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The functions of pentraxins, like C-reactive protein (CRP), serum amyloid protein P (SAP)

and pentraxin-3 (PTX3), are to coordinate spatially and temporally targeted clearance

of injured tissue components, to protect against infections and to regulate related

inflammation together with the complement system. For this, pentraxins have a dual

relationship with the complement system. Initially, after a focused binding to their targets,

e.g., exposed phospholipids or cholesterol in the injured tissue area, or microbial

components, the pentraxins activate complement by binding its first component C1q.

However, the emerging inflammation needs to be limited to the target area. Therefore,

pentraxins inhibit complement at the C3b stage to prevent excessive damage. The

complement inhibitory functions of pentraxins are based on their ability to interact with

complement inhibitors C4bp or factor H (FH). C4bp binds to SAP, while FH binds to

both CRP and PTX3. FH promotes opsonophagocytosis through inactivation of C3b to

iC3b, and inhibits AP activity thus preventing formation of the C5a anaphylatoxin and the

complement membrane attack complex (MAC). Monitoring CRP levels gives important

clinical information about the extent of tissue damage and severity of infections. CRP is a

valuable marker for distinguishing bacterial infections from viral infections. Disturbances

in the functions and interactions of pentraxins and complement are also involved in a

number of human diseases. This review will summarize what is currently known about

the FH family proteins and pentraxins that interact with FH. Furthermore, we will discuss

diseases, where interactions between these molecules may play a role.

Keywords: CRP–C-reactive protein, complement factor H, PTX3, innate, age-related macular degeneration (AMD),

factor H-related protein, complement C1q, cholesterol

INTRODUCTION

As a part of the host defense, the immune system enables us to cope with unwanted materials
threatening our body. Innate immunity acts stereotypically and rapidly (in minutes to hours) to
recognize and clear away unwanted materials, while the adaptive immunity generates antigen-
specific responses during a longer time course (days to weeks). The central players in the
humoral arm of innate immunity include complement (C) system components and soluble pattern
recognition molecules, such as pentraxins and collectins. The interplay between these components
has a crucial role in the recognition and clearance of both foreign and endogenous unwanted
particles from the human body. Any disturbances in these interactions may have a significant
impact on the immune response and health.
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The complement system was first described in 1888–1889,
when both George Nuttall and Hans Buchner independently
demonstrated that blood serum was able to kill bacteria.
Buchner called this activity “alexin.” However, due to the
“complementing” function, 10 years later the system was named
“complement” by Paul Ehrlich. Jules Bordet observed that for
bacterial killing serum contains a heat-stable component, i.e.,
antibodies, and a heat-labile component, complement. Within
the next 50 years it was generally believed that complement
requires antibodies for activation. In 1954, however, Louis
Pillemer demonstrated that the complement system can be
activated independently from antibodies by the so called
“properdin” system, thereby playing a central role in innate
immunity (1). Because this pathway does not require antibodies
nor humoral lectins for activation, like the classical (CP) and
lectin pathways (LP), it was later named as the alternative
pathway (AP). The AP can act as a separate pathway and as
an amplification system of activation triggered by the other
pathways. We now know that the first identified heat-labile
components, C1 subcomponents C1r and C1s, belong to an
activation cascade containing over 40 different molecules. The
heat-labile components include also other serine proteases of
the C system, like C2, factor B, and the lectin-associated
serine proteases (MASPs). Many of the complement factors also
interact e.g., with the coagulation, fibrinolytic, and kinin system
components. Complement also closely links the innate and
adaptive immune systems together e.g., in antigen recognition
and delivery to the adaptive immune system players: dendritic
cells, follicular dendritic cells, macrophages, B cells and T cells
(2). Importantly, the immune system also maintains tolerance
and controls excessive inflammatory reactions.

A unique and separate system of targeted complement
activation involves a group of evolutionarily relatively old
molecules, the pentraxins. C-reactive protein (CRP), serum
amyloid P component (SAP), and pentraxin-3 (PTX3) belong
to the pentraxin family of pattern recognition molecules. The
listed three members have been shown to interact with distinct
C components. The first interaction between the C component
C1q and CRP was described by Volanakis and Narkates (3).
Thereafter, an interaction between SAP and C1q was soon
reported (4). Years later, PTX3 was found to bind C1q, as well (5).
These data and further studies have shown that pentraxins play
a crucial role in inflammation in directing C activation toward,
for example, foreign microbes, apoptotic cells and injured tissue.
They interact with C components at different stages of the
activation cascade. It has been generally accepted that, together
with the C system, they contribute to host defense, tissue
clearance and regulation of inflammation.

