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Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple

immune cell subsets. We analyzed immune cell subsets in human peripheral blood

mononuclear cells (PBMC) in order to identify the cells that are significantly associated

with SLE disease activity and treatment. The frequencies of various subsets of CD4+ T

cells, B cells, monocytes and NK cells in PBMC were assessed in 30 healthy controls

(HC), 30 rheumatoid arthritis (RA) patients and 26 SLE patients using flow cytometry. The

correlations between subset frequencies in SLE and clinical traits including Systemic

Lupus Erythematosus Disease Activity Index (SLEDAI) were examined. Changes in

subset frequencies after the treatment in SLE patients were investigated. We focused

on CD25+LAG3+ T cells and investigated their characteristics, including cytokine

secretion, mRNA expression and suppression capacity. We assessed correlations

between CD25+LAG3+ T cells and SLEDAI by Spearman’s rank correlation coefficient.

CD25+LAG3+ T cells were significantly increased in SLE whereas there were few in

RA and HC groups. CD25+LAG3+ T cell frequencies were significantly correlated with

SLEDAI and were increased in patients with a high SLEDAI score (> 10). CD25+LAG3+

T cells produced both IL-17 and FOXP3, expressed mRNA of both FOXP3 and RORC

and lacked suppressive capacity. CD25+LAG3+ T cells were associated with disease

activity of SLE. CD25+LAG3+ T cells had features of both CD25+FOXP3+ regulatory

T cells (CD25+ Treg) and Th17. CD25+LAG3+ T cells could be associated with the

inflammatory pathophysiology of SLE.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterized by loss of
tolerance, production of autoantibodies, immune complex deposition, and end organ damage.
Multiple immune cell subsets are involved in the pathophysiology of SLE. SLE appears to
be induced by persistent apoptotic debris (1) that primes neutrophils’ NETosis (2), induces
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plasmacytoid dendritic cells to produce type I interferons that
reduce B cell tolerance (3) and decreases regulatory T cell (Treg)
function (4).

There are many reports demonstrating changes in the
frequencies of immune cell subsets in peripheral blood
mononuclear cells (PBMCs) of SLE patients. Whereas, naïve
CD4+ T cells (5) decreased in frequency in SLE, activated effector
memory T cells (6), Th1 (7), Th17 (8), and follicular helper
T cells (Tfh) (9) all increased. Naïve B cells decreased, and
plasmablasts and plasma cells increased in SLE (10, 11). On
the other hand, in SLE patients, the reported changes in the
frequencies of CD4+CD25+ regulatory T cells (CD25 Tregs) that
express FOXP3 (12, 13) are still controversial (14–16).

At present, it is not clear which PBMC subsets are significantly
correlated with SLE disease activity. SLE pathology is reportedly
associated with Th17 (8), FOXP3+Helios+ Treg (17, 18), and
plasma cells (19). Based on available studies, we concluded that
comprehensive analysis of immune cell subsets was necessary
to directly compare the association between disease activity
and individual immune cell subsets. The present analysis of
human PBMC was standardized by using the gating and staining
strategies recommended by the Human Immunological Project
Consortium (HIPC) (20).

TABLE 1 | Cell subset definition.

Subset name (Abbreviation) Definition of surface marker

CD4+ T cell CD4+

Naïve CD4+ T cell CD4+CD25−LAG3−CCR7+CD45RA+

Activated CD25+ regulatory T

cell (activated CD25+ Treg)

CD4+CD25+LAG3−CD127lowCD45RA−

CD25+ regulatory T cell (CD25+

Treg)

CD4+CD25+LAG3−CD127low

CD25−LAG3+ T cell CD4+CD25−LAG3+

CD25+LAG3+ T cell CD4+CD25+LAG3+

T helper type 1 cell (Th1) CD4+CD45RA−CXCR5−CXCR3+CCR6−

T helper type 17 cell (Th17) CD4+CD45RA−CXCR5−CXCR3−CCR6+

T helper type 1/17 cell (Th1/17) CD4+CD45RA−CXCR5−CXCR3+CCR6+

Non T helper type 1/17 cell (non

Th1/17)

CD4+CD45RA−CXCR5−CXCR3−CCR6−

Follicular helper T cell (Tfh) CD4+CD45RA−CXCR5+

B cell CD3−CD19+

Naïve B cell CD3−CD19+ IgD+CD27−

Unswitched memory B cell

(UnSw MB)

