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Cytotoxic chemotherapeutics (CCTs) are widely used in the treatment of cancer. Although

their mechanisms of action have been best understood in terms of targeting the

apparatus of mitosis, an ability to stimulate anti-tumor immune responses is increasing

the recognition of these agents as immunotherapies. Immune checkpoint blockade

antibodies neutralize important, but specific, immune-regulatory interactions such as

PD-1/PD-L1 and CTLA-4 to improve the anti-tumor immune response. However, CCTs

can provide a broad-acting immune-stimulus against cancer, promoting both T-cell

priming and recruitment to the tumor, which compliments the effects of immune

checkpoint blockade. A key pathway in this process is “immunogenic cell death” (ICD)

which occurs as a result of tumor cell endoplasmic reticulum stress and apoptosis

elicited by CCTs. ICD involves a series of non-redundant signaling events which break

tolerance and license anti-tumor antigen-specific T-cells, allowing CCTs to act as “in

situ” tumor vaccination tools. Not all responses are tumor cell-intrinsic, as CCTs can

also modulate the broader tumor microenvironment. This modulation occurs through

preferential depletion of stromal cells which suppress and neutralize robust anti-tumor

immune responses, such as myeloid cell populations and Tregs, while effector CD8+

and CD4+ T-cells and NK cells are relatively spared. The immune-stimulating effects of

CCTs are dependent on chemotherapy class, dose and tumor cell sensitivity to the agent,

highlighting the need to understand the underlying biology of these responses. This mini

review considers the immune-stimulating effects of CCTs from a molecular perspective,

specifically highlighting considerations for their utilization in the context of combinations

with immunotherapy.
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INTRODUCTION

Chemotherapy has been utilized for the treatment of cancer for over 70 years
(1), and cytotoxic chemotherapeutics (CCTs) form part of the treatment regimen
for many patients with cancer. However, as single agents or as chemotherapy
combinations, they rarely represent cures for advanced-stage disease (2), and the
efficacy requires improvement in adjuvant and radiotherapy-combination settings.
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These classes of drugs target replicating malignant cells by
disrupting features core to the cell cycle, including DNA
replication and the inhibition of the dynamic processes of mitosis
(Figure 1A). Despite their use in the treatment of cancer for
their cytotoxic properties, there is mounting evidence that they
also promote an anti-tumor immune response (3–10). Given
these observations, there may be significant opportunities for the
inclusion of CCTs in immunotherapy regimens.

Immunotherapy has represented a paradigm shift in the
way that oncologists approach the treatment of cancer.
Unprecedented clinical benefit has been achieved in a variety of
cancers using Immune checkpoint inhibitors (ICIs) that targets
immune regulation of T-cell responses, such as antibodies which
neutralize PD-1 or its ligand PD-L1, or CTLA-4 (11). However,
there remains a majority of patients (up to 60–70%) who are
refractory to the current therapies or acquire resistance (12,
13), and there is a notable variation in patient responses to
ICIs across different tumor types (14, 15). Combining immune
checkpoint blockade therapies improves patient outcomes using
the currently-available therapies (12, 16, 17). Also, the number
and location of anti-tumor cytolytic T-lymphocytes (CTLs) in the
tumor microenvironment dictate the response to these therapies
(18–23) (Figure 1B). Harnessing the broad immune-stimulating
capabilities of CCTs in combination with immune checkpoint
therapies has shown great promise (17, 24), with improved
clinical outcomes (25–29). There are also further opportunities
for CCTs to be used more broadly in combination with the
growing range of immunotherapies (30).

This mini review considers our current mechanistic
understanding of the immune-stimulating capabilities of
CCTs for improving the anti-tumor immune response and
proposes that these drugs should be considered a versatile
therapeutic option in the immunotherapy repertoire.

IMMUNE PRIMING: IMMUNOGENIC
DEATH OF TUMOR CELLS

The observation that cell death, in the absence of infection, can
result in CD8+ T-cell responses against “dead cell” antigens, has
been an area of significant research interest and has been coined
“immunogenic cell death” (ICD) (6, 31). Key steps leading to, and
dictating whether, an anti-tumor immune response occurs have
been identified in an elegant series of studies by the field. CCTs
have been demonstrated to be at least one initiator/potentiator
of this process, which is not seen with all chemotherapy drugs,
but has been most commonly characterized using anthracyclines
(32), platinum compounds (19), and alkylating agents (33).