In addition, but very importantly, after activating the
complement classical pathway the pentraxins regulate further
activation to prevent excessive tissue damage and to coordinate
targeted clearance of the injured tissue components. The
complement inhibitory function of pentraxins is partially based
on their ability to interact with factor H (FH), a complement
regulator that interferes with AP activity at the C3b stage and
thus prevents formation of the complement membrane attack
complex C5b-9 (MAC). Pentraxins and C components such as

C3b, C5b-9, and FH are often found in pathological deposits.
Changes in their temporal behavior correlate and associate with
the same diseases (6–8). Mutations or polymorphisms in these
molecules can influence the interactions and have an impact on
the progression of the diseases (6–8). The roles of FH, pentraxins
and the interactions between these molecules during the course
of inflammation have been the subject of many investigations.
Pentraxins have been considered either as inflammatory or
as anti-inflammatory factors. Thus, their potential causal or
protective roles in various diseases still remain to be sorted out.
This review summarizes studies on the interactions between
pentraxins and the complement system, We will highlight
current observations and discuss aspects, where more research
is needed.

THE COMPLEMENT SYSTEM

The complement cascade can be activated through three
pathways, the classical, lectin and alternative pathways
(Figure 1). C3 is the key component of all three pathways,
since all pathways converge on it, and major effector functions of
complement are mediated through activation of this molecule.

Alternative Pathway
Distinct from the CP and LP, the AP is activated spontaneously,
because C3 is continuously hydrolyzed at a low rate in human
plasma to form a metastable C3(H20) without cleavage of C3
to C3a and C3b (Figure 1). C3(H20) is able to bind factor B in
a Mg2+-dependent manner exposing it to cleavage by factor D
thus forming the C3(H20)Bb complex, the initial C3 convertase,
in the fluid phase. This enzyme cleaves fluid phase C3 to C3a
and C3b, and the freshly formed C3b can then target any nearby
surface that has available hydroxyl or amino groups for covalent
attachment. Soluble or fluid phase associated C3bBb enzyme
has a strong catalytic activity for cleaving new C3 molecules to
C3a and C3b and thus to amplify AP activation. The smaller
cleavage fragment, C3a, is released into solution and acts as an
anaphylatoxin and as a chemotactic and activating factor for
leukocytes (2).

A key to the properly directed and efficient complement attack
by AP is the ability to discriminate the target cells from host
cells. In general, on the host cell surface the C3b molecules
are rapidly inactivated, while on foreign cells and particles the
deposited C3b molecules remain active and can lead to rapid
amplification of AP activation. The C3 convertases (C3bBb) also
activate the terminal complement cascade by cleaving fluid phase
C5. Additional nearby C3b molecules may be needed for the
attraction and proper orientation of C5 molecules. C5 activation
leads to the release of the strongly proinflammatory chemotactic
and anaphylatoxic protein fragment C5a and assembly of the
potentially lytic C5b-9 membrane attack complex (MAC) onto
the target membrane. Therefore, the fate of C3b deposits on a cell
membrane dictates whether complement activation eliminates
the target or not. Because of the strong biological activities of
the C system, its activation needs carefully directed and efficient
regulation at different times, occasions and locations. For this,
additional molecules like the pentraxins are needed.
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FIGURE 1 | Complement activation with emphasis on alternative pathway amplification. Complement proteins interact with each other in sequence leading to

cleavage of C3 to C3b. Activation on a suitable target leads to opsonization (coating with C1q, C4b, C3b, or iC3b), release of chemotactic and anaphylatoxic

fragments (C5a, C3a) and formation of the membrane attack complex (MAC). C4bp inhibits the CP C3 convertase C4b2a. The alternative pathway gets amplified,

when C3 convertase (C3bBb) activates additional C3 molecules by cleavage to C3b to generate new C3 convertase enzymes. This amplification step efficiently

opsonizes the target with C3b molecules and its inactivation fragment iC3b. Factor H is the main inhibitor of the amplification loop. Its function is to promote C3b

inactivation, inhibit binding of factor B to C3b and accelerate the dissociation of the AP C3 convertases.

