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Among the top priorities of the HIV field is the search for therapeutic interventions that can

lead to sustained antiretroviral therapy (ART)-free HIV remission. Although the majority of

HIV-infected persons will experience rapid viral rebound after ART interruption, there are

rare individuals, termed post-treatment controllers (PTCs), who demonstrate sustained

virologic suppression for months or years after treatment cessation. These individuals

are considered an ideal example of durable HIV control, with direct implications for

HIV cure research. However, understanding of the mechanisms behind the capacity of

PTCs to control HIV remains incomplete. This is in part due to the scarcity of PTCs

identified through any one research center or clinical trial, and in part because of the

limited scope of studies that have been performed in these remarkable individuals. In this

review, we summarize the results of both clinical and basic research studies of PTCs to

date, explore key differences between PTCs and HIV spontaneous controllers, examine

potential mechanisms of post-treatment control, and discuss unanswered questions and

future research directions in this field.
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INTRODUCTION

Within each medical field, there exist individuals who exhibit extreme responses to medical
treatment. As an example, individuals who have an unexpectedly dramatic response to cancer
therapy are termed “exceptional responders.” These exceptional responders represent an area
of intense research interest within the oncology field (1) and have already made important
contributions to the understanding of both basic tumor biology and drug development (2). In this
review, we focus on a group of exceptional responders within the HIV field, specifically individuals
who were treated with antiretroviral therapy (ART) and can subsequently maintain HIV remission
even when the ART is discontinued.

HIV infection is characterized by sustained viral replication and progressive decline in CD4
cell counts (3). ART is effective in suppressing viral replication and decreasing HIV-associated
morbidity and mortality, but it cannot completely eradicate all HIV-infected cells. Consequently,
HIV viral load rebounds rapidly after treatment interruption in most HIV patients (4, 5). However,
there are rare individuals, termed post-treatment controllers (PTCs), who are able to suppress the
virus for a prolonged period of time after treatment interruption (Figure 1). These individuals are
considered an ideal example of durable HIV control and have the potential to provide substantial
insight into the “natural” mechanisms of functional cure and sustained HIV remission (7).
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FIGURE 1 | Examples of post-treatment non-controller (NC) (A), and

post-treatment controllers (B,C). Gray shaded area represents time on

antiretroviral therapy. Adapted from CHAMP study (6).

Interest in ways to induce post-treatment control were initially
kindled by a report of an individual who was able to control
HIV without ART after undergoing several sequential treatment
interruptions (8) and in an in-depth report of 14 early-treated
PTCs reported in the VISCONTI study (7). There have been
a number of subsequent studies of PTCs with a wide range
of reported frequency amongst those who discontinue ART
(6, 7, 9–19). This variation in reported frequency of PTCs
may be attributed to different baseline characteristics of the
populations in which these studies were done, as well as the
heterogeneous definitions applied for defining this rare group of

HIV patients (18). In this review, we will summarize the most
recent findings on the clinical and immunological characteristics
of PTCs, differentiate them from HIV spontaneous controllers
(SCs), and discuss the role of PTCs in the search for strategies
toward HIV remission and cure.

POST-TREATMENT CONTROLLER
DEFINITIONS

Since the initial description of the post-treatment controller
phenotype, a number of observational studies and interventional
clinical trials have been performed to investigate the
characteristics of this rare group of patients and to determine
the mediators of post-treatment control. However, the
heterogeneities in study designs have made it challenging to
compare studies and to gain a clear grasp of the PTC population.
For example, the definition of post-treatment control has differed
dramatically between studies. Some studies have considered
virologic rebound to be a plasma viral load above 50 HIV-1 RNA
copies/ml after treatment interruption, while others have used
a threshold of 400 HIV-1 RNA copies/ml or 1,000 HIV-1 RNA
copies/ml for this purpose (Table 1, Supplementary Table S1).
The duration of viral control after treatment interruption has also
differed dramatically between studies and ranged from a median
of 6 month to more than 2 years (7, 9–32). Furthermore, the loss
of viral control was also defined differently between previous
studies. Some considered 2 consecutive viral loads above 50
HIV-1 RNA copies/ml to indicate the loss of post-treatment
control (8–10), while others considered 1–4 consecutive viral
loads higher than 400 HIV-1 RNA copies/ml as the definition
for viral rebound post-treatment interruption (7, 12, 16–18). Of
note, the largest PTC study to date has been the Control of HIV
after Antiretroviral Medication Pause (CHAMP) study, which
identified 67 PTCs through the pooled analysis of 14 clinical
studies from the AIDS Clinical Trials Group (ACTG) and other
North American cohorts (6, 14, 20–32). In this study, the PTCs
were defined as individuals who maintained viral loads ≤400
copies/mL at two-thirds or more of time points for ≥24 weeks
post treatment interruption (6).