CD3−CD19+ IgD+CD27+

Switched memory B cell (Sw MB) CD3−CD19+ IgD−CD27+

Plasmablast (PB) CD3−CD19+ IgD−CD27highCD38high

Transitional B cell (Trans B) CD3−CD19+CD24highCD38high

Monocyte CD3−CD19−CD56−HLA-DR+CD14+

Classical monocyte (Class Mono) CD3−CD19−CD56−HLA-

DR+CD14highCD16−

Intermediate monocyte (Int

Mono)

CD3−CD19−CD56−HLA-

DR+CD14highCD16+

Non-classical monocyte

(Non-class Mono)

CD3−CD19−CD56−HLA-

DR+CD14dimCD16+

Natural killer cell (NK) CD3−CD19−CD14−CD56+

Here, we observed a correlation between the frequencies of
specific cell subsets and clinical traits in SLE, and the effect of
treatment on the frequencies of those cell subsets. We included
an expression analysis of lymphocyte activation gene 3 (LAG3)
in a CD4+ regulatory T cell analysis panel. LAG3 is a member
of the immunoglobulin superfamily that strongly binds to MHC
class II (21). LAG3-expressing cells were identified as IL-10-
producing regulatory T cells (Tr1) in human PBMC (22), and
CD4+LAG3+ T cells were usually negative for both CD25
and FOXP3 expression. Human CD4+CD25−LAG3+ T cells
(CD25−LAG3+ T cell) were detected in both PBMC (23, 24) and
tonsils (25) that produced high amounts of IL-10, expressed low
levels of FOXP3, and suppressed antibody production of B cells.

MATERIALS AND METHODS

Human Samples and Clinical Data
We recruited 26 SLE patients, 30 rheumatoid arthritis (RA)
patients and 30 self-reported screened healthy controls (HC).
Individuals under 20 years of age or with active infection were
excluded. SLE patients fulfilled the 1982 American College of
Rheumatology criteria for SLE or the 2012 SLICC Classification
criteria for SLE. RA patients fulfilled the 1987 revised criteria of
the American College of Rheumatology or the 2010 ACR/EULAR
classification criteria. The following clinical data were collected
for both SLE and RA patients: disease duration, white blood
cell count (WBC) (normal range is 3,300–8,600 cells/µL), and
total lymphocyte count calculated by multiplying the WBC
concentration by the percentage of lymphocytes in a complete
blood cell count. The following clinical data were collected
only in SLE: SLE disease activity index (SLEDAI) (26), total
complement activity (CH50) (normal range is 31.8–48.7 U/mL),
and anti-double strandedDNA (dsDNA) antibody titermeasured
by fluorescence-enzyme immunoassay (cut off value is 10
IU/mL). All clinical investigations conformed to the Declaration
of Helsinki principles and were approved by the ethics committee
of the University of Tokyo (No. 10154 and G3582). Peripheral
blood and clinical data were collected after getting written
informed consent in accordance with our ethical review board.
Peripheral blood was collected once from each donor, except
for four SLE patients whose samples were taken multiple times
during the course of treatment. In the case of one SLE sample,
the frequencies of cell subsets (except for activated CD25+ Treg,
CD25+ Treg, CD25−LAG3+ T cell, and CD25+LAG3+ T cells)
were excluded because of a change of gating strategy.

Flow Cytometric Analysis
PBMCs were isolated from whole blood by Ficoll-Paque Plus
(GE Healthcare) gradient separation. Fc Receptor Binding
Inhibitor (eBioscience) was added to the isolated PBMCs. They
were stained with the fluorescent-labeled antibodies for 20min.
The following antibodies were purchased from BioLegend:
CD3-PerCP/Cy5.5 (UCHT1), CD3-PE/Cy7 (UCHT1), CD27-
FITC (O323), CD38-PE/Cy7 (HIT2), CD19-APC/Cy7 (HIB19),
CD45RA-APC/Cy7 (HI100), CD16-PerCP/Cy5.5 (3G8), CD56-
APC/Cy7 (HCD56), CCR7-PerCP/Cy5.5 (G043H7), CD14-FITC
(M5E2), and CD25-BV421 (BC96). The following antibodies
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FIGURE 1 | Gating strategy of flow cytometric analysis. (A) Gating strategy for naïve CD4+ T cells, CD25+ regulatory T cells (CD25+ Tregs), activated CD25+

regulatory T cells (activated CD25+ Tregs), CD25−LAG3T cells, and CD25+LAG3+ T cells. (B) Gating strategy for follicular helper T cells (Tfh), helper T cells (Th),

