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Vpr is a 14 kDa accessory protein conserved amongst extant primate lentiviruses that

is required for virus replication in vivo. Although many functions have been attributed to

Vpr, its primary role, and the function under selective pressure in vivo, remains elusive.

The minimal importance of Vpr in infection of activated CD4+ T cells in vitro suggests

that its major importance lies in overcoming restriction to virus replication in non-cycling

myeloid cell populations, such as macrophages and dendritic cells. HIV-1 replication is

attenuated in the absence of Vpr in myeloid cells such as monocyte-derived dendritic

cells (MDDCs) and macrophages, and is correlated with the ability of Vpr to overcome

a post-integration transcriptional defect in these cells. Intriguingly, recent identification

of the human hub silencing (HUSH) complex as a target for DCAFCRL4-mediated

degradation by numerous ancestral SIV Vpr alleles, and the Vpr paralog Vpx, signifies

the potential function of HIV-1 Vpr to alter yet-to-be identified chromatin remodeling

complexes and prevent host-mediated transcriptional repression of both invading viral

genomes and pro-inflammatory responses. Myeloid cells constitute an important bridge

between innate and adaptive immune responses to invading pathogens. Here, we seek to

illustrate the numerous means by which Vpr manipulates the myeloid cellular environment

and facilitates virus replication, myeloid cell-dependent HIV transmission, and systemic

virus dissemination.
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INTRODUCTION

Sexual transmission is the predominant means by which HIV is acquired (“Global AIDS Update”
2016). While the exact cell type targeted by HIV in the genital mucosa remains a matter of debate
(1–3), various subsets of dendritic cells (DCs) and macrophages are present at high concentrations
within the genital mucosa, and therefore may be early targets of HIV (4–6). Infection of DCs and
macrophages is particularly important as they are uniquely poised to transmit HIV with high
efficiency to CD4+ T cells during antigen presentation within the secondary lymphoid organs
(5, 7, 8). As professional antigen presenting cells, DCs and macrophages have a unique cellular
architecture to initiate and sustain robust interactions with CD4+ T cells. Virological synapse
formation between DCs /macrophages and CD4+ T cells ensures directed delivery of HIV to
its most permissive host: activated CD4+ T cells (9). In order for mucosal transmission and
establishment of productive infection, HIV not only has to navigate tissue barriers (3), but also a
number of cell-intrinsic immune defenses, or restriction factors, such as APOBEC3G (a cytidine
deaminase that dramatically increases genome mutations), tetherin (which prevents HIV viral
budding and enforces a positive type I IFN loop upon suppression of viral budding), and SAMHD1
(a dNTPase that limits dNTP levels within the cytoplasm to hinder reverse transcription), that
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prevent primate lentiviral infection of DCs, macrophages and
resting T cells (10–13). However, primate lentiviruses have
evolved to counteract these restriction factors by encoding
accessory proteins that selectively inhibit their anti-viral
function. Although postulated to act in this capacity, the function
of Vpr has yet to be fully understood.

