available,
and Spearman (r) correlation values were calculated using
GraphPad Prism (Version 5). Correlation values of >0.6/<-
0.6 were considered strongly correlated. Analytes below the kit
detection range were not included.

Statistical Analyses
All statistical tests were carried out using Prism GraphPad,
version 5.01. Normality testing (using Kolmogorov-Smirnov,
D’Agostino and Pearson, and Shapiro-Wilk tests) showed that
most populations were not normally distributed, therefore, non-
parametric tests were used, as detailed in figure legends. For
multivariate analysis, data were analyzed using SPSS version
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24 (IBM, New York, USA). Kaplan Meier estimates were used
to calculate survival curves, differences in survival curves were
calculated using log-rank analysis. Cox regression multivariate
analysis was used to determine independent predictors of
survival; only variables with significance on univariate analysis
were input into the multivariate analysis. Statistical significance
was defined by p < 0.05.

RESULTS

MAIT Cells Are Reduced in Circulation and
Increased in Oesophageal Tissues in
Inflammation and Cancer
Mucosal-associated invariant T cells were defined as the
CD161high/Vα7.2+ proportion of the CD3+ lymphogate, as
shown in representative flow cytometry dot plots (Figure 1A).
Doublet exclusion was also performed as part of the gating
strategy. MAIT cells were decreased in the circulation of patients
with BO (mean 0.86% [range 0.02–2.4%], n = 34, p < 0.001)
and OAC patients (1.9% [0.15–14.6%], n = 79, p < 0.05)
when compared to healthy controls (3.4% [0.48–14.5%], n
= 14) (Figure 1B). In collagenase-digested Oesophageal tissue
suspensions, the percentage MAIT cell frequency was higher in
BO lesions (4.38% [0–25%], n = 33, p < 0.05) and OAC tumors
(3.2% [0.32–20%], n = 47, p < 0.05) when compared to BO-
adjacent oesophageal tissues, taken at least 10 cm from the BO
lesion (1.34% [0.1–6.49%], n = 31) (Figure 1C). These findings
were recapitulated in a cohort of matched patient tissues, where
MAIT cells also represented a higher proportion of T cells in BO
lesions (p < 0.001, n = 20) (Figure 1D), and OAC patients (p <

0.05, n= 23) (Figure 1E).

MAIT Cell Frequency in Post-treatment
Tissues
Mucosal-associated invariant T cell frequencies in blood and
tumors were compared in unmatched cohorts of treatment-
naive and neo-adjuvant treated OAC patients. No differences in
circulatingMAIT cell frequencies were detected when treatment-
naive (n = 79) and post-chemoradiotherapy (CRT) (n = 10)
or post-chemotherapy (chemo) (n = 7) groups were compared
(Figure 2A). Similarly, no difference was detected in tumor
MAIT cell levels when pre-treatment (n = 47), post-CRT (n =

6), and post-chemo (n = 6) cohorts were compared (Figure 2B).
MAIT cells also remained detectable in the blood (n = 10),
omentum (n = 4), liver (n = 4), and tumors (n = 6) after
treatment with CRT (Figure 2C) or chemo (n = 7, 6, 6, 6,
respectively), in a partially matched cohort (Figure 2D).

MAIT Cell Phenotype in OAC Blood and
Oesophageal Tissues
Mucosal-associated invariant T cell expression of immune
inhibitory markers programmed cell death protein 1 (PD-1)
and NKG2A, and costimulatory marker NKG2D, was assessed
in the blood of 11 healthy donors, 23 patients with BO,
and 58 patients with OAC, and in the oesophageal tissue of
22 BO and 39 OAC patients (Figure 3). BO-adjacent tissue

(n = 22) was used as control tissue. PD-1 expression was
higher (p < 0.001) on MAIT cells (Figure 3A) and T cells
(Figure 3B) from all oesophageal tissue types (BO-adjacent
control, BO, and OAC) when compared to blood, but no
differences were detected between tissue types, with uniform high
expression observed in all oesophageal tissues. This contrasted
with MAIT cell expression of inhibitory receptor NKG2A
(Figure 3C) and costimulatory receptor NKG2D (Figure 3E),
where expression was largely similar between the blood and
oesophageal tissue compartments. Significant blood and tissue
expression differences were observed in the T cell compartment
however (Figure 3D), with NKG2A expression being higher in
BO-adjacent (p < 0.05) and BO (p < 0.001) tissues compared
with whole blood controls. NKG2D expression by MAIT cells
was lower in OAC tumor tissue however, compared to BO (p
< 0.001) and control tissues (p < 0.05) (Figure 3E), and this
lack of NKG2D in OAC tumors was also observed for T cells
(Figure 3F). NKG2D expression on T cells was higher in BO
tissue (p < 0.05) compared to blood, however the opposite
trend was observed in OAC patients, with NKG2D levels being
expressed at lower levels in tumor tissue compared to OAC blood
(p < 0.001).