Th1, Th17, Th1/17, and non Th1/17. (C) Gating strategy for B cell subsets (naïve B cells, switched memory B cells (Sw MB), unswitched memory B cells (UnSw MB),

plasmablasts and transitional B cells). (D) Gating strategy for NK cells. (E) Gating strategy for monocyte subsets (classical monocytes, intermediate monocytes and

non-classical monocytes).

were purchased from BD: CD24-PE (ML5), IgD-BV421 (IA6-
2), CXCR5-AF488 (RF8B2), CCR6-PE (11A9), CXCR3-BV421
(1C6/CXCR3), CD4-V500 (RPA-T4) and CD19-V500 (HIB19).
CD25-PE/Cy7 (BC96), HLADR-PE (L243), and CD127-PE/Cy7
(eBioRDR5) were purchased from eBioscience, and LAG3-PE
(FAB2319P) was purchased from R&D. We classified CD4+ T
cells, B cells, natural killer (NK) cells and monocytes based on
the Human Immunology Project classification (20). Cell subset
definitions of surface markers are shown in Table 1, and the
gating strategy is shown in Figure 1. Flow cytometric analyses
were performed by 8-colorMoFlo XDP (Beckman Coulter). Flow
cytometric data were analyzed using FlowJo software (Tree Star).

RNA Isolation, cDNA Synthesis, and
Quantitative Real-Time PCR
Naïve CD4+ T cells, activated CD25+ Tregs, CD25−LAG3+

T cells, CD25+LAG3+ T cells were sorted and stimulated for
72 h on flat-bottom 96-well microplates pre-coated with anti-
CD3ε monoclonal antibody (mAb) (10µg/mL) and anti-human
CD28 mAb (5µg/mL). The culture medium was RPMI 1640

medium supplemented with 10% fetal bovine serum (FBS), 2mM
L-glutamine, 100 U/mL penicillin, 100 mg/mL streptomycin,
50mM 2-ME (all purchased from Life Technologies) and
recombinant human IL-2 (100 IU/mL, R&D). After staining with
7-AADViability Staining Solution (BioLegend), 7-AAD-negative
cells were sorted.

For FOXP3 expression analysis, sorted Naïve CD4+ T cells,
activated CD25+ Tregs, CD25−LAG3+ T cells, CD25+LAG3+

T cells were analyzed. For RORC expression analysis, sorted
Naïve CD4+ T cells, activated CD25+ Tregs, CD25−LAG3+ T
cells, CD25+LAG3+ T cells stimulated for 72 h with anti-CD3ε
monoclonal antibody (mAb) (10µg/mL) and anti-human
CD28 mAb (5µg/mL) were analyzed. Total RNA was extracted
using the RNeasy Micro Kit (QIAGEN) and then reverse-
transcribed to cDNA with random primers (Invitrogen) and
Superscript III (Invitrogen), according to the manufacturer’s
protocol. To determine the cellular expression of each gene,
quantitative real-time PCR analysis was performed using
CFX connect (Bio-Rad). The PCR mixture consisted of 10
µL SYBR Green Master Mix (QIAGEN), 15 pM forward and
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TABLE 2 | Clinical data.

HC (n = 30) RA (n = 30) SLE (n = 26)

Age 34.6 ± 8.0 54.5 ± 13.8****a **b 42.9 ± 15.3

Male/Female–n 7/23 8/22 2/24

SLEDAI–median

(IQR)

– – 8 (9.5)

Lupus

nephritis–n, (%)

– – 5 (19.2)

NPSLE–n, (%) – – 8 (30.8)

WBC (/µL) 5,266 ± 1,332 7,143 ± 2,171**c 6,108 ± 2,889

Lymphocyte

(/µL)

1,859 ± 644 1,523 ± 576 1,284 ± 875 **d

CH50 (U/mL) – – 36.2 ± 16.6

Anti-dsDNA

antibody (U/mL)