Vpr, or viral protein R, is a 14 kDa protein, encoded by
all extant primate lentiviruses. Vpr is actively packaged into
virions through its interaction with the p6 region of Gag (14,
15), and as such has roles in both pre- and post-integration
steps of the viral life cycle. Although originally described as
an accessory protein, and thus dispensable for virus replication
in vitro, it has since been shown to play an important role
in the infection of macrophages and dendritic cells (16–19).
Importantly, Vpr function is necessary for viral pathogenesis in
vivo. In 1993, six rhesus macaques were infected with pathogenic
SIVmac239 isolate either containing or lacking Vpr (20). Within
16 weeks, wild type Vpr sequences were isolated from three
of the five animals infected with Vpr null virus. Moreover, the
remaining two animals infected with Vpr null virus displayed
delayed pathogenesis, and reversion to Vpr-expressing virus by
66 weeks (20, 21). These studies validated retrospective work
that found reversions of an internal Vpr stop codon to an open
reading frame in an accidentally infected laboratory worker and
experimentally infected chimpanzees (22, 23). Together, these
studies were seminal in igniting research into the role of Vpr
in the pathogenesis of HIV. Vpr is best known to induce an
Ataxia-Telangiectasia and Rad3-related (ATR) dependent-DNA
damage response, or DDR (24). Vpr-mediated DDR activation
results in a G2 to M cell cycle arrest in cycling cells, which is
perplexing as the cell populations whose infections are seemingly
most reliant on the presence of Vpr are terminally differentiated
and thus not susceptible to cell cycle arrest. The ability to induce
a G2 to M cell cycle arrest is thought to be advantageous for viral
transcription as the HIV LTR has been shown to be most active
during this phase of the cell cycle (23, 25). What’s more, the Vpr
residues that confer G2 toM cell cycle arrest capabilities are under
positive selection in vivo and are thus the most well-studied in
the field (26). It remains to be determined if induction of DDR by
Vpr, an evolutionarily conserved function amongst all primate
lentiviral Vpr proteins (27–29), is necessary for establishment of
virus replication in metabolically quiescent immune target cells,
such as monocytes, macrophages and DCs.

Vpr/Vpx and the Importance of Co-opting
the Ubiquitin-Ligase DCAFCRL4 in Myeloid
Cells
Vpx, or Viral protein x, arose following the duplication of Vpr
post-diversion of the primate lentiviral lineages that gave rise to
HIV-1 and HIV-2 (30, 31). Vpx has a well-characterized role in
degrading the retroviral restriction factor SAMHD1 (10, 11). In
terminally differentiated or non-cycling cells, SAMHD1 reduces
the concentration of dNTPs within the cytoplasm, thereby
drastically limiting reverse transcription (32–35). Vpx bridges
SAMHD1 to the E3-ubiquitin ligase CUL4A-DDB1 DCAF
(DCAFCRL4) leading to its polyubiquitination and proteasomal

degradation (10, 11, 36). There has been much interest in
identifying the restriction factor(s) targeted by Vpr as it similarly
co-opts the DCAFCRL4 complex to ubiquitinate target host
proteins. Unlike Vpx however, infection of myeloid cells by either
HIV-1 or HIV-2 still occurs in the absence of Vpr, albeit with
significantly different outcomes (19, 24, 37–41). It is likely that
the replication advantage conferred by Vpr lies in its ability to
induce a DDR, though the mechanisms by which Vpr-induced
DDR facilitates enhanced virus replication and spread in vivo are
still to be determined. The multitude of DDR proteins associated
with the Vpr-DCAFCRL4 complex (24, 37–39, 41), suggests that
Vpr by co-opting a host protein complex involved in multiple
cellular pathways, has managed to maximize its impact at the
interface of virus and host to promote HIV spread.

Vpr Residues Involved in DCAFCRL4

Engagement
An NMR structure of HIV-1 Vpr provides insight into how
it interacts with multiple proteins. Both N and C-termini are
unstructured (nucleotides 1–16, and 77–96, respectively) and
flank three α-helices from nucleotides 17–33, 38–50, and 56–
77 (42). The HIV-2 Vpr, as well as the closely related Vpr
alleles from SIVsmm and SIVmac, are predicted to be structurally
homologous to that of HIV-1. Whilst the unstructured C- and
N-terminal domains facilitate interactions with host targets, the
DCAFCRL4- binding domain is isolated to the third α-helix (42–
45). The HIV-1 Vpr mutants Q65R and H71R for example, and
corresponding residues in HIV-2/SIVmac Vpr alleles fall within
this region and fully abrogate Vpr-DCAFCRL4 interactions. These
mutations prevent Vpr-mediated transcriptional enhancement in
MDDCs (19), decrease degradation of multiple DNA damage
response proteins (46–50), and prevent G2/M cell cycle arrest
in CD4+ T cells (51). Furthermore, ablation of Vpr-DCAFCRL4

interaction, as occurs with a VprQ65R mutation (albeit not with
the VprQ77R mutation), has been associated with long-term
non-progression in vivo (52). Investigations into the DCAFCRL4-
mediated enhancement of infection in myeloid cells use these
select mutations to infer mechanisms of action and are thus
worthy of mention.