We also investigated co-expression of inhibitory markers
NKG2A and PD-1 in OAC patient blood (n = 17) and biopsies
(n = 35) (Figures 3G,H), and observed that co-expression was
higher in tissues, and that MAIT cells co-expressed NKG2A and
PD-1 at levels similar to T cells and CD8T cells (Figure 3H). CD8
expression was also measured on MAIT cell in blood and tissues,
and was observed at similar high levels; a mean percentage of
82% in blood and 79% in OAC tissues, for n = 13 matched OAC
donors (Figure 3I). MAIT cells accounted for a mean percentage
of 7% of all circulating CD8+ T cells (n= 20), and 11% of CD8+

TILs (n= 24) (Figure 3J).

The OAC Tumor Microenvironment
Reduces MAIT Cell Expression of TH1
Cytokines
Due to the limited size of the oesophageal tissue biopsies
available, the effects of the OAC tumor microenvironment
on MAIT cell function were evaluated using a tissue explant
model. PBMC from n = 4 healthy donors were given overnight
stimulation with TCR beads and cytokines IL-12 and IL-18 in
the presence or absence of TCM from treatment-naïve stage III
OAC tumors, and intracellular cytokine production was then
assessed by multi-color flow cytometry. Unstimulated PBMC
showed no appreciable cytokine production, whereas stimulated
cells expressed elevated levels of IFN-γ, TNF-α, and IL-17A, in
all cell compartments examined; namely MAIT cells, T cells,
and CD8+ T cells (Figure 4). PBMC stimulated in the presence
of control media (i.e., same media incubated and preserved in
the same manner as TCM, but without tumor exposure) showed
similar cytokine production profiles as stimulated cRPMI media
controls (data not shown). In the presence of OAC TCM, the
percentage of MAIT cells expressing IFN-γ (Figure 4B) and
TNF-α (Figure 4C) was reduced (p < 0.05 for both). No changes
were noted in production of IL-17A however, for any T cell
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FIGURE 1 | MAIT cell frequency is reduced in blood but enriched in tissues. MAIT cell frequencies were analyzed by flow cytometry in whole blood and

collagenase-digested oesophageal tissues, defined as CD161high/Va7.2+ cells, expressed as a percentage of CD3+ lymphocyte gate, as shown in dot plots from

representative donor tissue compartments (A). (B) MAIT cells were more abundant in whole blood taken from healthy (n = 14) age-matched donors, than patients

with BO (n = 33, p < 0.001) or OAC (n = 79, p < 0.05). (C) When compared to BO-adjacent Oesophageal tissue (n = 31), MAIT cell frequency was higher in OAC

tumor biopsies (n = 47, p < 0.01) and BO lesions (n = 32, p < 0.05), respectively. (D) MAIT cells in a cohort of matched BO patients were elevated in BO lesions

compared to blood (p < 0.001, n = 20). (E) MAIT cells in a cohort of matched patients were higher in OAC tumors compared to blood (p < 0.05, n = 23). Data was

analyzed using a Kruskal-Wallis test followed by Dunn’s Multiple Comparison Test. For matched data sets, a Friedman test was used to analyse three matched

datasets, and a Wilcoxon signed rank test was used to compare two datasets, respectively, followed by Dunn’s Multiple Comparison Test. Horizontal bars indicate

median values. *p < 0.05, **p < 0.01, ***p < 0.001.

subtypes (data not shown). No differences were observed in
T cell (Figures 4D,E) or CD8+ T cell (Figures 4F,G) cytokine
production in the presence of TCM. PD-1 expression was also
measured (data not shown), but no changes were observed
upon stimulation or TCM addition, for any of the T cell
compartments measured.