ICD requires an induction of endoplasmic reticulum (ER)
stress and autophagy in the tumor cell by the CCT (34–
36). Through the ER stress response, the reticular chaperone
calreticulin (CRT) is presented on the cell surface as part of a
complex with the disulphide isomerase ERp57, as an early pre-
apoptotic event, preceding even the presentation of apoptotic
markers such as phosphatidylserine (34, 37). Phagocytic cells
then detect surface-presented CRT/ERp57 using CD91 (LDL-
receptor related protein/α2-macroglobulin receptor) which

provides a potent “eat me signal” for phagocytic engulfment
of the cell (38, 39), which is pivotal for the generation
of a subsequent immune response (40, 41). Interestingly,
DNA damage by anthracyclines is not the initiating signal
for this response, as enucleated cells (cytoplasts) exposed to
mitoxantrone present surface CRT and are phagocytosed by
dendritic cells (DCs) at an equivalent rate to that of nucleated
cells (39). Cisplatin has also been demonstrated to be capable
of inducing a DNA damage-independent ER-stress response in
enucleated cells through a pathway which required calcium and
the calcium-dependent protease calpain (42).

During the blebbing phase of apoptosis, release of adenosine
triphosphate (ATP) from the dying cell potentiates ICD and
provides a “find me” signal which attracts DCs and macrophages
to the site (43), and stimulates their maturation (44). ATP
signaling through the purinergic receptor P2X7 on phagocytic
cells triggers activation of the NOD-like receptor family, pyrin
domain containing-3 protein (NLRP3)-dependent caspase-1
activation complex (inflammasome), which subsequently results
in the release of the pro-inflammatory cytokine IL-1β (32, 45). IL-
1β then attracts IFN-γ secreting CTLs to the tumor site via IL-17-
producing γδ T-cells (41). Interestingly, there is evidence that the
IFN-γ expression by the CD8+ tumor infiltrating lymphocytes
(TILs) is vital to the anti-tumor response elicited through ICD, as
the immunological control of tumor growth by oxaliplatin has
been demonstrated to be independent of perforin, and IFN-γ-
dependent (32).

In the latter stages of cell death, there is a release of damage-
associated molecular patterns (DAMPs) (46), which license ICD.
Two key ICD-related DAMPs have been identified as nuclear
non-histone chromatin protein high mobility group box 1
(HMGB1) (47) and surface heat shock protein 90 (HSP90) (48),
which are capable of signaling as endogenous ligands of Toll-
like receptor-4 (TLR-4) on DCs, leading to their processing and
presentation of tumor-associated antigens, rendering the cell
death immunogenic rather than tolerogenic. As clinical support
for these observations, loss-of-function alleles of the TLR4 gene
are a negative predictor of benefit from adjuvant chemotherapy
with anthracyclines or oxaliplatin (47). HMGB1 has also been
demonstrated to facilitate the recruitment of neutrophils and
natural killer (NK) cells into the tumor microenvironment of
a xenograft model of breast cancer in athymic mice, where
both populations were required for cyclophosphamide to control
tumor growth (49). ICD requires multiple non-redundant
licensing steps, as either blockade of surface CRT exposure
(39, 40), HMGB1-dependent TLR4 signaling (47), or autophagy-
depended ATP release (35) severely compromises ICD. Since
robust immune-mediated tumor killing can be unmasked in a
subset of patients through the use of ICIs in the absence of CCTs
(50), and the rare cases of spontaneous tumor remission (51), it is
likely that ICD can also occur without the need for an adjuvant.
This is also supported in preclinical models where spontaneous
anti-tumor immune responses, in the absence of therapeutic
interventions, occur (52–54). However, harnessing CCTs as well
as some targeted agents (6), to elicit ICD provide powerful
therapeutic tools for use in patients with undetectable or weak
anti-tumor immune responses (31). Further to this, tumors
carrying a high mutational burden provide the immune system
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FIGURE 1 | Cytotoxic chemotherapeutics and the therapeutic response to immunotherapy. (A) Table summarizing the chemotherapeutics discussed in this review,

their broader class and biological function (B) Some of the overarching requirements needed for an effective anti-tumor immune response that will achieve

immunological tumor control.

with neoantigens to mount such responses against, underscored
by the observation that tumor mutational burden correlates with
clinical benefit of ICIs targeting PD-1 and CTLA-4 (55–57).
However, even non-mutated proteins can be antigenic when
inappropriately expressed, such as the cancer/testis antigens (58).
Pharmacodynamic markers which monitor for evidence of an
ICD-type response to CCTs might provide useful information in
tailoring treatment regimens to improve ICD as cancer therapy
becomes more personalized (Figure 1B).