DCAFCRL4-DEPENDENT ROLES OF Vpr IN
MYELOID CELLS

DNA Damage Response Proteins
Human Uracil DNA Glycosylase
Monocyte-derived macrophages (MDMs) have a high ratio
of dUTP/TTP in their cytoplasm that can lead to the mis-
incorporation of uracil in the reverse transcribed genome. The
ratio of dUTP/TTP in macrophages was found to be as high as
60 (53, 54). Human uracil DNA glycosylase (hUNG) excises mis-
incorporated UTP and recruits additional repair enzymes to the
site of genomemutation. Thus, HIV-1 Vpr-mediated DCAFCRL4-
dependent ubiquitination and proteasomal degradation of
hUNG was hypothesized to restrict virus replication through
either degradation of uracilated viral DNA prior to integration
or via transcriptional interference of the uracilated provirus
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(53, 55, 56). However, due to the intrinsically low levels of hUNG
in MDMs (56), the utility of uracil-dependent restriction of HIV-
1 in MDMs is limited. Furthermore, infection of MDDCs with
HIV-1 expressing hUNG-binding deficient VprW54R mutant
does not result in transcriptional attenuation nor deficiency in
viral spread (19). Thus, the significance of hUNG degradation by
the Vpr-DCAFCRL4 complex (39, 57) remains unclear.

SLX4-SLX/MUS81-EME1
The importance of Vpr in the Holliday junction repair pathway
has been of great interest as it promised to provide insight into
the role of Vpr at the viral integration step. Original reports
suggested that HIV-1 Vpr-DCAFCRL4-mediated ubiquitination
of MUS81 which, in the presence of phosphorylated EME1
and kinase-active PLK1, prematurely activates the quaternary
endonuclease complex SLX4com (47). This activation was
shown to precede G2/M cell cycle arrest and result in the
formation of FANCD2 foci as a result of activation of the
Fanconi anemia pathway (47). Notably, virion-associated Vpr-
mediated activation of SLX4com was shown to prevent type
I IFN production which is of great importance due to the
myriad of interferon stimulated genes (ISGs) that modulate
myeloid cell function and determine the dissemination efficiency
of virus through the host (47). However, subsequent studies
have only shown a Vpr-DCAFCRL4 dependent degradation of
the SLX4com subunits MUS81-EME1 (50, 58–60) and have
not addressed whether the active SLX4com suppressed innate
immune detection of HIV-1 in myeloid cells. Additionally,
interaction of SLX4com with Vpr is not conserved amongst all
primate lentiviral Vpr alleles (59). Together, published findings
so far, suggest that the Vpr-mediated activation of SLX4com
does not have a conserved role in suppressing innate immune
detection of primate lentiviruses in myeloid cells.

Helicase-Like Transcription Factor (HLTF)
Helicase like transcription factor, or HLTF, is a target of Vpr-
mediated DCAFCRL4 degradation (46, 48). Like UNG2 and
SLX4-SLX1/MUS81-EME1, HLTF is involved in DNA damage
repair. Specifically, HLTF is critical to the remodeling and repair
of stalled replication forks (61). Although HLTF is degraded
in macrophages in a Vpr- DCAFCRL4 dependent manner,
it is unclear whether HLTF antagonizes viral replication in
myeloid cells.

Exonuclease 1
Exonuclease 1, or Exo1, is a Rad2/XPG 5′ to 3′ exonuclease
involved in numerous DNA repair processes that ensures genome
stability throughout the cell cycle (62). Exo1 has recently been
identified as a substrate for Vpr-DCAFCRL4 polyubiquitination
and proteasomal degradation in CD4+ T cells (49). The authors
speculate that Exo1 antagonism prevents deleterious processing
of reverse transcription- and viral integration-intermediates, and
thereby attribute Exo1 restriction to virion-associated Vpr rather
than its de novo synthesized partner (49). As of yet, Exo1 has
not been shown to play a role in promoting HIV-1 infection of
macrophages or dendritic cells.