DEMOGRAPHIC CHARACTERISTICS OF
PTCs

The median age of PTCs in these studies ranged from 27 to
46 years old. The majority of PTCs identified were male, likely
reflecting the sex distribution of the clinical trial participants
(6, 7, 9, 11, 12, 15–18). Intriguingly, there have been reports
that female gender may be associated with a higher chance
of post-treatment HIV control (10) and spontaneous control
(33, 34), highlighting the need for studies focusing on female
participants of treatment interruption trials. In addition, the
majority of PTCs have been reported by studies from North
America and Europe (6, 7, 9–12, 15–18) and little is known
about PTCs from outside of those regions. In an analysis of
SPARTAC trial participants who initiated ART during early
HIV infection, individuals with delayed viral rebound could be
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TABLE 1 | Post-treatment controller (PTC) frequency after treatment interruption reported from previously published studies.

References Cohort Timing of ART PTC, Total, N PTC Frequency (%) VF threshold copies/ml PTC duration

Hocqueloux et al. (9) ANRS Early 5 15.6 >50 75 months (median)

Goujard et al. (10) ANRS PRIMO Early 14 8.5 >50 4.5 years (median)

Lodi et al. (11) CASCADE Early 11 5.5 >50 24 months

Saez-Cirion et al. (7) VISCONTI Early 14 15.3 >400 89 months (median)

Stohr et al. (12) SPARTAC Early 4 2.4 >400 164–202 weeks

Van Gulck et al. (15) Secondary Controllers Chronic 4 >1,000 At least 6 months

Assoumou et al. (16) ANRS SALTO Chronic 7 4.2 >400 12 months (7 patients)

36 months (4 of the

7 patients)

Calin et al. (17) ULTRASTOP Early Chronic 1 10 >400 56 weeks

Perkins et al. (18) NHS Chronic 4 4.2 >400 267–1,058 days

Fidler et al. (19) CASCADE Early 22 2.8 >50 24 months

Namazi et al. (6)* CHAMP Early & Chronic 67 13 (Early)

4 (Chronic)

>400 24–804 weeks

*The CHAMP study includes participants from 8 AIDS Clinical Trials Group (ACTG) studies [ACTG 371 (20), A5024 (21), A5068 (22), A5102 (23), A5130 (24), A5170 (25), A5187 (26),

and A5197 (27)], the Montreal Primary HIV Infection Cohort (Montreal PIC) (28), the Seattle Primary Infection Program (SeaPIP) (13, 29), the University of California San Diego Primary

Infection Cohort (UCSD PIC) (14), a National Institutes of Health (NIH) therapeutic vaccine trial (30), the University of California San Francisco (UCSF) OPTIONS study (31), and the

Ragon HIV Controllers cohort (32).

ART, Anti Retroviral Therapy; VF, Viral Failure.

identified from participants enrolled in South Africa and Uganda
(35). Furthermore, African participants tended to have lower
pre-ART viral load and integrated HIV DNA levels, and after
treatment interruption, Africans appeared to experience a longer
duration of viral remission than non-Africans in the SPARTAC
study (12, 36). These results provide a strong rationale for
additional studies of PTCs fromAfrica and other regions to assess
the impact of race andHIV subtype on barriers to HIV remission.

CLINICAL AND IMMUNOLOGICAL
CHARACTERISTICS

Historically, the majority of PTCs have been identified in studies
of patients who initiated ART during early HIV infection (7, 9–
12, 20, 26, 29–31, 37). However, PTCs have also been identified in
participants who were treated during chronic HIV infection (15,
16, 18, 21, 22, 25, 27, 38). The CHAMP study directly compared
the frequency of post-treatment control between individuals who
initiated ART during early and chronic HIV infection. This study
found that individuals who were treated during early infection
were far more likely to meet the PTC criteria after treatment
interruption compared to those treated during chronic infection
(13 vs. 4%, P < 0.01, Figure 2) (6).