Oesophageal Cancer Cell Line Viability Is
Reduced in the Presence of Expanded
MAIT Cells
Viability of the OAC tumor cell line, OE33, was reduced
after 4 h exposure to expanded MAIT cells, as determined by
flow cytometric detection of annexin V and 7-AAD expression
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FIGURE 2 | MAIT cell frequencies after neo-adjuvant treatment. MAIT cell frequency was not altered in a cohort of OAC donors after treatment with

chemoradiotherapy (CRT) or chemotherapy (chemo), compared to an unmatched pre-treatment patient cohort, in blood (A) and tumors (B), as assessed by ANOVA

(Kruskal-Wallis test followed by Dunn’s Multiple Comparison Test). MAIT cells were well-represented in blood, omentum, liver, and tumors after neo-adjuvant CRT (C)

and chemotherapy (D). Horizontal bars indicate median values.

(Figure 5A). OE33 cells lacking expression of these markers
were defined as viable. MAIT cells were expanded from n = 6
healthy PBMC donors, and were co-cultured with OE33 cells,
with or without prior stimulation with TCR activation beads and
cytokines IL-12 and IL-18. OE33 cell viability was reduced (p <

0.05) when co-cultured with unstimulated expanded MAIT cells
but was most reduced (p < 0.01) when MAIT cells received prior
stimulation (Figure 5B). Despite inter-experimental variation
observed in OE33 cell viability percentage, this trend of reduced
viability in the presence of MAIT cells was consistently seen in all
three experimental runs, and for all n = 6 expanded MAIT cell
donors tested. The addition of TCM derived from n= 4 different
stage III OAC patients had no effect on MAIT cell cytotoxicity
in this experimental system. One expanded MAIT cell donor
showed a particularly potent ability to kill the OE33 cells, even
in the absence of stimulation. Removal of this dataset does not
abrogate the overall significance of this finding.

MAIT Cells Are Inversely Associated With
Circulating Levels of Chemokine IP-10
Mucosal-associated invariant T cell frequencies in OAC blood
and tumors, expressed as a percentage of T cells, was compared to
levels of 54 serum markers of inflammation by multiplex ELISA.
Of these, the chemokine interferon gamma-induced protein,

IP-10, (also known as CXCL10) was observed to be inversely
associated with MAIT cell frequency, in both blood (n = 26, r
= −0.53, p = 0.006) and tumors (n = 16, r = −0.69, p = 003)
of OAC patients (Figures 6A,B). This negative correlation was
also noted in a cohort of n = 12 OAC patients with matched
blood and tumors, (Figure 6C). Levels of macrophage derived
chemokine, (MDC, also known as CCL22) and MIP-1β (CCL4)
levels were also observed to be negatively associated with MAIT
cell levels, but this correlation was only observed in tumors, but
not for blood MAIT cells, as summarized in Table 2.

MAIT Cells and Clinical Outcomes
Mucosal-associated invariant T cell frequency in OAC tumors (n
= 47) was evaluated with respect to various clinical parameters
such as clinical and pathological TNM stages, BMI, tumor
differentiation state, known history of BO, survival time, and
response to neoadjuvant chemoradiotherapy, as reported by
Mandard tumor regression grade (TRG). MAIT cells were more
abundant in OAC tumors in a cohort of n = 16 patients
without nodal involvement (p < 0.029), compared to n = 24
node-positive patients (Figure 7A), although no difference was
observed in blood (Figure 7B). Univariate analysis of n = 47
OAC tumors showed that increased nodal score is associated with
a poorer prognosis (p = 0.36, HR = 6.28, 95% CI = 1.13–34.9).
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FIGURE 3 | Phenotypic characterization of MAIT cells in blood and oesophageal tissues. MAIT cell (CD3+/Vα7.2+/CD161high) and T cell (CD3+) populations were

gated and percentage positive expression for PD-1, NKG2A, NKG2D, and CD8 was analyzed in blood (open circles) and oesophageal tissue specimens (filled circles).

BO-adjacent oesophageal tissue from n = 22 donors was used as a tissue control, and n = 11 healthy age-matched donors were used for blood controls. PD-1

expression was higher in all tissue compartments compared to blood, for both MAIT cells (A) and T cells (B). Expression of inhibitory marker NKG2A by MAIT cells (C)

and T cells (D), and costimulatory marker NKG2D (E,F), respectively, for n = 23 BO and n = 51 OAC blood samples, and n = 22 BO and n = 32 OAC oesophageal

tissue biopsies. (G) Representative flow cytometry plots depicting PD-1 and NKG2A co-expression gating for a single representative OAC biopsy donor. (H)

Co-expression of NKG2A and PD-1 by different OAC T cell compartments. (I) CD8 expression by MAIT cells was similarly high in blood and OAC tumor tissue, for n =

13 matched OAC donors, and MAIT cells account for a substantial proportion of CD8+ T cells in blood and OAC tumors (J). Datasets were analyzed by ANOVA

(Kruskal-Wallis test followed by Dunn’s Multiple Comparison Test). Horizontal bars indicate median values. *p < 0.05, ***p < 0.001.