While these published studies highlight the numerous
interactions of Vpr with diverse DDR proteins, contribution of
these interactions to viral pathogenesis have remained unclear.
Although understudied in the case of HIV-1 infection, there
is a robust literature tying innate immune signaling and DDR
(63, 64). It should be noted that manipulation of the DDR is
not unique to HIV. Rather, it is a shared pathogenic strategy
used extensively at the interface of hosts with both bacteria and
viruses that can promote pathogen replication and pathogenesis
(65). Kaposi sarcoma herpesvirus, for example, encodes a protein
(Latency-Associated Nuclear Antigen or LANA) that sequesters
Rad50, Mre11, and NBS1, all members of the DDR signaling
activator MRN complex to prevent cytoplasmic sensing of viral
DNA and innate immune activation (66). Another example of
virus subversion of DDR pathway includes murine γ-herpesvirus
which specifically encodes orf36 whose role is to induce an ATM-
dependent DDR and H2AX phosphorylation (67). In the absence
of orf36 or ATM activation, virus replication is attenuated,
pointing toward a role for the DDR in facilitating virus
replication (67). Overall, it is evident that Vpr uses DCAFCRL4 to
induce a DDR, with potentially divergent outcomes in different
cell populations. What remains unclear is how activation of the
DDR and interaction of Vpr with DNA repair proteins allows
viral evasion of immune detection in myeloid cells. Since the
kinetics of reverse transcription of HIV-1 in myeloid cells is
relatively slow, it is tempting to speculate that manipulation
of diverse DDR pathways is a conserved strategy by primate
lentiviral Vpr alleles to overcome premature host repair of
viral reverse transcription intermediates (63), though definitive
evidence for this hypothesis has been lacking. Rather, it is likely
that activation of DDR promotes multiple discrete stages of the
virus life cycle. For example, Vpr can induce DDR through both
the ATM and ATR pathways (24, 68). Unresolved ATM activity
can lead to activation of NF-κB (69) and increased production of
inflammatory cytokines, such as IL-6, both of which can result
in enhanced viral gene expression and macrophage-dependent
HIV-1 transmission to CD4+ T cells (70).

Vpr Functions in Transcriptional
De-repression
Transcriptional Enhancement
Previous work by our group has shown a post-integration defect
in monocyte-derived dendritic cells (MDDCs), infected with
Vpr deficient HIV-1 (19). Infections in the absence of virion
associated Vpr were characterized by low proviral transcription
despite similar levels of integration, and reduced infection of
CD4+ T cells in co-cultures (19). This defect is dependent
on Vpr binding to DCAFCRL4 as it is fully abrogated upon
infection with Vpr mutants (Q65R or H71R) lacking DCAFCRL4

interactions. It should be noted that numerous viruses besides
HIV-1, most notably Hepatitis B virus, can also manipulate the
E3 ubiquitin ligase DCAFCRL4 to enhance transcription (71).
While, the mechanism of HIV-1 Vpr-mediated transcriptional
enhancement remains unclear, previous research has shown
Vpr-mediated degradation of HDACs (38) and members of the
NuRD chromatin remodeling complex (72) which may globally
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enhance transcription. Furthermore, DCAFCRL4 also has a well-
known role in the degradation of a transcriptional repressor,
ATF3, which is necessary to correct UV-damage (73). This
explanation is not satisfactory given the cell type dependency
of the transcriptional enhancement. Whether a MDDC-specific
repressor/activator is degraded or sequestered remains unknown
and warrants further investigation.