TRAFFICKING AND INFILTRATION OF
T-CELLS

There is a clear link between the presence of TILs and progression
free and overall survival in a variety of cancers (59–64). The
prevalence of TILs, the “Immunoscore,” has been shown to
reliably predict the risk of recurrence (3 year risk of recurrence,
high vs. low Immunoscore hazard ratio 0.2, 95% confidence
interval 0.1–0.38, p < 0.0001) in a large international cohort
study of patients with TNM stage I-III colon cancer (65). The
presence of TILs also correlates with the clinical response to ICIs
targeting both PD-1 (66) and CTLA-4 (67) receptors. Tumor
microenvironments which lack T-cell infiltration have become
known as “immunologically cold,” which can result due to either
exclusion mechanisms or a lack of a TIL-type of inflammation
to attract these cells to the site (18, 68, 69). However, a
potentially important biological response to CCTs is their ability
to initiate a T-cell influx into the tumor microenvironment
(10, 70–74) (Figure 1B). A high CD8/Foxp3 TIL ratio post-
neoadjuvant chemotherapy is predictive for improved relapse
free and overall survival in patients with breast cancer (75).
Paclitaxel, at a dose of 200 mg/m2 every 2 weeks for 4 cycles,
was shown to improve TIL numbers in 7 out of 21 patients

with breast cancer (70). Intriguingly, in this study, T-cell
infiltration tended to occur in patients whose tumors had a strong
apoptotic response acutely (96 h) after receiving the first dose of
paclitaxel (70). Others have observed chemotherapy-dependent
CD8+/CD4+ T-cell infiltration in response to paclitaxel and
gemcitabine in a murine model of ovarian cancer (74) and
5-FU in a murine model of breast cancer (10). In models
of melanoma, temozolomide improved TIL recruitment into
the tumor in a CXCR3-dependent manner (72). Others have
also shown CXCR3 to be non-redundant to T-cell recruitment
into the tumor (76). In vitro exposure of melanoma cell lines
to either temozolomide, cisplatin, or dacarbazine resulted in
their expression of T-cell chemokines CCL5, CXCL9, and 10.
However, the response was not predictable, as different CCTs
promoted T-cell chemokine expression in different cell lines (72),
suggesting that tumor cell sensitivity is an important variable
in this process. In another study, doxorubicin was shown to
induce a rapid TLR3-dependent expression of interferon β1
(IFN-β1) from tumor cells, which was triggered by the release
of self RNA by chemotherapy-stressed or dying cells (77). IFN-
β1 then signaled in both a paracrine and autocrine fashion to
promote the IFN-α/β receptor-dependent release of the T-cell
chemokine CXCL10, alongside a concurrent expression of MHCI
(77). The CCT-induced expression of tumor cell MHCI has also
been shown by others using ovarian cancer cell lines exposed
to gemcitabine, paclitaxel or carboplatin (74), and renders the
tumor cells more susceptible to CTL killing (78). Using CCTs to
promote T-cell infiltration into the tumor and convert previous
immunological “cold” microenvironments “hot,” is an important
attribute of these drugs. However, as the response appears to
be both dependent on the tumor cell and the chemotherapy
it is exposed to (72), how to anticipate the response for
efficient pairing of chemotherapy to each patient has yet
to be established.
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THE RESPONSE OF THE STROMA

The tumor stroma, the heterogenous population of non-
cancerous cells, some of which can facilitate tumor progression,
play significant roles both directly and indirectly in modulating
the response to chemotherapeutics. Examples of populations
that have been demonstrated to suppress the infiltration or
activity of anti-tumor CD8+ T-cells include cancer associated
fibroblasts (18, 54), tumor associated macrophages (TAMs) (10),
myeloid-derived suppressor cells (MDSCs) (79, 80), and Tregs
(81). There is evidence that CCTs can selectively target immune
suppressive cell populations, for example preferential depletion
of Tregs in response to paclitaxel (82), cyclophosphamide (83),
or temozolomide (84) treatment. MDSCs have been shown to
be preferentially depleted by doxorubicin (85, 86) and 5-FU
(85), and TAMs by gemcitabine (9). CCTs can also activate
NK cells (87), but also concurrently render tumor cells more
susceptible to NK cell-mediated lysis, such as through promoting
the expression of B7-H6, the ligand for the NK cell activating
receptor NKp30, on the tumor cell surface (88). CCTs can also
modulate MDSC differentiation/polarization, where paclitaxel
promoted monocytic MDSC differentiation into a more DC-like
phenotype (89) and docetaxel promoted their differentiation into
a more pro-inflammatory macrophage phenotype (90).