Interestingly, the risk of death is further increased in patients
where tumor MAIT cell levels are low (p=0.31, HR = 7.57, 95%
CI = 1.21–47.3). No differences were observed in MAIT cell

frequency whenOACpatients were classified by TRG, with scores
of 1–2 indicating a good response to neo-adjuvant treatment,
TRG3 indicating no response, and TRG4-5 indicating tumor
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FIGURE 4 | IFN-γ and TNF-α expression is reduced when healthy MAIT cells are activated in the presence of OAC tumor conditioned media. PBMC from n = 4

healthy donors received either medium only or TCR and cytokine stimulation in the absence and presence of tumor conditioned medium (TCM) from n = 6 stage III

OAC patients, and intracellular cytokine production was measured by flow cytometry, as shown for a single representative donor (A). Percentage IFN-γ and TNF-α

expression is shown within the MAIT (B,C), T cell (D,E), and CD8+ T cell (F,G) compartments, respectively. Datasets were analyzed by ANOVA (Kruskal-Wallis test

followed by Dunn’s Multiple Comparison Test). Horizontal bars indicate median values. *p < 0.05.

progression, when tumor MAIT cell frequencies (Figure 7C)
(n = 24) and blood (Figure 7D) (n = 43) were assessed.
Survival time was not different between MAIT cell high or low
populations, either in tumors (p = 0.2384, HR = 1.689, 95% CI
= 0.71–4.04) or blood (p = 0.2403, HR= 1.433, 95% CI = 0.79–
2.61), usingmedian frequency as a cut-off value (data not shown).
No other associations were observed.

DISCUSSION

Over the last decade, the immunological component of the
tumor microenvironment has been shown to be of great
prognostic importance inmany gastrointestinal cancers, allowing
prediction of patient survival, recurrenc, and even response
to treatment (22, 24, 36–38). The advent of the Immunoscore
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FIGURE 5 | Oesophageal adenocarcinoma cell line viability is reduced after incubation with MAIT cells. Oesophageal cancer cell lines (OE33) were cultured with

expanded MAIT cells from n = 6 healthy donors, in the presence and absence of MAIT cell stimulation and OAC tumor conditioned media. Cell viability was measured

after 4 h by flow cytometric analysis of 7-AAD and Annexin V, with viable cells defined as a double negative population, as shown for a single representative donor (A).

Compiled data from n = 3 independent experiments showed that OE33 cell viability was reduced in the presence of MAIT cells pre-stimulated with TCR beads and

cytokines IL-12 and IL-18 (S-MAIT), however TCM from n = 4 OAC patients had no effect on this viability reduction (B). Data analyzed by ANOVA (Kruskal-Wallis test

followed by Dunn’s Multiple Comparison Test). *p < 0.05, **p < 0.01.

method for predicting patient clinical outcomes based on
immunohistochemical analysis of T cell subsets has, along with
other studies, highlighted the importance of CD8T cells in
optimal anti-tumor immune responses (37), and the success
of immune checkpoint inhibitor therapies has only reinforced
the urgent need for a greater understanding of the immune
response to cancer (39), particularly in cancers with poor survival
outcomes, such as OAC. We are interested in elucidating the
roles played by unconventional, innate-like T cells, many of
which also express CD8 and possess CTL function, such as
MAIT cells.

This study shows for the first time that MAIT cells comprise a
significant proportion of T cells in human Oesophageal mucosa;
in inflamed BO lesions, BO-adjacent regions, and in OAC tumor
tissues. Furthermore, we observed that MAIT cells account
for up to 35% of tumor infiltrating CD8+ T cells in OAC
tumors. In agreement with other studies in mucosal cancers