TET2
Members of the TETDNA dioxygenase family have recently been
shown to be degraded in a Vpr-DCAFCRL4 dependent manner
(70). In myeloid cells TET2 is naturally monoubiquitinated.
TET2 N-terminal monoubiquitylation allows for efficient
binding to chromatin and subsequent recruitment of chromatin
remodeling machinery and transcription factors. However,
in the presence of Vpr, TET2 is rapidly polyubiquitinated
at a site independent of its natural monoubiquitylation
site and undergoes DCAFCRL4- dependent proteasomal
degradation (70). This is relevant in myeloid cells as TET2 is an
upstream suppressor of IL-6 expression. TET2 recruits HDAC1
and HDAC2 to the IL-6 promotor thereby repressing IL-6
transcription. Importantly, in monocyte-derived macrophages
and the monocytic cell line THP-1, the lack of Vpr-mediated
degradation of TET2 was associated with reduced viral particle
release and slower spread of HIV-1 infection. Upon TET2
knockout, the differences in infection between Vpr-competent
and Vpr-deficient viruses was lost. Since IL-6 has long been
recognized as a transcriptional enhancer of HIV in monocytes
(70, 74–76), these findings are further suggestive of a direct link
between Vpr, TET2 degradation, and persistent IL-6 production,
which might result in enhanced efficiency of viral spread from
myeloid cells to CD4+ T cells.

Epigenetic Regulation of Provirus
Until recently, it was not known whether there were host-
intrinsic mechanisms to restrict retroviral replication following
integration. However, recent investigations have identified a
novel method of cell-intrinsic restriction: that of deposition
of transcriptionally suppressive methylation marks at proviral
LTRs. Following reverse transcription and integration, the LTR
of proviruses within heterochromatin are methylated through
the sequential recruitment of HP1 and the methyltransferase
Suv39H1 (77) Tri-methylated H3K9 recruits the HUSH
(HUman Silencing Hub) complex of which there are three
components; TASOR, MPP8, and periphilin (78). Although
the HUSH complex does not harbor methyltransferase activity
itself, HUSH recruits the methylase SETDB1 which induces
further H3K9me3 methylation of the provirus. Notably,
shRNA-mediated knockdown of each HUSH complex protein
rescues endogenous and exogenous retroviral gene expression,
thereby signifying the importance of its quaternary assembly
for transcriptional repression (78). Interestingly, TASOR is
targeted by the SIVmac/HIV-2 lineage Vpx for DCAFCRL4-
mediated polyubiquitination and proteasomal degradation,
thereby increasing the transcriptional activity of proviruses
that would otherwise be suppressed (78–80). While HUSH
complex can repress transcription from integrated HIV-1 LTR
(78, 80, 81), surprisingly, HIV-1 Vpr does not target the HUSH

complex proteins for degradation (79). However, multiple Vpr
alleles from ancestral primate lentiviruses to HIV-1, including
alleles derived from SIVAGM, SIVMUS2, and SIVSAB, have been
shown to prevent HUSH-mediated silencing (79, 80). These
studies mark the beginning of investigations into Vpx/Vpr
antagonism of antiviral host proteins at the proviral DNA level.
Although HUSH-mediated transcriptional silencing is not a
myeloid specific anti-viral mechanism, the HUSH complex and
its associated facilitators are active in myeloid lineages. Recent
studies in the literature provide evidence for epigenetic control
of proinflammatory cytokine responses in macrophages (82, 83).
For instance, the histone methyltransferases, SETDB1 and
Smyd2, potently suppress TLR4- mediated induction of IL-6 and
TNFα production, and mice with macrophage-specific SetDB1
deficiency are hyper-responsive to endotoxin challenge (82).
Whilst antagonism of HUSH complex has not been attributed
to HIV-1 Vpr, transcriptional silencing of the HIV-1 LTR in
MDDCs in the absence of Vpr (19) suggests the existence of
additional mechanisms of myeloid cell-intrinsic transcriptional
repression that are targeted by HIV-1 Vpr.

