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Advances in flow cytometry have led to greatly improved primary immunodeficiency

(PID) diagnostics. This is due to the fact that patient blood cells in suspension do

not require further processing for analysis by flow cytometry, and many PIDs lead to

alterations in leukocyte numbers, phenotype, and function. A large portion of current

PID assays can be classified as “phenotyping” assays, where absolute numbers,

frequencies, and markers are investigated using specific antibodies. Inherent drawbacks

of antibody technology are the main limitation to this type of testing. On the other

hand, “functional” assays measure cellular responses to certain stimuli. While these latter

assays are powerful tools that can be used to detect defects in entire pathways and

distinguish variants of significance, it requires samples with robust viability and also skilled

processing. In this review, we concentrate on hemophagocytic lymphohistiocytosis

(HLH), describing the principles and accuracies of flow cytometric assays that have been

proven to assist in the screening diagnosis of primary HLH.

Keywords: flow cytometry, HLH, hemophagocytic lymphohistiocytosis, primary immunodeficiencies, clinical

diagnostics, diagnostic accuracy, clinical laboratory tests, XLP

INTRODUCTION

Hemophagocytic lymphohistiocytosis (HLH) can be described as a systemic hyperinflammatory
syndrome. It is most often thought to be caused by an inability to clear an inciting infectious or
other immunologic trigger. This leads to pathologic immune activation and a positive feedback loop
of ever increasing cytokine secretion and cellular cytotoxicity that ultimately results in self harm
(1, 2). HLH can be classified as “primary” or “secondary” depending on whether it occurs as a result
of an inborn error leading to a dysfunctional immune system like perforin deficiency, or occurs in
settings such as infection, malignancy, rheumatologic, or other disease without a known underlying
inherited defect in the immune system (3–5). Primary HLH can be caused by mutations in a
number of genes which affect cytotoxic lymphocyte granule-mediated cytotoxicity including PRF1,
UNC13D, STX11, STXBP2, RAB27A (Griscelli Syndrome), AP3B1 (Hermansky-Pudlak syndrome
type 2), and LYST (Chediak-Higashi Syndrome). Primary HLH can also include other genetic
diseases such as XIAP deficiency, which is characterized by inflammasome dysregulation, and
SAP deficiency which has a complicated mechanism of disease, though these diseases are usually
classified as X-linked lymphoproliferative diseases (XLP) type 1 and type 2, respectively. Regardless,
the classification of HLH into primary or secondary groups is sometimes difficult due to the varied
phenotype presented and delays or limitations in obtaining genetic results. This has necessitated
the development of faster diagnostic screening assays. Many excellent reviews exist on the subject
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of primary HLH and cytotoxic lymphocyte function, and the
reader would be wise to refer to them for a deeper understanding
on the subject (1, 6–10). In this review, we will focus on
summarizing the laboratory assays currently used to screen for
genetic abnormalities in primary HLH linked genes and explore
their accuracy. We will also briefly discuss possible pitfalls
and future directions in diagnosing diseases typically associated
with HLH.

PERFORIN DEFICIENCY

NK cells and cytotoxic T lymphocytes are often grouped together
as cytotoxic lymphocytes. Their primary role is to kill virus
infected or malignant cells (11, 12). Perforin, the pore forming
protein, is encoded by the gene PRF1 and is a key player in
this process as well as the archetypical example of primary HLH
(13). PRF1 is also historically the first primary HLH gene to be
identified and is often referred to as familial hemophagocytic
lymphohistiocytosis type 2 (FHL2) (14). Perforin is stored within
cytotoxic granules. Once secreted from cytotoxic lymphocyte
granules, perforin oligomerizes on the surface of target cells
to create pores which allow the penetration of contents such
as granzymes into the target. Perforin is easily stained for
intracellularly in NK cells using a conjugated monoclonal
antibody. Perforin has been shown to be absent or highly
reduced in persons with biallelic mutations for PRF1 gene.
Staining can be performed using fresh whole blood or peripheral
blood mononuclear cell (PBMC). First, the various lymphocyte
lineages are extracellularly stained followed by cell fixation and
permeabilization. Intracellular perforin is then stained for and
the cells finally analyzed on a flow cytometer (15). To note,
while freshly isolated NK cells contain perforin and are routinely
used for perforin analysis, only a minority of cytotoxic T cells
in “healthy” individuals express perforin. Perforin expression in
resting bulk CD8+ cells thus varies greatly between individuals.
To overcome this, bona fide effector T cells can be gated using
CD57 if evaluation of perforin in resting T cells is desired
(16, 17). This can greatly help in individuals with poor NK
cell counts.