(16, 17), we observed that MAIT cells were more abundant
in tumor tissues than in circulation. MAIT cells accounted
for a similar proportion of total T cells at BO and tumor
sites, despite the observation that T cells comprised a more
abundant proportion of the lymphogate in tumors compared
to BO tissue (data not shown), meaning that MAIT cells were
equally represented in both inflammatory and cancer states.
In addition to the OAC cohort, we observed that MAIT cells
were also decreased in the blood of patients with SCC of
the oesophagus (p < 0.01, n = 11), but not in a cohort of
patients with gastric cancer (n = 7), when compared to healthy
controls (data not shown). A decrease in circulating MAIT cells
is commonly reported in cancer and other diseases (17, 40–
42), hypothesized to reflect homing to active sites of disease,
and therefore, potential MAIT cell involvement. However, MAIT
cells normally comprise a significant proportion of T cells in
the liver and mucosal tissues, and many factors can potentially

Frontiers in Immunology | www.frontiersin.org 10 July 2019 | Volume 10 | Article 1580

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Melo et al. MAIT Cells in Oesophageal Cancer

FIGURE 6 | MAIT cell frequency in OAC whole blood and tumors is inversely

correlated with circulating levels of IP-10. Serum protein levels were quantified

by 54-plex ELISA and correlated with MAIT cell frequencies in OAC patient

blood and tumor biopsies. MAIT cell frequency was inversely correlated with

levels of circulating IP-10, in n = 26 blood donors (A), n = 16 OAC tumors (B)

and n = 12 OAC patients with both matched blood and tumor available (C).

Correlations were assessed by Spearman r-test.

influence their abundance. We observed that MAIT cells remain
detectable in blood, omentum, liver, and tumor tissues after neo-
adjuvant treatment with chemotherapy or chemoradiotherapy
regimens, and that MAIT cell frequency in whole blood and
tumor tissue was not altered after chemoradiotherapy, in

agreement with other reports that MAIT cells are unaffected
by chemotherapy in breast cancer (3). Differences in the
oesophageal microbiome have been reported in patients with
GORD and BO, who show a broader range of bacterial species
predominated by Gram-negative bacteria, whereas the normal
microbiome is predominated by Gram-positive bacteria (43).
Oesophageal colonization by Campylobacter concisus has been
reported in OAC, accompanied by an increase in the MAIT
cell activating cytokine, IL-18 (44). Therefore, it is possible that
MAIT cell abundance in the Oesophageal mucosa could be
influenced by microbial as well as immunological or disease-
related factors.

T cells have previously been implicated in the establishment
of oesophageal inflammation, since their infiltration into
oesophageal tissue precedes tissue damage (45) and inflammation
(46). We therefore, examined the phenotypic and functional
features of MAIT cells in healthy, inflamed non-cancerous,
and cancerous states. We observed that PD-1 expression was
high on all tissue T cell subsets examined, in all tissue types,
a feature seemingly common in tumor associated T cells
(14, 47–49). Elevated PD-1 expression is associated with an
exhausted phenotype in CD8+ TIL, characterized by poor
proliferation, cytokine production, and effector function (48).
However, some studies indicate that unconventional T cells can
retain cytotoxic ability despite PD-1 expression (50). We did
not detect any appreciable expression of exhaustion marker
LAG-3 (data not shown). We did observe that expression
of the natural cytotoxicity receptor NKG2D was lowest in
OAC tissue (Figure 3E), further indicating a potential loss
of effector function, as also described in gastric cancer (51).
Furthermore, we noted that MAIT cells can co-express inhibitory
receptors NKG2A and PD-1, at levels similar to CD8T
cells (Figure 3H), meaning that MAIT cells are potentially
targetable by immune checkpoint inhibitor therapies (e.g.,
monalizumab and pembrolizumab, respectively), both alone and
in combination. Pembrolizumab has recently been approved
by the US FDA to treat patients with advanced cancers of
the gastroesophageal junction (52), therefore, it is becoming
increasingly important to understand the impact of such
treatment on the function of different T cell subsets. No
differences in PD-1 expression were detected in a preliminary
analysis comparing n = 4 unmatched pre-treatment and post-
treatment tumors (data not shown). This differs from earlier
observations by our colleagues, who note a loss of PD-1
in OAC tumor T cells post-treatment (53), however greater
numbers of patients are needed to confirm this finding, ideally
in matched patient samples at pre- and post-treatment time
points. MAIT cells have previously been reported to be exempt
from the deleterious effects of chemotherapy, unlike other T cell
subsets (3).

Functional analyses showed that MAIT cells freshly isolated
from healthy donors produced less IFN-γ and TNF-α when
activated in the presence of tumor conditioned media prepared
from stage III OAC tumors (Figure 4). The observed decrease
in production of these important anti-tumor cytokines by
activated MAIT cells has also been reported in liver cancer
(54), colorectal cancer (17), or after exposure to colorectal
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TABLE 2 | Correlations with MAIT cell frequency and serum proteins.