Dicer and miRNA Processing
Modulation of the RNA interference (RNAi) and microRNA
(miRNA) pathways is an integral means by which pathogens
usurp host functions to their advantage (84, 85). MicroRNAs
in particular have long been known to play a role in HIV
replication in multiple cell populations. For instance, miR-
29a, has been implicated in the suppression of HIV mRNA
levels through its binding to the 3′-UTR of HIV RNA and
subsequent attachment to P body proteins and RISC complexes
(86). Dicer is required for processing pre-miRNA substrates to
reveal a double-stranded miRNA complex, which then binds
to the RISC complex and represses target mRNA expression,
either via translation inhibition or via mRNA degradation
(87). Recent studies have also demonstrated the ability of
miRNAs to negatively regulate proinflammatory responses in
macrophages by restricting chromatin remodeling and enforcing
transcriptional silencing of promoters of select inflammatory
genes (88). Interestingly, Dicer has been identified in complex
with Vpr-DCAFCRL4 prior to its degradation and depletion
of Dicer within infected MDMs has been shown to increase
viral replication via unknown mechanisms (89). We posit that
Vpr-Dicer dependent modulation of select miRNA expression
might contribute to the de-repression of inflammatory responses.
It should be noted that Vpr-mediated Dicer depletion has
also been shown in CD4+ T cells and as such, is not a
myeloid-specific antagonist of innate restriction (89). The role
of Dicer degradation has yet to be fully understood, particularly
as research into the function of miRNA and RNAi in HIV
pathogenesis is increasing (90).

DCAFCRL4-INDEPENDENT ROLES OF Vpr
IN MYELOID CELLS

Envelope Trafficking
Myeloid cells often populate mucosal tissues and as such
are poised to disseminate HIV from the periphery to sites
harboring abundant activated CD4+ T cells. Macrophages and
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dendritic cells are capable of transferring virus via cis or trans
infection. Both methods facilitate the concentration of virions
to the infectious synapse, and in doing so greatly increase the
probability of CD4+ T cell infection (9, 91, 92). Two studies have
investigated the role of Vpr in the concentration and delivery
of virus at the virological synapse. Both of these studies show
that in the absence of Vpr, Env-positive virions are trafficked to
the lysosome for degradation, thereby reducing the efficiency of
macrophage to CD4+ T cell virus spread at low multiplicity of
infection (93, 94). In contrast, our investigations into whether
Vpr facilitates evasion of this Env-dependent reduction in virus
release in other cells types, such as MDDCs, have not yielded
similar results (19), suggesting that the effect of Vpr on Env
expression might be restricted to specific cell types and not
universally observed.

Type I IFN and Pro-Inflammatory
Responses
There is mounting evidence to suggest that Vpr modulates the
immune response of myeloid cells to favor viral replication
and dissemination throughout the host. Early studies suggested
a possible defect in the activation of MDMs and MDDCs
upon treatment with recombinant Vpr (95). This defect was

characterized by low CD33 surface expression, poor CD80/86
upregulation, and impaired antigen presentation to activated
CD4+ T cells (95). In contrast to studies utilizing exogenous
addition of recombinant Vpr, there has been a preponderance
of research investigating the role of Vpr in the context of a viral
infection. For instance, de novo expression of Vpr in productively
infected MDDCs induced pro-inflammatory cytokine (TNF-α,
IL-6 and IL-8) production (70, 96, 97). Previous work by our
group has shown enhanced proviral transcription in MDDCs in
the presence of Vpr (19). Other studies have similarly shown
a role for Vpr in proviral transcription. Liu et al. showed that
Vpr alters the availability of the NF- κB p50-p65 heterodimer
and AP1 (98), both of which are necessary for the initiation of
HIV transcription from the 5′ LTR (99, 100) and expression of
pro-inflammatory cytokines. In this study, Vpr was shown to
facilitate the polyubiquitination and subsequent phosphorylation
(activation) of TAK1, an upstream regulator of NF-κB and AP1
(98). Interruption of TAK1 phosphorylation, and thus inhibiting
its activation, significantly reduced proviral transcription (98).