At the time of treatment interruption, CD4 cell counts for
the PTCs were generally quite high with a median of 720 to
1,429 cells/mm3 amongst the studies (7, 9–12, 15–19). After ART
discontinuation, PTCs can exhibit a range of viral load dynamics
with a subset demonstrating persistent viral load suppression
(Figure 1B) while others experience early viral rebound before
subsequently regaining viral control (Figure 1C). In the CHAMP
study, ∼45% of PTCs had early viral load peaks ≥1,000 HIV-1
RNA copies/mL and 33% had early viral load peaks≥10,000HIV-
1 RNA copies/mL amongst those with intensive weekly viral load
monitoring (6).

FIGURE 2 | Frequency of post-treatment controllers (PTCs) identified in early-

vs. chronic-treated participants of the CHAMP study (6). NCs, post-treatment

non-controllers.

The comparison of previously published PTC studies has also
been difficult due to heterogeneity in the inclusion of PTCs with
varying duration of viral control. To place the PTC studies in
context, the median time of HIV rebound after ART interruption
for post-treatment non-controllers (NCs) is ∼3–4 weeks and
only a small proportion of non-controllers are able to maintain
viral suppression to 12 weeks or beyond (4). The VISCONTI
study was one of the earliest and most comprehensive of the
PTC studies (7). The inclusion criteria for the 14 VISCONTI
participants were individuals who were treated during early
HIV infection and maintained viral suppression <400 HIV-
1 RNA copies/mL for at least 2 years after ART interruption.
To assess the durability of HIV remission, the CHAMP study
used a more inclusive definition of post-treatment control (viral
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suppression for 24 weeks). In this analysis, the median duration
of post-treatment control was a little over 2 years and the
proportion of PTCs who remained virologically suppressed in
years 1–5 were 75, 55, 41, 30, and 22%, respectively (6). These
results show that post-treatment control is not always durable
and that PTCs will require continued clinical and virologic
monitoring. These results highlight the heterogeneity in the post-
treatment controller phenotype, with some individuals losing
control within 1 year and others maintaining viral suppression
for more than 10 years (6, 7). While the latter group may be the
best model of sustained HIV remission, uncovering factors that
lead to the loss of viral control in PTCs may also provide insight
on the mechanisms behind their HIV remission. It should be
noted though, that the rates of viral suppression reported in the
PTCs are in the absence of any additional interventions and that
strategies to augment key HIV-specific immune responses have
the potential to improve the durability of post-treatment control.

COMPARING SPONTANEOUS AND
POST-TREATMENT CONTROLLERS

Without ART,most HIV-infected individuals will have high levels
of HIV-1 RNA and experience progressive absolute CD4+ T-cell
decline, clinical immunodeficiency, and death (39). However, a
small proportion of those infected with HIV can spontaneously
maintain very low levels of plasma viral load without the
use of antiretroviral therapy (ART) (40, 41). The existence of
these HIV spontaneous controllers (SCs), also known as elite
controllers (ECs), represented the first indication that the goal
of drug-free HIV remission is possible. Although these SCs have
low or even undetectable viremia by conventional viral load
assays, they generally harbor replication competent virus and
have evidence of ongoing viral replication and evolution (42–
45). Through robust genetic and functional studies, the most
consistent mediator of spontaneous HIV control appears to
be through the effects of cytotoxic CD8T lymphocyte (CTL)
responses (46, 47), and the protective effects of certain HLA
alleles, such as HLA B∗27 and B∗57 (48–50). Similar to the PTCs,
SCs appear to be a heterogeneous population of individuals with
respect to the level and durability of HIV control (51, 52). While
some SCs can maintain viral loads <50 copies/ml in absence of
ART (i.e., elite controllers [ECs]) (41, 53). Viremic controllers
(VCs) can maintain a less robust level of viral suppression, with
detectable viral loads below 2,000 HIV-1 RNA copies/mL in the
absence of ART (54).

However, even amongst the ECs, there is evidence of
heterogeneity in immune responses (49, 55), and a subset will
lose viral control and experience immunological and clinical
progression over time (56–58). Low Gag-specific CD8T cell
response, high levels of inflammatory cytokines and high viral
diversity have been reported as factors that predict loss of viral
control in ECs (51).