Blood (n = 26) Tumor (n = 16)

Spearman r P-value 95% CI Spearman r P-value 95% CI

bFGF 0.05129 0.8035 −0.3536 to 0.4400 0.5118 0.0427 0.005313 to 0.8093

CRP 0.2674 0.1866 −0.1458 to 0.6011 0.07353 0.7867 −0.4511 to 0.5604

Eotaxin −0.1894 0.354 −0.5460 to 0.2252 −0.3647 0.1649 −0.7362 to 0.1757

Eotaxin-3 0.09061 0.6598 −0.3185 to 0.4713 −0.5118 0.0427 −0.8093 to −0.005313

Flt-1 −0.3892 0.0494 −0.6814 to 0.01002 −0.2294 0.3927 −0.6603 to 0.3151

ICAM-1 0.1077 0.6005 −0.3029 to 0.4846 −0.1441 0.5944 −0.6075 to 0.3924

IFN-γ −0.2117 0.3098 −0.5685 to 0.2121 −0.4418 0.1138 −0.7943 to 0.1334

IL-10 −0.2456 0.2586 −0.6057 to 0.1979 −0.2724 0.368 −0.7248 to 0.3442

IL-12/IL-23p40 −0.2219 0.2759 −0.5693 to 0.1928 −0.35 0.2009 −0.7389 to 0.2139

IL-15 −0.3444 0.0849 −0.6527 to 0.06172 −0.1059 0.6963 −0.5824 to 0.4248

IL-16 −0.1453 0.4787 −0.5133 to 0.2678 −0.3088 0.2445 −0.7059 to 0.2360

IL-17A −0.3174 0.1141 −0.6349 to 0.09188 −0.3412 0.1959 −0.7236 to 0.2016

IL-17B −0.06416 0.7658 −0.4658 to 0.3594 0.04415 0.871 −0.4743 to 0.5399

IL-17D −0.1705 0.4367 −0.5536 to 0.2721 −0.2393 0.3904 −0.6787 to 0.3263

IL-1RA −0.3074 0.1266 −0.6283 to 0.1028 −0.09118 0.737 −0.5725 to 0.4369

IL-1α 0.1771 0.419 −0.2658 to 0.5582 0.1319 0.6676 −0.4665 to 0.6475

IL-22 −0.01218 0.955 −0.4241 to 0.4039 −0.411 0.1443 −0.7800 to 0.1701

IL-27 0.04445 0.8293 −0.3596 to 0.4344 0.07647 0.7783 −0.4488 to 0.5625

IL-5 0.1073 0.602 −0.3033 to 0.4843 0.0132 0.9643 −0.5337 to 0.5524

IL-6 −0.1731 0.3978 −0.5340 to 0.2412 −0.2893 0.2957 −0.7066 to 0.2774

IL-7 −0.2212 0.2774 −0.5688 to 0.1934 −0.4059 0.1188 −0.7576 to 0.1284

IL-8 0.1665 0.4162 −0.2475 to 0.5291 0.08214 0.771 −0.4624 to 0.5817

IL-9 0.03509 0.8737 −0.3937 to 0.4514 −0.2044 0.4833 −0.6728 to 0.3810

IP-10 −0.5252 0.0059 −0.7634 to − 0.1612 −0.6912 0.003 −0.8875 to − 0.2825

MCP-1 −0.2619 0.1962 −0.5974 to 0.1515 −0.1118 0.6803 −0.5863 to 0.4199

MCP-4 −0.3201 0.1109 −0.6367 to 0.08892 −0.4559 0.0759 −0.7825 to 0.06760

MDC −0.2342 0.2494 −0.5780 to 0.1802 −0.5765 0.0194 −0.8388 to − 0.09705

MIP-1α −0.1068 0.6114 −0.4911 to 0.3123 −0.345 0.208 −0.7363 to 0.2193

MIP-1β −0.07488 0.7162 −0.4589 to 0.3327 −0.6 0.014 −0.8491 to − 0.1326

MIP-3α −0.05746 0.7804 −0.4449 to 0.3482 0.08824 0.7452 −0.4393 to 0.5705

PlGF −0.1777 0.3852 −0.5374 to 0.2367 −0.2882 0.279 −0.6944 to 0.2573

SAA −0.05745 0.7804 −0.4449 to 0.3482 0.07941 0.77 −0.4464 to 0.5645

TARC −0.1994 0.3289 −0.5532 to 0.2154 −0.4 0.1248 −0.7546 to 0.1353

Tie-2 −0.1746 0.3936 −0.5351 to 0.2397 −0.04706 0.8626 −0.5419 to 0.4721

TNF-α −0.2575 0.2041 −0.5943 to 0.1561 −0.3 0.2773 −0.7125 to 0.2665

TNF-β −0.3213 0.1349 −0.6552 to 0.1177 −0.01542 0.9583 −0.5539 to 0.5322

TSLP −0.06845 0.7743 −0.5066 to 0.3978 −0.4979 0.0833 −0.8290 to 0.09146

VCAM-1 −0.05813 0.7779 −0.4455 to 0.3476 −0.05 0.8541 −0.5440 to 0.4698

VEGF 0.0003419 0.9987 −0.3974 to 0.3979 −0.3824 0.1439 −0.7454 to 0.1557

VEGF-C −0.04685 0.8202 −0.4364 to 0.3575 −0.08529 0.7535 −0.5685 to 0.4417

VEGF-D 0.08172 0.6915 −0.3265 to 0.4643 −0.09412 0.7288 −0.5745 to 0.4345

TCM (14). Colorectal studies have also reported a concomitant
elevation in MAIT cell expression of IL-17 (15, 17). The role
of pro-inflammatory cytokine IL-17 in tumors is controversial