Both our study (19) and the work showing Vpr-mediated
modification of TAK1 (98)are important in light of the recent
identification of a novel viral detection pathway: one in which
host sensing of de novo expressed intron-containing HIV-1 RNA

FIGURE 1 | The role of Vpr in the infection of myeloid cells. A summary of the multiple functions Vpr plays in myeloid cells, from enhancing transcription and inducing

a DDR to the secretion of pro-inflammatory cytokines. In red are processes in which Vpr has been directly investigated.
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(HIV icRNA) in MDMs and MDDCs results in ISG expression
and proinflammatory chemokine and cytokine production,
including IP-10 and IL-15 (101). IP-10 is an inflammatory
chemokine and is a ligand for the receptor CXCR3 (102), while
IL-15 is a γ-chain cytokine critical for the proliferation and
homeostasis of T cells (103). CXCR3 is expressed on activated
CD4+ T cells, and thus secretion of IP-10 from productively
infected myeloid cells may result in additional recruitment of
virus-susceptible cells to sites of viral replication in the peripheral
tissues. Furthermore, IL-15 exposure can result in SAMHD1
phosphorylation and inactivation of its dNTPase activity, thus
alleviating restrictions to viral replication in quiescent CD4+ T
cells (104). Interestingly, a TAK1 inhibitor reduced production
of IP-10 from HIV-1 infected macrophages (101). Thus, in
this model, Vpr-dependent enhanced proviral transcription
potentially increases the pool of viral icRNAs subject to cell-
intrinsic innate immune sensing, resulting in the establishment
of a pro-inflammatory state and enhanced virus dissemination.

It should be noted that an increase in viral transcription
in myeloid cells is a double-edged sword for HIV in that
there is also induction of ISG expression and establishment
of a putative anti-viral state. While the nucleic acid sensing
mechanism responsible for detection of HIV icRNA is yet to
be determined, Vpr can block phosphorylation and nuclear
translocation of interferon regulatory factor 3 (IRF3) via inducing
ubiquitination and proteosomal degradation of IRF3, though this
has only been shown in CD4+ T cell lines (105). Additionally,
Vpr has been shown to bind to TBK1 inmyeloid cells and prevent
its phosphorylation, thereby preventing induction of type I IFN
production (106). Thus, we posit that Vpr might function to
promote NF-κB-dependent pro-inflammatory responses while
contributing to the suppression of induction of anti-viral host
defenses. Furthermore, induction of ISGs such as CD169 in
MDMs andMDDCs upon host sensing of HIV icRNA inmyeloid
cells (101) might further tip the balance toward enhanced virus
dissemination as opposed to virus restriction. For instance,
induced CD169 expression on HIV-infected macrophages and
dendritic cells can facilitate cell-to-cell transmission of CD4+
T cells across infectious synapses (101, 107, 108). Together,

these studies point to the role of Vpr as a protein that
carefully navigates multiple viral sensing systems to induce
recruitment of additional cellular targets of virus, whilst evading
antiviral immunity.

CONCLUSION

It is clear that Vpr plays an important role in the infection
of myeloid cells (see Figure 1). A number of tissue-resident
macrophages, such as microglia, kupfer cells, alveolar, intestinal,
testicular and vaginal macrophages harbor proviral DNA
(109–113), and tissue-resident macrophages are estimated to
compromise up to 4% of infected cells in vivo (114), and
importantly, can remain persistently infected with HIV-1 even
in the presence of cART (109–112, 115). It is possible that
the Vpr-mediated DDR activates a pro-inflammatory state that
promotes the establishment of a tissue-resident myeloid cell

reservoir, whereby virus spreads efficiently due to persistent
virion production and enhanced cell-to-cell contacts between
HIV-infected myeloid cells and CD4+ T cells. In this way, the
infection of myeloid cells is the bridge between the relatively
hostile sites of virus acquisition (most notably the peripheral
mucosal tissues) and the key target of HIV; CD4+ T cells. It
seems likely that the true value of Vpr in vivo is its versatility,
allowing for evasion of viral restriction both prior to and post
integration in myeloid cells. Future studies will need to address
the relative importance of each of the known Vpr functions
in vivo.
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