Due to the rarity of individuals undergoing treatment
interruption, PTCs have for a long time not been recognized
as a separate entity from SCs. While it is possible that some
PTCs treated during early HIV infection may have achieved
spontaneous control in the absence of ART, there are now several

lines of evidence that PTCs are indeed distinct from HIV SCs:
(1) CTL responses have been found to be far weaker in PTCs
compared to SCs (7); (2) Unlike SCs, PTCs do not appear
to be enriched in protective HLA alleles (3, 10, 59), with the
VISCONTI study reporting a high frequency of HLA alleles
previously associated with less favorable clinical outcomes (7);
(3) PTCs frequently present with symptomatic acute retroviral
syndrome and have pre-ART viral loads that are similar to that of
non-controllers, but significantly higher than that of HIV SCs (6,
7); and (4) Results from both the SPARTAC and CHAMP studies
have demonstrated an ART-specific effect as early ART initiation
significantly increases the chances of achieving post-treatment
control (6, 35). Together, these findings support the concept that
PTCs are largely distinct from SCs and represent individuals who
would not have been able to achieve HIV remission without the
period ART.

MECHANISMS AND PREDICTORS OF
POST-TREATMENT CONTROLLERS

While the exact mechanism behind the ability of PTCs to
maintain HIV remission remains unclear, there is evidence
for an unusual degree of reservoir restriction and relatively
weak HIV-specific CTL activity. In prior studies of ART-treated
individuals, the HIV reservoir is primarily maintained within
memory CD4T cells, especially those of central memory (TCM)
and transitional memory (TTM) cells (60). In prior treatment
interruption studies, smaller total and active HIV reservoirs
before treatment interruption have been associated with delayed
HIV rebound after treatment interruption. Specifically, lower
levels of pre-treatment interruption HIV proviral DNA have
predicted delayed viral rebound (16, 61), as has lower levels of
cell-associated HIV RNA (4, 30). In PTCs, levels of HIV DNA
and cell-associated RNA have also been found to be low in
some studies (10, 15) but not others (38). In the VISCONTI
analysis, the predominant cellular subset contributing to the
HIV reservoir has been reported to be the TTM cells (7), similar
to that found in other early treated patients (62) and suggest
that the low frequency of HIV infection within the longest-
lived CD4T cells (naïve and central memory) may contribute
to post-treatment control. In studies of SCs, there have been
reports that the HIV reservoir is also restricted within the
TCM cell subset (63), although this has not been replicated in
other studies (7). In ART-treated individuals, the vast majority
of HIV proviral DNA are defective and until recently, the
proviral landscape within PTCs had not been investigated.
In an analysis of ACTG PTCs, Sharaf et al. reported near-
full length proviral sequencing results showing that PTCs had
an ∼7-fold smaller HIV reservoir compared to NCs prior to
the ATI, but that some PTCs had relatively large fractions of
intact proviruses (64). In a separate case report, post-treatment
control could be maintained despite the presence of a clonally-
expanded population of HIV-infected cells harboring replication-
competent virus (65). Overall, these results demonstrate that
PTCs have a restricted HIV reservoir, especially within longer-
lived cellular subsets, which may contribute to their ability
to maintain HIV remission. Additional studies are needed to
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explore the role of viral fitness (15), clonal expansion and the
integration sites of intact proviruses in HIV remission.

Primate studies have also provided insight on strategies for
delaying viral rebound. In particular, early ART therapy restricts
the seeding of SIV reservoirs and lead to delayed timing of
viral rebound (66, 67). Similarly, early initiation of ART has
been associated with a significantly increased chance of achieving
post-treatment control both within CHAMP study and others
(6, 19). Prior studies of early ART treatment have found that it
is effective in dramatically reducing the size of the HIV reservoir
(68–71). In addition, early ART may preserve HIV-specific T cell
responses (72–74). However, the VISCONTI study and others
have shown that HIV-specific CD8T cell responses in PTCs are
weak compared to either SCs or viremic individuals (7, 75, 76).
These results are consistent with reports that pre-ART viral loads
are generally quite high in PTCs (6, 7) and that they do not
tend to harbor protective HLA alleles (7, 38, 59, 75). However,
other studies have not found significant differences in T cell
responses between PTCs and SCs (15). In addition, there are
reports from the VISCONTI study that early HIV treatment
in PTCs preserves robust poly-functional CD4+ responses to
HIV (77). Finally, there have been several reports that early
ART initiation in infants may also lead to long-term HIV
remission (76, 78, 79). In the first reported case, known as the
“Mississippi baby,” the infant initiated ART 30 h after delivery
until 18 months of age. ART remission was achieved without
detectable HIV-specific antibody or T cell responses (78), but
viral rebound occurred∼2 years after ART discontinuation (80).
In the second case, the infant became infected despite 6 weeks
of Zidovudine prophylaxis after delivery and initiated ART at 3
months of age. ART was discontinued between 5 and 7 years of
age and viral control has been documented for∼12 years despite
several transient viral blips, a detectable replication-competent
reservoir, and weak HIV-specific CD8+ T cell responses (76).
The final report is that of a child who initiated 40 weeks of
ART at day 61 after delivery as part of the Children with HIV
Early antiretroviral therapy (CHER) trial (81, 82). The child
has maintained viral suppression for almost 9 years after ART
discontinuation, with detectable HIV DNA and residual viremia,
low level of HIV-specific antibody and weak T cell response (79).
Importantly, none of these children harbored the protective HLA
class I alleles B∗27 or B∗57 associated with spontaneous viral
control and levels of immune activation during HIV remission
were low in all three children (76, 78, 79). These cases also
highlight that post-treatment control in children can occur with
a range of ART initiation times (between 30 h and 2–3 months
after delivery), HIV subtypes (B, H, and C in the three cases,
respectively), and duration of ART (10 months to 6 years)
(76, 78, 79). Although these studies support the possibility of
HIV remission in early-treated children, the frequency of post-
treatment control appears to be rare as only 1 of 227 children in
the CHER trial achieved this outcome (79) and smaller studies
of treatment interruption in children have failed to detect any
PTCs (83).