– – 87.9 ± 130.2

Data are presented as mean ± SD, unless otherwise specified. For SLEDAI, median with

interquartile range (IQR). HC, Healthy Control; RA, Rheumatoid Arthritis; SLE, Systemic

Lupus Erythematosus; SLEDAI, SLE Disease Activity Index; NPSLE, Neuropsychiatric

SLE;WBC,White Blood cell count; CH50, total complement activity; Anti-dsDNA antibody,

Anti double stranded DNA antibody. ** 0.001 < P < 0.01, **** P < 0.0001, Categorical

data were tested with Fisher’s exact test. Continuous data were tested with Kruskal-Wallis

test followed by Dunn’s multiple comparison test.
aHigh compared with HC, bhigh compared with SLE, chigh compared with HC, d low

compared with HC.

reverse primers, and the cDNA samples in a total volume
of 20 µL. We calculated the quantitative PCR data with the
D threshold cycle method, and relative RNA abundance
was determined based on control GAPDH abundance.
The real-time PCR primer pairs were as follows: human
FOXP3 sense, 5′-GAAACAGCACATTCCCAGAGTTC-3′ and
antisense, 5′-ATGGCCCAGCGGATGAG-3′; human RORC
sense, 5′-CAGTCATGAGAACACAAATTGAAGTG-3′ and
antisense, 5′-CAGGTGATAACCCCGTAGTGGAT-3′; human
GAPDH sense, 5′-GAAGGTGAAGGTCGGAGTC-3′ and
antisense, 5′-GAAGATGGTGATGGGATTTC-3′.

Intracellular Staining Analysis
Naïve CD4+ T cells, activated CD25+ Tregs, CD25−LAG3+ T
cells, CD25+LAG3+ T cells, and CD4+CD25−LAG3−CD45RA−

T cells (Memory CD4+ T cells) were sorted and stimulated
for 72 h with anti-CD3ε mAb (10µg/mL) and anti-human
CD28 mAb (5µg/mL) in the presence of recombinant
human IL-2 (100 IU/mL). Twelve hours prior to cytokine
production analysis, phorbol 12-myristate 13-acetate (PMA)
(25 ng/mL), ionomycin (1µg/mL) and protein transport
inhibitor GolgiStop (BD) were added. After staining
with 7-AAD, intracellular staining was performed using
Cytofix/Cytoperm Fixation/Permeabilization Kit (BD) following
the manufacturer’s instructions. For cytokine production
analysis, IFN-γ-FITC (4S.B3, eBioscience), IL-4-APC (8D4-8,
BioLegend), IL-17A-APC (eBio64DEC17, eBioscience) or
IL-10-Alexa Fluor 660 (JES3-9D7, eBioscience) antibodies
were used. For staining Foxp3, Foxp3 Staining Buffer Set
(eBioscience) and Foxp3-FITC (PCH101, eBioscience) antibody
were used.

T Cell Suppression Assay
CD4+ naïve T cells were purified by magnetic cell separation
(MACS) using the Naïve CD4+ T Cell Isolation Kit II (Miltenyi
Biotech), after which cells were labeled with 2mM CFSE
(Dojindo). CD3-negative cells were sorted by flow cytometry and
used as antigen presenting cells (APCs) after 30Gy irradiation.
CFSE-labeled CD4+ naïve T cells (5 × 104) and 1 × 105 APCs
were co-cultured with 5 x 104 CD4+ naïve T cells, activated
CD25+ Tregs or CD25+LAG3+ T cells on U-bottom 96-well
plates that had been coated with anti-CD3εmAb (10µg/mL) and
anti-human CD28 mAb (5µg/mL) overnight. The decrease in
CFSE intensity in viable cells was assessed 72 h later.

Statistical Analysis
Data are presented as means ± standard deviation. To evaluate
statistical differences between two unpaired groups, Mann-
Whitney U test was used. To evaluate statistical differences
between paired samples, paired Student’s t-test was used. To
compare three or more groups, Kruskal-Wallis test followed by
Dunn’s multiple comparison test or one-way ANOVA followed
by Tukey’s multiple comparisons test was used. To assess
correlations, Spearman’s rank correlation coefficient was used.
To assess categorical data, Fisher’s exact test was used. P-values
<0.05 were considered statistically significant. Calculations
were conducted using GraphPad Prism version 5.03 (GraphPad
Software Inc.) and R version 3.2.3.