TAMs are a prevalent cell type in the tumor and have been
demonstrated to modulate the therapeutic efficacy of CCTs
(10, 37, 91). Many of these effects are due to their immune
suppressive capabilities (10). In the spontaneous MMTV-PyMT
murine model of breast cancer, macrophage expression of
heme oxygenase-1 (HO-1), an enzyme responsible for the
breakdown of heme to generate the biologically active products
biliverdin, ferrous iron (Fe2+) and carbon monoxide (CO)
(92), was demonstrated to play a pivotal role in suppressing
an anti-tumor immune response generated by 5-FU (10).
However, TAM secretion of IL-10 has also been demonstrated
to be important in suppressing paclitaxel-elicited CD8+ T cell
responses indirectly by suppressing IL-12 release fromDCs in the
tumor microenvironment (91). Macrophage can also promote
tumor cell survival in response to CCTs through their secretion
of cathepsins B and S (93). Furthermore, tumor-polarized
TAMs, in murine models of pancreatic ductal adenocarcinoma,
have been demonstrated to release deoxycytidine which can be
taken up by tumors cells to directly compete with gemcitabine,
hindering the drug’s efficacy (94). TAMs are highly plastic in their
phenotype and biological response, and paclitaxel can skew the
polarization to a pro-inflammatory phenotype through activation
of TLR4 via an interaction of paclitaxel with the extracellular
accessory protein MD2 (95, 96). However, this response is a
murine-specific phenomenon, as paclitaxel binds mouse but not
human MD2 (95). Nevertheless, another member of the taxane
family, docetaxel, was shown to influence human macrophage
polarization toward a more pro-inflammatory state characterized
by increased HLA-DR, CD86 expression and their secretion of
IL-1β and IL-8 (97).

Peripheral macrophages in the spleen also play a
role in suppressing the apoptotic response of tumor
cells distal to the spleen. Intravenous infusion of bone

marrow-derived mesenchymal stromal cells exposed to
carboplatin, oxaliplatin, and cisplatin released platinum-
induced fatty acids (PIFAs), and conferred tumor resistance
to platinum-based chemotherapeutics in murine models
(98). Splenic macrophages (F4/80+ CD11blow) which had
become activated by PIFAs via leukotriene B4 receptor 2
(BLT2) secreted polyunsaturated lysophosphatidylcholines
(LPCs) which were capable of altering the DNA damage
response in the distant tumor, and conferred therapy
resistance (99).

The release of IL-1β by DCs in response to doxorubicin
treatment plays an important role in recruiting IL-17
producing γδ T-cells which subsequently recruit anti-
tumoral IFN-γ expressing αβ CD8+ T-cells into the tumor
microenvironment (41). Conversely, expression of IL-1β
by MDSCs in response to either gemcitabine or 5-FU was
demonstrated to induce IL-17 expression by CD4+ T cells,
which suppressed the chemotherapy-dependent control of
tumor growth (100). Interestingly, IL-17 from γδ T-cells
can induce both the suppressive activity of MDSCs and the
tumor-derived release of CXCL5, which recruits MDSCs
(101). As such, when MDSCs are present, and activated by
IL-17, potentially their immune suppressive effects override
the pro-inflammatory anti-tumor response of IL-17. These
mechanisms provide examples of the importance of the immune
landscape of the tumor when considering chemotherapy-elicited
immune responses.

THE IMPORTANCE OF DOSE AND
SCHEDULE

CCTs target all replicating cells, leading to predictable effects
on normal tissues with proliferating cell populations. For
example, cytopenias commonly result from the impact of
CCTs on the bone marrow, where pools of replicating cells
drive hematopoiesis. One study in mice, analyzed the changes
in gene expression after administration of cyclophosphamide
and found bone marrow, spleen, and blood PBMCs, had
1123, 868, and 1083 differentially regulated genes respectively
1–2 days post administration, which in the bone marrow
and PBMC fraction returned back to baseline at day 5
post-administration (102). In the clinic, CCTs are largely
administered at the maximum tolerated dose which can be
immunosuppressive as a result of myelosuppression. However,
the recovery phase from chemotherapy-elicited lymphopenia can
be an important window where anti-tumor immune responses
become potentiated (103). Furthermore, low dose, but dose
dense (“metronomic”), administration of paclitaxel and cisplatin
in a subcutaneous HM-1 ovarian cancer model resulted in
CD8+ T-cell dependent control of tumor growth that was
superior to that observed at the maximum tolerated dose (104).
The mechanistic understanding of why low dose metronomic
chemotherapy regimens are generally more immune-stimulating
is not entirely clear. However, maximum tolerated dose regimens
are associated with a loss of CD8+ and CD4+ T-cells and
NK cells from the tumor microenvironment, and pro-tumoral
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FIGURE 2 | Overview of the immune-modulating effects of cytotoxic chemotherapy. The depicted mechanisms, and chemotherapies shown to elicit these responses,