(55), but its abundance in colorectal tumors has been linked
with negative prognostic outcomes (56) suggesting that overall
IL-17 plays a negative role, promoting pro-tumor inflammation,
angiogenesis, andmetastasis (57).We did not observe any change

in IL-17A expression in our experiments. We also observed that
expanded MAIT cells were capable of killing an oesophageal
cancer cell line, in agreement with similar reports in colorectal
cancer (17) and multiple myeloma (18). We did not observe
any impact of OAC TCM in this setting, though it is possible
that the 4 h incubation time used was not sufficient to observe
the effects of the TCM on cytoxicity. We used MAIT cells
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FIGURE 7 | MAIT cells are more abundant in node-negative OAC tumors. (A) MAIT cell frequency was assessed in n = 40 OAC tumors with respect to nodal status,

and node-negative patients displayed higher MAIT cells (n = 16, p < 0.029) compared to node positive patients (n = 24), as assessed by Mann-Whitney U-test. (B)

MAIT cell levels in blood did not show differences when node-negative (n = 32) and node-positive (n = 33) patients were compared. MAIT cell percentages in were

also not different in tumors (C) (n = 24) or blood (D) (n = 43) of donors with different TRG scores, as assessed by (Kruskal-Wallis test followed by Dunn’s Multiple

Comparison Test). Horizontal bars indicate median values. *p < 0.05.

expanded from healthy blood donors to model the effects
of the OAC tissue microenvironment. Our TCM experiments
show that T helper (TH) – 1 cytokine production, but not
cytotoxicity, is negatively affected in vitro by the soluble tumor
microenvironment. Whether the observed effects of the OAC
TCM are tumor-specific remains to be determined, as we were
unable to obtain normal oesophageal tissue to control for tissue
effects. Intriguingly, previous work by our group has shown that
conditioned media from OAC and BO explants, but not normal
or oesophagitis, was able to reduce IFN-γ and TNF-α production
in CD8T cells, suggesting that this immunosuppression may
arise early in OAC development (58). We hypothesize that,
as reported for other effector cells, MAIT cell function is at
least partially subverted in the OAC tumor microenvironment
toward a pro-tumor phenotype, which may potentially be
amenable to rescue by immune checkpoint inhibitor therapy
(59). Furthermore, MAIT cells are well-represented in the pre-
neoplastic BO lesion and if they indeed are proven to have
immunosuppressive phenotypes at this stage, it is also feasible
that these cells could be targeted prior to cancer development,
as a preventive measure. Indeed, MAIT cell presence in tumors
has been associated with poor survival outcome in small cohort
studies (15, 17). If MAIT cells truly are linked with negative
outcomes, then these cells pose a potential confounding factor for
prognostic studies focussed on CD8+ T cells, perhaps explaining
why not all studies demonstrate a clear link between CD8+ TIL

levels and survival (60). This calls for future, larger studies to
differentiate between the prognostic ability of these cell types,
to assess whether MAIT cells should be excluded to improve
prognostic scoring approaches.