RESULTS

Clinical Data
Clinical data describing 26 SLE patients, 30 RA patients and
30 HC donors are summarized in Table 2. The ages of SLE
and HC were not significantly different, although the ages were
significantly higher in RA. There was no significant difference
in the sex ratio among SLE, RA, and HC. The WBC count was
elevated in RA compared with HC, and the lymphocyte count
was significantly lower in SLE compared with HC. In SLE, the
average of total complement activity (CH50) was within normal
range (31.8–48.7 U/mL), while anti-dsDNA antibody titer was
higher than the cut off value (10 IU/mL). The average SLEDAI
score was 9.6, and 5 patients (19.2%) had lupus nephritis, and 8
patients (30.8%) had neuropsychiatric SLE (NPSLE).

In SLE, Immature Cell Frequencies
Decreased and Activated Cells Increased
in Both T and B Cell Populations
We compared subset frequencies of CD4+ T cells, B
cells, monocytes and NK cells among HC, RA and SLE
(Figures 2A–D). Compared to HC and RA, the frequency of
naïve CD4+ T cells was significantly lower, and the frequencies
of activated CD25+ Tregs, CD25+LAG3+ T cells, Th1, Th2 and
Th17 were significantly higher in SLE (Figure 2A). With regard
to B cell subsets, the frequencies of naïve B cells, unswitched
memory B cells (UnSw MB) and transitional B cells (Trans B)
were significantly lower in SLE compared to both HC and RA
(Figure 2B). In contrast, the frequencies of switched memory B
cells (Sw MB) and plasmablasts (PB) were significantly higher
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FIGURE 2 | Frequencies of cell subsets in PBMC of HC, RA, and SLE. With regard to SLE samples taken multiple times from the same patient during treatment, the

first sample taken before treatment was chosen. (A) Frequencies of CD4+ T cell subsets in CD4+ T cells. (B) Frequencies of B cell subsets in CD19+ B cells. (C)

Frequencies of monocyte subsets in monocytes. (D) Frequencies of NK cells in lymphocytes. Small horizontal lines indicates the mean. *P < 0.05; **P < 0.01; ***P <

0.001; ****P < 0.0001. Kruskal-Wallis test followed by Dunn’s multiple comparison test. (E) Representative flow cytometric findings showing CD25 and LAG3

expression in CD4+ gated PBMC of HC, RA, and SLE.

in SLE compared to HC and RA (Figure 2B). In both T and B
cells, we commonly observed that naïve or inactive cells were
decreased whereas activated and mature cells were increased in
SLE. Representative flow cytometric findings shown in Figure 2E

indicated that the frequency of CD25+LAG3+ T cells was higher
in SLE compared with both HC and RA.

The Frequency of CD25+LAG3+ T Cells
Was High in Active SLE and Positively
Correlated With SLEDAI
In order to identify the subset that was best correlated with the
clinical state of SLE patients, we calculated Spearman’s rank
correlation coefficient between frequencies of cell subsets
and SLE clinical traits including SLEDAI, WBC count,
lymphocyte count, total complement activity, anti-dsDNA

antibody titer, history of lupus nephritis (LN) and history of
neuropsychiatric SLE (NPSLE) (Figure 3A). Analyses were
performed on all cases, including samples taken multiple
times during treatment. The frequencies of CD25+LAG3+

T cells and CD14dimCD16+ monocytes (non-classical
monocytes) significantly correlated with SLEDAI scores. A
scatter plot of the frequencies of CD25+LAG3+ cells vs.
SLEDAI scores showed a significantly positive correlation
(Spearman’s rho = 0.396, P = 0.022) (Figure 3B). We divided
SLE patients into two groups according to the SLEDAI 10,
and compared frequencies of cell subsets (Figures 3C–F).