summarize the results of the studies highlighted in the manuscript text. Red arrows indicate either an increased (pointing up) or decreased (pointing down) response.

Blue flat ended lines represent an inhibitory effect relating to the mechanism depicted. The text boxes positioned near the arrows indicate the CCTs that were

described to elicit the response. ATP, Adenosine triphosphate; CRT, Calreticulin; CTL, Cytotoxic T-lymphocyte; HLA, Human leukocyte antigen; HMGB1, High mobility

group box 1; MDSC, Myeloid derived suppressor cell; NK, Natural killer; TLR4, Toll like receptor 4; Treg, T-regulatory cell

(6, 10, 32, 33, 36, 40, 41, 47, 49, 70–74, 76, 78, 83, 86, 88–90, 96–98, 100, 101, 104, 105).

activation of cancer-associated fibroblasts (105). Whereas, low
dose regimens preferentially target MDSCs (CD11b+ Gr-1+)
and Tregs while concurrently increasing IFN-γ expressing T-
cells (104, 106, 107), and activating NK cells (108). In a phase
III trial of patients with advanced ovarian cancer a low dose
metronomic paclitaxel regimen alongside carboplatin resulted
in a significantly lengthened survival of 28 months compared
to 17.2 months on the standard treatment regimen (hazard
ratio 0.71; 95% confidence interval 0.58–0.88, p = 0.0015)
(109). This observation in ovarian cancer patients has also been
supported by others (110), however, the beneficial effects of

the low dose dose-dense treatment regimen was only seen in
those patients that had not received bevacizumab (110). Others
have suggested medium intermittent dose regimens to strike
the optimal balance between the cytotoxic roles of these drugs
and the immune-stimulating effects (111). There is evidence
to suggest that the dose and schedule are both important
variables to efficiently harness the immune-stimulating effects
of CCTs. However, further preclinical studies focusing on the
biological mechanisms which account for dose and schedule
effects are needed. It is likely that the optimal CCT dose is
not equivalent for all patients due to tumor cell characteristics,
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efficiency of drug delivery, and microenvironment heterogeneity.
Understanding how to clinically evaluate, and potentially
predict, the optimal CCT regimen is an important question to
be addressed.

CONCLUSIONS

CCTs have an intriguingly broad ability to modulate the
anti-tumor immune response, providing benefit via several
distinct mechanisms (Figure 2) that influence the response
to immunotherapy (Figure 1B). Clinical outcomes with either
CCTs or immunotherapies alone leave significant room for
improvement, so there is a good rationale for exploring
possible synergistic effects on the tumor microenvironment
of the two combined modalities. The clinical evidence for
combining ICIs with chemotherapy is already robust and
supported by randomized trials (112, 113), comprehensively
reviewed by (114). However, as the biological response
of a tumor cell varies according to the CCT that it is
exposed to (9, 72, 78), understanding how to predict these
responses becomes increasingly important. CCT-elicited cell
stress and apoptosis is clearly linked to ICD (6), and non-
lethal “stress” can also render tumor cells vulnerable to T-
cell killing (115). How to balance CCT dose to efficiently
elicit the required immune-stimulating effects (6, 115, 116),
preferentially eliminate immune suppressive cells (82–86), and
avoid lymphodepletion (104, 106), highlight some of the
potential variables in moving to an efficient use of these
drugs as immunotherapies in a more personalized manner.

The emerging importance of gut microbiota in dictating
the efficacy of both ICIs (117, 118) and chemotherapy
(119, 120) provide further confounding factors for rationally
predicting clinical benefit. However, as our knowledge of
the biological mechanisms underlying the immune-stimulating
properties of CCTs continues to deepen, their utilization as
immunotherapies with broad immune-stimulating effects offer
significant promise for improving the number of patients
benefiting from immunotherapy.
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