FACTOR H AND FACTOR
H-RELATED PROTEINS

The molecular mechanism, how our own cells are protected
from the AP attack, is based on the recognition of C3b on host
cells by factor H (FH), the main AP regulator in plasma and
other body fluids. FH is an elongated molecule composed of
20 short-consensus repeat (SCR) or complement control protein
(CCP) domains. The N-terminal domains 1-4 are responsible for
the regulatory activity, while the C-terminal domains 19-20 are
responsible for simultaneous recognition of C3b (9) and either
sialic acids or glycosaminoglycans present on self surfaces (10).
In addition, domains 6-7 can bind to surface polyanions (11, 12),
As a result of these interactions, FH blocks AP activation and
amplification on host structures. FH does this by acting (i) as a
cofactor for factor I in the proteolytic cleavage of C3b to iC3b, (ii)
by inhibiting the formation or (iii) by promoting the decay of the
surface-bound C3bBb convertases (Figure 1) (13–15).

The essential role of FH in keeping spontaneous complement
activation in check is obvious. It is based on the clinical
consequences of CFH gene mutations or anti-FH autoantibodies
that prevent full function of FH (16–18). Although the initiation
of AP activation in the fluid phase relies on a spontaneous
low-grade process without a need for a trigger, the activation
will be enhanced under suitable conditions. Disease-related FH
abnormalities usually lead to an imbalance between AP activation
and regulation in the fluid phase or to amistargeted attack against

endothelial and blood cell surfaces (19). On surfaces recognized
as activators AP amplification readily takes place, because the
generated C3b molecules can bind covalently to the surface in
the immediate neighborhood of the activating C3 convertase.

In addition to FH, the factor H family includes an alternatively
spliced variant of FH, called factor H-like protein (FHL-1), and
five factor H-related proteins (FHR-1 to 5) (Figure 2). While
FHL-1 contains the first seven domains of FH (plus an extra 4
unique amino acids) and possesses AP regulatory activity, FHRs
in general lack these regulatory domains. Therefore, FHRs have
no strong direct regulatory activity, although they all interact
with C3b (20). Instead, they can compete with the binding of
the C-terminus of factor H and thereby regulate its activity with
a net result to promote complement activation (21). The most
homologous regions between FH and the FHRs are the 2 most
C-terminal regions (19-20 in FH), which bind to the C3d region
of C3b (22).

The gene cluster coding for FH and FHR-proteins is located on
chromosome 1q32. The full-length FH is encoded by 22 exons,
while the sequence for FHL-1 stops after alternative splicing at
exon 10. The CFHR genes are located downstream from the CFH
gene (23).

There are several known genetic variations and mutations
within the FH gene cluster. Of these, some have no observable
effect on the phenotype, while others are associated with
diseases or other harmful effects on the carrier. Most of
the disease-related mutations in FH are located within the
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FIGURE 2 | Schematic structures of representative factor H family proteins, their interactions with pentraxins CRP and PTX3 and disease associations. The pentraxin

interacting domains in FH family proteins (marked above) display disease-associated polymorphisms that alter the protein/pentraxin interactions. The substituted

amino acid are marked below. The asterisk indicates the pentraxin, whose binding to the protein is affected by the polymorphism. FHR-2 and FHR-3 are not shown,

because their plasma concentrations are low. AMD, Age-related Macular Degeneration; DDD, Dense Deposit Disease; aHUS, atypical Hemolytic Uremic Syndrome;

PTX, pentraxin; CRP, C-reactive protein; mCRP, monomeric CRP; pCRP, pentameric CRP.

carboxyl-terminal domains 19-20. They are associated with the
atypical hemolytic-uremic syndrome (aHUS) (24). Mutations in
the amino-terminus are associated with dense deposit disease
(DDD), earlier called membranoproliferative glomerulonephritis
type II (MPGN) and rarely also with partial lipodystrophy (PLD).
Some polymorphisms have been found to be associated with age-
relatedmacular degeneration (AMD), which is themost common
cause of visual loss in the elderly people in the industrialized
countries. The strongest genetic risk factor for AMD is the Y402H
(Tyr402His) polymorphism, which is located in the domain
seven (CCP7) of FH (25–27). In addition to polymorphisms
and mutations, also autoantibodies against FH can predispose to
diseases similar to aHUS or DDD (28, 29). Individuals with factor
H deficiency have an over 1,000-fold increased risk to develop
meningococcal meningitis, which is due to a secondary C3 and
C5 deficiency following overactivation of the alternative pathway
in the fluid phase.