In active SLE, the frequencies of CD25+LAG3+T cells and

CD14+CD16− cells (classical monocytes) were significantly
higher and the frequency of non-classical monocytes was

significantly lower.
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FIGURE 3 | Frequencies of CD25+LAG3+ T cells correlated with high disease activity of SLE. (A) Correlogram showing the correlation between frequencies of cell

subsets in SLE and clinical traits including SLEDAI, white blood cell count (WBC), lymphocyte count (Lym), total complement activity (CH50), anti-dsDNA antibody titer

(dsDNA), history of lupus nephritis (LN), and history of neuropsychiatric SLE (NPSLE). Analyses were performed on all cases including samples taken multiple times

during treatment [n = 33 (activated CD25+ Treg, CD25+ Treg, CD25−LAG3+, and CD25+LAG3+), n = 32 (other subsets)]. Numbers in the matrix show Spearman’s

rho. *P < 0.05; **P < 0.01; ***P < 0.001. Spearman’s rank correlation coefficient. (B) Scatter plot of frequencies of CD25+LAG3+ cells vs. SLEDAI score (n = 33).

(C–F) Frequencies of PBMC subsets in SLE were compared between patients with SLEDAI less than 10 (n = 17) and patients with SLEDAI >10 [n = 16 (activated

CD25+ Treg, CD25+ Treg, CD25−LAG3+, and CD25+LAG3+), n = 15 (remaining subsets)]. *P < 0.05; Mann-Whitney U test. (C) CD4+ T cell subsets, (D) B cell

subsets, (E) Monocyte subset, and (F) NK cell.

CD25+LAG3+T Cells Decreased
After Treatment
Four SLE patients were sequentially analyzed before and after
treatment, and the effect of treatment on the frequencies of
naïve CD4+ T cells and regulatory T cell subsets was observed
(Figure 4A). CD25+LAG3+T cells had a significant tendency
to decrease after treatment. One SLE patient with NPSLE at
the onset (SLEDAI = 22) resolved 2 months after treatment
(SLEDAI = 8), and relapsed with new skin rash 10 months
later (SLEDAI = 12). The frequency of CD25+LAG3+T cells
decreased after treatment, but increased again coincident with
SLE activity (Figure 4B).

CD25+LAG3+ T Cells Have Features of
Both CD25+ Treg and Th17
In order to clarify the character of cell subsets, naïve CD4+ T
cells, CD25−LAG3+ T cells, CD25+LAG3+ T cells, activated
CD25+ Tregs and CD4+CD25−LAG3−CD45RA− T cells

(Memory CD4+ T cells) were sorted from the PBMC
donated by HC. Intracellular staining was performed to
evaluate the production of cytokines and the expression of
FOXP3. Representative flow cytometric findings showed
that CD25−LAG3+ T cells produced high amounts of both
IFN-γ and IL-10, in agreement with an earlier reports
(23, 24). CD25+LAG3+ T cells expressed high amounts of
both IL-17A and FOXP3 (Figure 5A). Intracellular staining
of three HC individuals showed that CD25−LAG3+ T
cells and memory CD4+ T cells expressed high amounts
of IFN-γ. Activated CD25+ Tregs expressed the highest
amount of FOXP3, and CD25+LAG3+ T cells expressed
the secondary highest amount of FOXP3. CD25+LAG3+

T cells expressed the higher amount of IL-17A compared
with naïve, memory and CD25−LAG3+ T cells (Figure 5B).
With regard to mRNA expression, activated CD25+ Treg
expressed the highest amount of FOXP3. CD25+LAG3+T cells
expressed a fairly small amount of FOXP3, and high amounts of
RORC (Figure 5C).
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FIGURE 4 | Frequencies of CD25+LAG3+ T cells decrease after SLE

treatment. (A) Four SLE patients were sequentially analyzed before and after

treatment. Frequencies of naïve CD4+ T cells and regulatory T cell subsets

were compared between before (Pre) and after treatment (Post). *P < 0.05;

paired-T test. (B) Sequential flow cytometric findings showing CD25 and

LAG3 expression in CD4+ gated PBMC of a patient with SLE. Analysis was

performed at the onset with NPSLE (SLEDAI = 22), the resolution 2 months

after treatment (SLEDAI = 8) and the relapse with new skin rash 10 months

later (SLEDAI = 12).

CD25+LAG3+ T Cells Did Not Show
Suppressive Activity
Activated CD25+ Treg and CD25+LAG3+ T cells were sorted,
and we investigated their suppressive ability by co-culturing
them with CFSE-labeled naïve CD4+ T cells and antigen
presenting cells. While activated CD25+ Treg showed the
expected suppressive activity, CD25+LAG3+ T cells did not
show the evident suppressive activity as activated CD25+ Treg
demonstrated (Figure 6).