The diagnostic accuracy of perforin expression in NK cells for
detecting biallelic PRF1 mutations has recently been published
and is highly accurate with sensitivity of 96.6% and specificity
of 89.5% for an overall area under the curve (AUC) of 0.971
(Table 1) (18, 20). These and other reports have also shown that
PRF1 mutation carriers (a mutation in only one allele) often
have clearly reduced perforin expression arguing for an allele
dependent perforin expression (19, 26, 27).

The A91V alteration in PRF1 is unique. Having a high
prevalence of 0.22 to 3.9% depending on the population studied,
it has been assumed to be less pathologic (Figure 1) (28–
31). However, in vitro studies have shown that A91V leads to
reduced perforin function (32, 33). Individuals with A91V in
both compound heterozygous and homozygous state can be
identified by laboratory assays and show low to no residual
protein expression, and such results may be indiscriminable from
other pathologic PRF1mutations (30, 34, 35).

The lack of perforin leads to an inability to kill target cells. This
functional defect can be detected by lowered chromium release
using the radioactive chromium cytotoxicity assay (36). Because
the chromium release assay shows suboptimal accuracy, many
have turned to screening for primary HLH diseases with perforin
staining coupled with the degranulation/exocytosis/CD107a
assay in place of or in addition to chromium release NK
cell function testing. The CD107a assay examines if cytotoxic
lymphocytes (NK cells and CTL) can release secretory lysosomes
as described below, but this assay does not report if target cells
are killed. Samples from patients with perforin deficiency will
not show any degranulation abnormalities but is nonetheless
often run to confirm normal degranulation. Typical perforin
deficiency can thus be confidently diagnosed based on the
lack of perforin staining, deficient NK cell cytotoxicity, but
normal degranulation.

SECRETORY GRANULE
EXOCYTOSIS DEFICIENCY

Autosomal recessive mutations in UNC13D, STX11, or STXBP2
have been linked to primary HLH disease. These encode
the proteins Munc13-4, syntaxin-11, or Munc18-2, and as
diseases are known as FHL3, FHL4, or FHL5, respectively. The
proteins encoded are crucial for perforin-containing secretory
lysosome exocytosis, a process more commonly referred to as
degranulation. Defects in RAB27A, LYST, and AP3B1, leading
to Griscelli syndrome type 2 (GS2), Chediak-Higashi syndrome
(CHS), and Hermansky-Pudlak syndrome type 2 (HPS2),
respectively, also cause defective degranulation. These latter
patients often manifest with HLH and usually, but not always,
occulocutaneous albinism (22, 37–42). Together, these 6 genes
can be grouped for diagnostic screening as they show a similar
cellular phenotype of failed secretory lysosome content release
and failure to kill target cells.