Early ART initiation has also been shown to preserve
HIV-specific humoral immunity by preserving memory B
cell numbers and function (84, 85). There are reports from
a small case series that PTCs may harbor high levels of

autologous neutralizing antibodies (15), although that has not
been replicated in other studies (8, 75).

KNOWLEDGE GAPS AND UNANSWERED
QUESTIONS

Among the top priorities of the HIV field is the search for
therapeutic interventions that can lead to sustained ART-
free HIV remission (41). Understanding the mechanisms and
predictors of post-treatment control would represent a key step
toward that goal as PTCs represent a realistic model for the
functional cure of HIV infection. Only in the past few years have
interest heightened in the study of PTCs and a host of important
questions remain unanswered. First, it has become clear that
early initiation of ART is not only associated with personal
health and public health benefits but may also lower the barrier
to HIV remission and post-treatment control. However, the
optimal timing of ART during early HIV infection is unknown.
It is interesting to note that the vast majority of PTCs in the
VISCONTI and CHAMP studies initiated ART during Fiebig
stages III-V (6, 7) and that a small treatment interruption study
of individuals who initiated ART during Fiebig I did not identify
any PTCs as all individuals demonstrated rapid viral rebound
(86). While extremely early initiation of ART will limit the extent
of HIV reservoir seeding (87), additional research is needed to
assess whether a slight delay in ART initiation allows for the
further maturation of the HIV-specific immune response that
may be important for post-treatment control.

As noted above, there is increasing evidence that PTCs do
not appear to mediate HIV suppression through the same CTL
and HLA-mediated mechanisms as SCs. While important, the
favorable genetic profiles of SCs have not been easily translatable
to therapeutics and the elucidation of the mechanisms of control
in PTCs may have a greater impact on the design and evaluation
of the next generation of HIV therapeutics. Studies of the HIV
reservoir in PTCs have revealed the restricted size of the reservoir,
including the intact proviral genomes (64). This, however, does
not fully explain post-treatment control, especially given our
experience in hematopoietic stem cell transplant participants
who can dramatically lower their peripheral reservoir size, but
are unable to maintain HIV remission (88). Additional studies
are needed to assess potential differences in the distribution
of infected cell types (7), cellular transcription environment,
integration sites, and other factors that could contribute to the
maintenance of a “deeper” state of viral latency (89).

Finally, little is known about the clinical implications of post-
treatment control. While SCs can maintain low or undetectable
viremia in the absence of ART, the ongoing viral replication
and immune response in SCs may be associated with adverse
consequences, including the progressive loss of CD4+ T cells in
some individuals, increased T cell activation and inflammation
(90–93). Chronic immune activation and systemic inflammation
has been associated with poor clinical outcomes in non-
controllers (94–97) but also in SCs, who are reported to have an
increased risk of cardiovascular disease (98) and hospitalization
(58), although the extent of this risk is still a matter of some
uncertainty (99, 100). There is some evidence that PTCs may
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not exhibit the same heightened levels of immune activation
as SCs (7, 10), but additional studies are needed to confirm
these findings and to assess the long-term clinical implications
of sustained HIV remission.
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