We observed that MAIT cell frequencies in OAC blood
and tumors were negatively correlated with serum levels of
the chemokine IP-10, a pro-inflammatory chemoattractant for
activated T cells. This finding is in agreement with a study
on cardiometabolic disease which reported a consistent inverse
correlation betweenMAIT cells and IP-10 expression (61). MAIT
levels in tumors were also inversely correlated with chemokines
MDC and MIP-1β. MDC is expressed by tumor cells and tumor-
associated macrophages, and is responsible for recruitment of
regulatory T cells to the tumor site (62). MAIT cells in circulation
have been shown to express receptors for IP-10 (CXCR3) (63)
and CCL22 (CCR4) (64), respectively, rendering them receptive
to these chemokines, however, what this means for anti-tumor
immunity is currently unclear.

Oesophageal adenocarcinoma tumors have a relatively high
mutational burden (65), are a rich source of tumor neo-antigens
and are generally well-infiltrated by immune cells. Indeed,
histological analysis of haemotoxylin and eosin stained biopsies
from our OAC biopsy cohort revealed an overall high level of
immune cell infiltration and low (<50%) percentage of tumor
stroma in the majority of cases (manuscript in preparation).
Such features would suggest that OAC tumors should respond
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well to immune checkpoint inhibitor treatment (66, 67), yet
results to date have been modest, with only a minority of
patients benefitting from treatment (68, 69). Interestingly,
gene signatures correlating with clinical response to immune
checkpoint inhibitor treatment highlight the importance of IFN-
γ and its related genes, most notably CD8A, IP-10, and HLA-
DR (68–70). We and others have demonstrated a prognostic
role for the class II antigen presentation molecule HLA-DR in
OAC (71–73). Therefore, although T cell presence in tumors
is evidently advantageous (37), it must be accompanied by
effective T cell activation machinery, and recent reviews have
argued that effective T cell priming should be considered
as much as immune checkpoint expression (74). This raises
questions about the role of MR1, the MAIT cell antigen
presentation molecule, in tumors. We could not detect MR1
expression on OAC tumor cells, either in fresh collagenase-
digested biopsies, or from trypsinised OE33 cell lines (data not
shown), whereas Gherardin and colleagues demonstrate MR1
upregulation in a K562 cell line after pulsing with folate-derived
antigens (18).

Future studies are required to assess the relative contribution
of MAIT cells to the overall anti-tumor immune response
in vivo, and the impact of immune checkpoint inhibitor
treatments on the function of different CTL types. Elucidation
of MAIT cell tumor immunology is of particular interest for
a number of reasons. Firstly, we and others highlight an
anti-tumor cytotoxic capability for MAIT cells, at least in
vitro (17, 18). If immune checkpoint inhibitors can abrogate
the suppressive effects of the tumor microenvironment on
MAIT cell function, these cells themselves may have important
therapeutic potential, as has been proposed for other innate
T cells (19, 75). Secondly, MAIT cells naturally express
high levels of the multi-drug efflux protein ABCB1, which
confers resistance to the deleterious effects of chemotherapy
(3), meaning that MAIT cell contributions to anti-tumor
immunity could be particularly prominent in the combination
treatment setting, where chemo-sensitive CTLs are killed off. We
noted no difference in MAIT cell frequency after neo-adjuvant
chemotherapy or chemoradiotherapy treatment, when compared
to an unmatched cohort of treatment-naive patients. Further
analysis is warranted to confirm this observation however, ideally
in the same OAC donors at pre- and post-treatment time
points. And thirdly, recent studies show that the gut microbiome
plays an important role in the optimal efficacy of immune
checkpoint inhibitors (76). Since MAIT cells are sensitive to
the microbial milieu, relying on gut flora for development (77),
it stands to reason that gut microbes may also affect MAIT
cell function in the cancer setting. These observations raise
interesting questions regarding the dynamic immune response
to cancer—and potentially offer insights into new ways in which
it may be best targeted therapeutically. As immunotherapeutic
treatment of gastrointestinal cancers becomes more common,
there is a growing urgency to re-evaluate what is known about
the immune response to cancer, and to learn more about

the basic biological processes required for an optimal tumor
response. A greater understanding of MAIT cell functions in
cancer will aid this expanding knowledge base, and improve our
understanding of innate T cells, a cell type with great unrealised
immunotherapeutic potential.
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