At this juncture, it is important to differentiate between the
terms “NK cell degranulation” and “NK cell function,” as they
are often thought to be one and the same. The NK degranulation
assay, also known as CD107a or NK exocytosis assay, evaluates
if CD107a containing secretory lysosomes are able to release
their content and thus deposit CD107a on the external cell
membrane where it is measured as a surrogate for degranulation
(Figure 2). Under the microscope, CD107a and perforin often
co-localize and so it is assumed that when granules bearing
CD107a are externalized, perforin would also most likely be
released at the immune synapse (43, 44). In the case of perforin
deficiency, the CD107a assay is not useful as a screening tool
because secretory lysosomes without perforin are still released
and CD107a still expressed on the cell membrane. The CD107a
assay is also unable to detect whether granules are headed toward
the immune synapse where the target cell is being engaged.
When stimulating NK cells in vitro with anti-CD16 antibody,
the release of secretory lysosomes are non-polarized which would
not be efficient for target cell elimination (43). The CD107a assay
has been found useful for the diagnosis of FHL3-5, GS2, CHS,
and HPS2, and possibly ORAI1, STIM1, and HPS10 (45–48),
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TABLE 1 | Sensitivity and specificity results for the diagnosis of primary HLH and related diseases extrapolated from various studies using a range of immunological

assays.

References Gene(s) studied Assay description Sensitivity,

specificity (%)

Number of

primary cases

Abdalgani et al. (18) PRF1 Direct Intracellular staining of NK or CTL 97, 90 48

Tesi et al. (19) PRF1 Direct Intracellular staining of NK or CTL 100, 100 14

PRF1 NK cytotoxicity (chromium release) upon K562 stimulation 100, 95 14

Rubin et al. (20) PRF1 Direct Intracellular staining of NK or CTL 97, 83 29

PRF1, UNC13D,

STX11, STXBP2,

RAB27A, LYST, AP3B1

NK cytotoxicity (chromium release) upon K562 stimulation 60, 72 84

UNC13D, STX11,

STXBP2, RAB27A,

LYST, AP3B1

NK degranulation (CD107a) upon K562 stimulation 94, 73 32

Bryceson et al. (21) UNC13D, STX11,

STXBP2, RAB27A,

LYST

NK degranulation (CD107a) upon K562 stimulation 96, 88 90

Chiang et al. (16) UNC13D, STX11,

STXBP2

NK degranulation (CD107a) upon K562 stimulation 94, 84 16

UNC13D, STX11,

STXBP2

NK degranulation (CD107a) upon anti-CD16 antibody

stimulation

88, 98 16

UNC13D, STX11,

STXBP2

CTL degranulation (CD107a) upon anti-CD3 antibody

stimulation

88, 98 16

Chiang et al. (22) LYST NK degranulation (CD107a) upon K562 stimulation 85, 75 20

LYST NK degranulation (CD107a) upon anti-CD16 antibody

stimulation

86, 96 21

LYST CTL degranulation (CD107a) upon anti-CD3 antibody

stimulation

90, 90 20

LYST NK cytotoxicity (chromium release) upon K562 stimulation 89, 94 18

Hori et al. (23) UNC13D NK degranulation (CD107a) upon K562 stimulation 100, 71 6

UNC13D CTL degranulation (CD107a) upon anti-CD3 antibody

stimulation

100, 100 6

Gifford et al. (24) SH2D1A Direct Intracellular staining of NK or CTL 87, 89 15

XIAP/BIRC4 Direct Intracellular staining of NK or CTL 95, 61 19

Ammann et al. (25) XIAP/BIRC4 Monocyte activation (TNF) upon L-18MDP stimulation 100, 100 12

because in all these cases, secretory lysosomes are unable reach
the cell membrane or fail to fuse with the cell membrane leading
to the absence of surface CD107a after relevant stimulation.
But, in cases of preserved detection of CD107a upregulation,
additional testing to evaluate NK cell killing may be needed, as
lysosome degranulation does not necessarily equate to the death
of target cells.

As such, the often crowned “gold standard” chromium release
assay still holds relevance since described in the 1960s (49,
50). In this assay, K562 cells (ATCC, CCL-243) first preloaded
with radioactive chromium-51 will be killed by NK cells and
the extent to which the stored chromium is freed is taken to
represent the percentage of K562 killed (51–53). No published
data exists exploring the accuracies of NK cytotoxicity assay
in diagnosing each subtype of primary HLH, possibly due to
sample number limitations. Only one recent study attempted
to systematically quantify the accuracy of the chromium release
NK cell function assay when used in the clinical lab setting for
diagnosing PRF1,UNC13D, STX11, STXBP2,RAB27A, LYST, and
AP3B1 mutations, and found it lacking with a sensitivity of 60%
and specificity of 72% (Table 1) (20).