DISCUSSION

We compared the frequencies of various immune cell subsets in
PBMC collected fromHC, RA and SLE groups. Our observations
in SLE were consistent with previous reports showing decreases
of naïve CD4+ T cells (5, 6) and naïve B cells (10) and an increase
of memory B cells and plasmablasts (11, 19).

About markers of Treg, CD25 and FOXP3 can be expressed by
activated non-Tregs (27) without a stable regulatory phenotype
(28). CD25 is a poor marker of Tregs in SLE because of the high
number of non-Treg cells in the CD25high population, therefore
several markers had been proposed to evaluate Treg in SLE.
GITR, which is expressed at high levels in activated T cells and
Treg (29), was used to identify CD4+CD25low/−GITR+ cells
that expand in SLE patients with inactive disease that exert a
high inhibitory activity (30). Moreover, Helios, an Ikaros family
member, was used to identify FOXP3+Helios+ cells as activated
CD25+ Tregs that were increased in SLE (18). We defined

FIGURE 5 | Cytokine and mRNA expression analysis. Naïve CD4+ T cells

(Naïve), CD25−LAG3+ T cells (CD25−LAG3+), CD25+LAG3+ T cells

(CD25+LAG3+), activated CD25+ Tregs and CD4+CD25−LAG3−CD45RA−

T cells (Memory) donated by HC were analyzed. (A) Representative findings of

intracellular staining. CD4+ T cell subsets were separated by sorting and

stimulated for 72 h with anti-CD3ε mAb (10µg/mL) and anti-human CD28

mAb (5µg/mL) in the presence of recombinant human IL-2 (100 IU/mL). (B)

Summary of intracellular staining of CD4+ T cell subsets taken from three HC

individuals. *P < 0.05; **P < 0.01; ***P < 0.001. One-way ANOVA followed by

Tukey’s multiple comparisons test. (C) Relative mRNA expression of FOXP3

compared to GAPDH in sorted CD4+ T cell subsets (n = 3) without

stimulation. Relative mRNA expression of RORC compared to GAPDH in

sorted CD4+ T cell subsets (n = 3) stimulated for 72 h with anti-CD3ε mAb

(10µg/mL) and anti-human CD28 mAb (5µg/mL) in the presence of

recombinant human IL-2 (100 IU/mL). Cell subsets were **P < 0.01;

***P < 0.001; ****P < 0.0001. One-way ANOVA followed by Tukey’s multiple

comparisons test.

CD4+CD25+CD127lowCD45RA− T cells as activated CD25+

Treg since this definition is widely accepted to enrich activated
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FIGURE 6 | T cell suppression assay. CFSE labeled CD4+ naïve T cells were

co-cultured with irradiated APCs and CD4+ T cell subsets (naïve CD4+ T

cells, CD25+LAG3+ T cells and activated CD25+ Tregs) in the presence of

anti-CD3ε mAb (10µg/mL) and anti-human CD28 mAb (5µg/mL). CFSE

dilution of viable cells was assessed 72 h later. Flow cytometric data show

results from one representative experiment out of three independent

experiments. Percentages of proliferating cells are presented.

CD25+ Treg in human samples (31). We confirmed that the
frequency of activated CD25+ Treg was significantly higher in
SLE as shown earlier (32, 33). On the other hand, these subsets
were not significantly correlated with SLEDAI.

We found that CD25+LAG3+ T cells was significantly
increased in SLE. The frequency of CD25+LAG3+ T cells
was significantly correlated with SLEDAI and decreased after
treatment. These results implied that CD25+LAG3+ T cells
might be involved in the pathophysiology of SLE. CD25+LAG3+

T cells expressed FOXP3, albeit less than activated CD25+ Tregs
did, but they did not have apparent regulatory activity. We
suggest that the expression of FOXP3 in CD25+LAG3+ T cells
resulted from T cell activation in SLE (34).