The low accuracy of this assay, often used during acute phase
HLH, may be partly blamed on the assay’s dependency on the NK

cell percentage in the sample. HLH patients normally experience
large expansions of CD8T cells, and stressed blood samples from
these patients often leave large numbers of RBC and cell debris in
the peripheral blood mononuclear cell (PBMC) suspension after
ficoll. This leads to an artificially low NK cell percentage which
is often unaccounted for, giving an impression of reduced NK
function when in fact it is due to the overwhelming number of
other cells in the mix. Because the assay is sensitive as such, care
must be taken when interpreting poor NK cytotoxicity results
especially during acute HLH as it could indicate poor sample
quality rather than dysfunctional NK cells. While this assay has
many limitations, the result distinctly demonstrates whether or
not target cells are finally killed (Figure 2) (54). Numerous flow-,
colorimetric-, and imaging-based cytotoxicity assays have been
touted as possible chromium release assay replacements but no
large cohort of primary HLH cases has been validated on any
of these platforms (55–59). Pending such reports, the chromium
release assay is still the only published clinical standard for NK
functional studies.

Therefore, we currently rely on the CD107a NK cell
degranulation assay for the screening diagnosis of primary HLH
related to mutations in UNC13D, STX11, STXBP2, RAB27A,
LYST, and AP3B1. The most commonly used NK degranulation
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FIGURE 1 | Intracellular staining of perforin and granzyme B in different

individuals. Histograms represent gated NK cells showing varying levels of

perforin expression as a consequence of the different PRF1 variants as shown.

assay tests rested PBMC stimulated with the myelogenous
leukemia cell line K562 (21). After co-incubation for several
hours, the percentage of NK cells bearing surface CD107a or
the fluorescence intensity of CD107a positive NK cells is then
evaluated. Persons with a defect in secretory lysosome transport
or membrane fusion will show greatly reduced surface CD107a
levels (Figure 2). A pan European study found 97% of FHL3-5
and 85% of GS2 and CHS cases had abnormal percentage of
NK cell degranulation (<5% CD107a+ NK cells) to give an
overall sensitivity of 96% and specificity of 88% in diagnosing
a genetic degranulation disorder (Table 1) (21). A follow-up
study on a North American cohort evaluated CD107a mean
channel fluorescence (MCF) of NK cells instead of percentage
of degranulating cells (20). It found 93.8% of patients with
biallelic mutations in an HLH-associated degranulation gene

FIGURE 2 | Cytotoxic lymphocyte evaluation of an STXBP2 patient. We

performed NK cytotoxicity as well as NK and T cell degranulation using fresh

PBMC from a case with homozygous c.1430C>T (p.Pro477Leu) mutations.

While (A) control NK cells and CD8+CD57+ T cells degranulated as expected

when stimulated, respectively with K562 or anti-CD3 antibody, (B) the patient’s

cytotoxic lymphocytes did not. (C) NK cytotoxicity was also evaluated via 51Cr

release and found deficient. In addition, we included cytotoxicity data from a

sibling carrying the same homozygous mutation.

with lowered CD107aMCF but only 60.4% of individuals without
biallelic mutations in relevant genes with normal CD107a levels,
giving an overall area under the curve of 0.86. More recently,
a cohort of 21 CHS cases has likewise confirmed the CD107a
assay is able to accurately identify primary defects in NK
degranulation (22). In the first two studies, a sizable portion of
controls were found to have lowered NK degranulation. This
could be due to technical issues, stress during blood sample
transport, medications leading to reduced lymphocyte reaction,
or epigenetic changes resulting in NK cells with a particularly
skewed functional response (60–63). So while better than the
chromium release assay, the NK-K562 degranulation assay, like
all diagnostic assays, is not perfect.

To overcome the shortcomings stemming from an
overreliance on any single test, NK degranulation can also
be evaluated through other means, for example, via stimulation
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using PMA, activating antibodies such as anti-CD16 targeting
the Fc receptor, or activation of synergistic NK receptors
(16, 64, 65). Preliminary data has found Fc stimulation induced
degranulation returns 88% sensitivity and 98% specificity in a
cohort of 16 FHL3-5 (Table 1) (16). We can thus infer that both
NK cell natural cytotoxicity and antibody-dependent cellular
cytotoxicity are defective in classical primary HLH. This is an
important point to note as immunodeficiencies could affect only
one specific pathway. For instance, a certain CD16 (FcγRIIIA)
mutation was found to impair natural NK cytotoxicity but
Fc specific function was intact (66). Current standard clinical
tests limited to only K562 stimulation would be insufficient for
detecting abnormalities in such cases.

Cytotoxic T lymphocytes have also been found defective in
degranulation in the context of primary HLH due to mutations
in the genes required for normal degranulation. Previously, T
cell blasts had to be grown up over weeks in order to sufficiently
stimulate perforin production in T cells and generate enough cell
numbers for experimentation (21). More recently, it was noticed
that specific populations of T cells, namely CD3+CD8+CD57+

contain perforin and granzymes ex vivo without prior need for
stimulation (17). This population of bone fide effector cells, by
virtue of perforin expression, was found to efficiently degranulate
upon anti-CD3 antibody stimulation. Crucial to our context,
when tested on primary HLH samples, CD3+CD8+CD57+ T cell
degranulation was defective to a similar level as in NK cells (16).
A small confirmatory study found high sensitivity with a cohort
of biallelic pathogenicUNC13D variants (23).Withmultiple ways
to induce degranulation onmultiple cell types, we could speculate
on possible undiscovered immunodeficiencies that affect only
NK cells or T cells and detectable only with a combination of
various degranulation assays.

Like perforin, it is possible to directly detect Munc13-4,
syntaxin11, Munc18-2, and Rab27a with antibodies (67–69).
However, this is usually performed with western blot. One
exception is Munc13-4 detection in platelets with flow cytometry
(70, 71). Although this assay has been found to be highly
accurate for predicting UNC13Dmutations, the antibody used is
polyclonal and not commercially available.

Taken together, when primary HLH is suspected, performing
the triad of perforin staining, NK and/or T cell degranulation,
and NK cytotoxicity will give a more complete evaluation of
cytotoxic cell activity and improve HLH diagnosis. While all the
assays are individually accurate, we suggest moving toward a
“multiplexing” of degranulation assays in the future to increase
confidence in diagnosis, provide security should any one cell
population be poorly represented, and pave the way for detecting
degranulation deficiencies in specific pathways or cell types.
Additionally, validating a radioactivity-free killing assay that
accounts for effector cell counts would be highly useful for true
assessment of cytotoxic lymphocyte function.

X-LINKED DISEASES

The genes SH2D1A and XIAP/BIRC4 encode the proteins SAP
and XIAP, respectively. Deficiencies in these proteins lead to

X-linked lymphoproliferative disease type (XLP) 1 and 2 (72,
73). As their names imply, both genes are X-linked and often
manifest HLH with Epstein-Barr virus (EBV) infection (74–76)
but beyond that, XLP1 and XLP2 have quite different phenotypes
and share little functional or structural similarities (77).