On the other hand, CD25+LAG3+ T cells expressed a high
amount of RORC and IL-17 as well as FOXP3, a characteristic
of IL-17-producing FOXP3+ T cells (35). Apart from the
reciprocal relationship of Th17 and Treg cells, the plasticity
between Th17 and Foxp3+CD25+ Treg has been observed
(36). The in vitro conversion from Foxp3+CD25+Treg to
Th17-like Tregs is dependent on IL-1β and on epigenetic
modification (37). IL-17-secreting Tregs express RORγt (36)
and were suppressive in vitro (38), but they rapidly lost
their suppressive capacity upon strong activation in the
presence of IL-1β and IL-6 (39). There also seems to exist
mechanisms that allow the rapid shutdown of suppression and
the induction of pro-inflammatory responses in Treg cells.
Tumor infiltrating Tregs were rapidly converted into Th17 cells,
down-regulated FOXP3 expression and lost their suppressive
capacity (40).

About the issue of the switch between Th17 and Treg cells,
it is still difficult to conclude the origin of CD25+LAG3+

T cells. There is the possibility that Th17 shifted to Treg
(41). Considering the result of qPCR of unstimulated cells
(Figure 5C), CD25+LAG3+ T cells might be a transient state
of Th17 cells switching to the Treg phenotype. However,
there are more reports that Treg shifted to IL-17-producing
FOXP3+ T cells (35–37). Immunological milieu in SLE
that both innate immunity and acquired immunity are
activated might induce shift from Foxp3+CD25+ Treg to IL-
17-producing FOXP3+ T cells. More confirmations should
be performed.

There are several reports regarding the relevance of IL-17-
producing FOXP3+ T cells in autoimmune diseases. IL-17-
producing FOXP3+ T cells were highly enriched within the
inflammatory environment of childhood arthritis, suggesting
a role in the disease (42). IL-17-producing FOXP3+ T cells
were recently associated with psoriasis (43) and systemic
sclerosis (44). Recently, it was reported that IL-17-producing
FOXP3+ T cells were associated with pathogenicity in a lupus
model mouse in a RORγt-dependent manner (45). These cells
potently suppress anti-inflammatory Th2 immunity in a RORγt-
dependentmanner, and they advocates these cells as novel players
in SLE.

The reason why the expression of LAG3 in CD4+CD25+

T cells could be a marker of IL-17-producing FOXP3+ T cells
remains to be solved. It was recently reported that environmental
stimuli-induced intraepithelial lymphocytes (IELs) in the gut had
a Th17-like profile and markedly upregulate LAG3 expression
(46). They proliferated in response to gut-derived antigens and
potentially prevent autoimmunity. Moreover, CCR9+ memory
T cells in CSF of patients with secondary progressive multiple
sclerosis expressed high level of LAG3 and RORγt. They
produced high amount of IL-17A and presented a loss of
regulatory function (47). FOXP3+RORγt+ Tregs were increased
in PBMC from patients with pancreatic ductal adenocarcinoma,
and they produced IL-17A and expressed high level of LAG3.
They suppressed T cell immune responses, but enhanced
inflammation (48). Thus, there are several reports of LAG3
expression on Th17 type cells. LAG3 is a surface marker that can
be expressed by activation (49), therefore immunological milieu
in SLE that induce shift to IL-17-producing FOXP3+ T cells
might induce the expression of LAG3. Moreover, Egr2, which is a
key transcription factor of CD25−LAG3+ T cells (50), is reported
to be a positive regulator for Th17 cell development in a network
analysis (51). Egr2 might be associated with the expression of
LAG3 in IL-17-producing FOXP3+ T cells in SLE. However,
the relationship between LAG3 and RORC or IL-17 production
remains to be elucidated.

There are several limitations in our analysis. First, the
number of patients (26 SLE patients, 30 RA patients
and 30 healthy controls) were relatively small. Second,
because the number of patients performing cell frequencies
analysis of before and after treatment was limited, further
confirmation is necessary regarding decrease of frequencies
of CD25+LAG3+ T cells after treatment. Third, there
is a possibility that anti-human LAG3 antibody might
affect the result of T cell suppression assay. Forth, since
the number of IL-17+ cells in CD4+CD25+LAG3+ T
cells is not so high, there might be another mechanism
for CD4+CD25+LAG3+ T cells not to show evident
suppressive activity.

In summary, CD25+LAG3+ T cells are low in frequency in
HC and RA, but significantly greater in SLE. The frequency of
CD25+LAG3+ T cells was significantly positively correlated
with the SLEDAI score and was reduced by treatment.
CD25+LAG3+ T cells expressed both FOXP3, RORC
and IL-17A, suggesting that they were IL-17-producing
FOXP3+ T cells.
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