Similar to perforin, SAP and XIAP monoclonal antibodies
exist and have been validated clinically for direct intracellular
protein detection (Figures 3, 4) (78–80). However, care must be
taken when reading such reports as certain pathologic variants
have been found to preserve antibody binding leading to false
negative (false normal) results (81–83). Also, while the absence
of binding can be equated with the absence of that protein
and thus strongly suggests a defect, the binding of an antibody
to its antigen says nothing about the function of the protein
bound. As such, patients expressing normal SAP and XIAP
levels, or for that matter all direct antibody phenotyping tests,
should still be sequenced if clinically suspicious. Bimodal staining
patterns are also useful in identifying female carriers as well
as estimating the level of chimerism for transplant monitoring
(24, 79). For XIAP, there has been reports of non-random X
inactivation in some female carriers. Lymphocytes bearing the
wild-type allele have been seen selected in some while others
show the opposite, skewing toward the defective X chromosome
at risk for disease manifestations (73, 84, 85). Direct screening
of SAP returns 87% sensitivity and 89% specificity for the
prediction of pathologic mutations in SH2D1A while direct
screening of XIAP gives 95% sensitivity and 61% specificity
(Table 1) (24, 86).

It has been demonstrated that both SAP and XIAP are
required for the development of normal invariant NKT (iNKT)
cells and for normal T cell restimulation-induced cell death
(RICD) (73, 76, 87, 88). As such, iNKT quantification and
RICD assays can be performed for cases where direct staining is
inconclusive, or if further supporting data is desired (Figure 3).
A more sophisticated cytotoxic assay looking at inhibitory 2B4
signaling in NK cells has also been reported to discriminate
functional SAP deficiency (89). Likewise, a functional test exists
where XIAP function is investigated downstream of NOD2
stimulation onmonocytes. Following stimulation with L18-MDP,
TNF is normally produced by CD14 positive cells. However,
patients with pathologic mutations in XIAP, even where XIAP
protein staining was found normal or in patients with milder
clinical phenotype, all had equally defective TNF production
and could easily be discriminated (Figure 4) (25). A cutoff of
10% TNF-producing monocytes perfectly distinguished 12 XIAP
patients from 29 healthy controls and 6 female carriers (Table 1).
Subsequent reports demonstrated the assay’s usefulness in
diagnosing inflammatory bowel disease (IBD) cases with novel
XIAP mutations (90, 91). By performing phenotyping as well as
functional assays side by side, it is hoped that future cases might
be more accurately identified.

OTHER PRIMARY IMMUNODEFICIENICES

A host of patients with other diseases such as ALPS, CGD,
CVID, and SCID, as well as variants in genes including BTK,
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FIGURE 3 | Indirect diagnosis of XLP1. (A) While most SH2D1A mutations result in absent or lowly expressing SAP protein levels, we found (B) a clinically suspicious

patient with c.125G > A (p.Cys42Tyr) missense mutation with only a slight reduction in SAP protein expression by flow cytometry. The patient was thus further

evaluated for (C) iNKT numbers on bulk CD3+ cells and (D) restimulation-induced cell death (RICD) via anti-CD3 antibody repeated on two occasions. The low iNKT

counts and reduced cell death upon TCR restimulation provided evidence that the missense SH2D1A variant found was indeed pathological.

CARMIL2, CD27, ITK, LRBA, MAGT1, NEMO, PIK3CD, RAG2,
WAS, NLR genes, and STAT genes, have been implicated
with possible HLH (92–94). The assays described so far
including NK cell degranulation and cytotoxicity will be
of little diagnostic use here except to rule out defective
secretory lysosome transport. For some genes, there exist
flow cytometric assays that can assist with diagnosis. For
example T, B, and NK specific subset phenotyping panels can
pick up ALPS (increased double negative T cells), X-linked
agammaglobulinemia due to mutations in BTK (low B cell
counts or BTK expression), mutations in CD27 (absent surface
expression of CD27), mutations in MAGT1 (lowered NKG2D

expression), and a variety of SCID disorders (very low B,
T, and/or NK counts, reduced recent thymic emigrants and
CD45RA expression) (95). The neutrophil oxidative burst assay
is an excellent assay for the diagnosis of CGD (96). WAS can
be accurately diagnosed through direct staining of intracellular
WAS protein (97). Multiple excellent reviews exist for PID
diagnostics (98, 99).

A second group of primary immunodeficiency genes
demonstrate defective NK cell activity without pronounced
HLH. However, before suggesting that NK degranulation and
cytotoxicity assays could be used in helping with the diagnosis
of these PIDs, larger cohorts of patients must be collected for
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FIGURE 4 | Phenotyping and functional evaluation for XLP2. (A) While a

majority of BIRC4 mutations present with absent or lowly expressing XIAP

protein levels, we found (B) a patient with c.632A>G (p.Glu211Gly) variant of

uncertain significance (VUCS) with only a slight reduction in XIAP protein

expression by flow cytometry. Functional evaluation of XIAP can be done

through stimulation of NOD2 with L18-MDP. This signaling pathway requires

XIAP for TNF transcription through NF-κB. (C,D) When examined, both these

cases show equally defective TNF production regardless of XIAP expression

revealing the VUCS is in fact a damaging mutation. LPS acts as a positive

control that signals through TLR4 demonstrating preserved cellular function in

patient cells.

evaluation to confirm and explore cytotoxic lymphocytes further
including: whether or not both NK and CTL are affected, if both
degranulation and cytotoxicity are defective, and if the majority
of mutations in that gene share the same phenotype. Genes in this
group include AP3D1, CTSC, FERMT3, GATA2, IRF8, MYH9,
ORAI1, and STIM1 (45, 47, 48, 100–107). From this list, we know
that not all persons for whomNK cell function is defective should
be labeled primary HLH. Moreover, a thorough evaluation is
hampered as many of publications lack NK degranulation
or cytotoxicity data, something we hope future endeavors will
address. These genes are thus currently not grouped together with
the “classical” primary HLH family because clinical HLH is not
usually the outstanding feature. Most are also very rare leading
to difficulty in performing large cohort evaluations of cytotoxic
lymphocyte activity.

THE FUTURE OF HLH DIAGNOSTICS

The HLH field has come some ways since the HLH-2004 criteria
were established (108). A European cohort of cases with clinical
HLH and PID other than defects in cytotoxicity found 63 cases,
80% of which were CGD and CID (109). Across the Atlantic,
another HLH cohort was comprised of only 19% primary HLH
disorders, with 58% of patients having other PIDs including
genes associated with inflammasome function (92). We reason
the high percentage of “non-classical-HLH” cases is a reflection
of improved HLH awareness within the community and should
be looked upon positively. These and other studies looking
into specific sensitivities of various HLH-2004 criteria have
found them wanting (110–112). The concern often cited is
the inability to distinguish between primary HLH, secondary
HLH, and other PIDs. A simple solution that can easily be
adopted today is increased screening. As can be concluded
from Table 1, many subtypes of primary HLH can be diagnosed
with good accuracy. As such, the fulfillment of HLH criteria
should act as an actionable gateway to seriously consider PID by
performing various laboratory tests as discussed. This in tandem
with advanced sequencing should more often than not provide
conclusive diagnosis for all the common primary HLH cases. As
previously mentioned, we believe the field of HLH diagnostics
will move toward a “multiplexing” of screening assays to more
quickly screen for multiple defects simultaneously.

The evaluation of gene expression signatures is an exciting
development that could help untangle some of the primary vs.
secondary HLH questions going forward. Unique interferon-
stimulated gene signatures have been found in systemic lupus
erythematosus differentiating it from rheumatoid arthritis and
control samples (113, 114). Other studies successfully used the
interferon score to identify various Mendelian Type-I IFN-
mediated autoinflammatory diseases (115, 116). Preliminary
work to define a HLH signature has also been performed with
favorable results (117, 118). While research on this area is in
its infancy today, we postulate a future where specific gene
expression fingerprints from tens or hundreds of genes would
be elucidated for the various shades of HLH. We could then
quickly and accurately segregate HLH into several subcategories
as well as deduce their disease status. The signatures could not
only act as a “precision” diagnostic tool but also afford us a
deeper cellular mechanistic understanding on the pathobiology
of various closely related diseases, and thus opportunities for
“precision” therapeutics. We are excited to see what the future
holds in terms of HLH diagnostics.
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