FH INTERACTIONS WITH PENTRAXINS

Pentraxins
Pentraxins (PTX) are innate pattern recognition molecules,
some of which are produced as a response to infection
and tissue damage. The name pentraxin comes from the
ability of at least some of these molecules to form multimers
with five nearly identical subunits. Pentraxins have multiple
functions. The best characterized function is activation of the
classical pathway of complement on certain microbes and
necrotic cells, and thereby contribution to removal of cellular
debris. Further observations also imply antibody-like functions,
which in evolution would predate the emergence of adaptive

immunity (30). The pentraxins are divided into two groups,
the short pentraxins: C-reactive protein (CRP) and serum
amyloid P component (SAP) and long pentraxins: neuronal
PTX1 (NPTX1), neuronal PTX2 (NPTX2), PTX3 and PTX4.
All PTXs contain an approximately 200 amino acid-long PTX
domain, while the long PTXs have an additional N-terminal
domain. The neuronal pentraxins, NPTX1 and NPTX2, are
expressed particularly, but not exclusively, in neurons, They have
been suggested to be involved in the clearance of synaptic debris
during neuronal synapse remodeling (31). However, no role in
complement activation by these molecules has been reported.
In contrast, CRP, SAP, and PTX3 are all known to activate
complement, interact with multiple complement components
and thereby contribute to innate immunity. Sometimes, they have
been referred to as ancestors of antibodies (Figure 3).

SAP shares approximately 51% sequence identity with
CRP, which supports the hypothesis that SAP and CRP are
products of an earlier gene duplication event. SAP is the
glycoprotein precursor of the amyloid P protein. SAP occurs
in association with amyloid deposits, including those associated
with Alzheimer’s disease (34). SAP binds C1q to activate the CP
similarly as CRP and PTX3. However, according to the current
knowledge, SAP does not interact with any of the FH family
proteins. Instead, SAP binds the fluid phase regulator of the CP,
C4b-binding protein (C4bp), and plays a potential role in the
regulation of CP (35).

CRP was originally named by its ability to bind to the
phosphocholine (PC) part of the C-type polysaccharide of
pneumococcus in a calcium-dependent manner. It also binds
on carbohydrate structures of many other microorganisms such
as fungi, yeasts, bacteria and parasites. Moreover, it recognizes

Frontiers in Immunology | www.frontiersin.org 4 August 2019 | Volume 10 | Article 1750

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Haapasalo and Meri Complement and Pentraxins

FIGURE 3 | Binding of the short pentraxin CRP (32) and the long pentraxin PTX3 (33) to factor H. Multiple interactions between the molecules exist.

modified low-density lipoproteins (LDL) and necrotic and
apoptotic cells, and thereby participates in the phagocytosis and
clearance mechanisms of the innate immune response (36). One
of the specific targets for CRP in LDL particles is cholesterol
itself, to which CRP binding was found to be dependent on
the 3beta-OH group (37). CRP is produced by hepatocytes as
a response to infection or tissue damage, mainly in response to
the proinflammatory cytokine IL-6. CRP is therefore commonly
used as a non-specific laboratory indicator for infection, systemic
inflammation, and tissue damage (34). Highly elevated levels are
usually seen in serious bacterial infections, but not so commonly
in viral infections. Binding of CRP to apoptotic and necrotic cells
enhances their opsonization and phagocytosis by macrophages.

Importantly, CRP has been observed to bind the alternative
complement pathway inhibitor factor H (FH) to potentially
recruit it to areas of tissue damage (32). This would limit AP
activation and excessive inflammation in these areas and promote
a non-inflammatory clearance of dying cells (38) (Figure 4).With
the help of complement, CRP thus demarcates the area destined
to clearance.

In addition to FH, also FHR-1, FHR-4, and FHR-5 (Figure 2),
have been shown to bind CRP on necrotic cells (39–41). When
compared to full length FH and FHL-1, the FHRs, however (with
the possible exception of FHR-5), possess no direct complement
regulatory activity. It has been suggested that FH, FHL-1, and
different FHRs possess different binding properties to CRP
than FH. FHL-1 domains 6-7, FHR-1 domains 3-5, and FHR-5
domains 3-7 preferentially interact with the monomeric (mCRP),
while FHR-4 domain 1 mainly binds the pentameric form of
CRP (pCRP) (39, 41–43). Both CRP forms are known to exist
in humans. They have been shown to possess similar functions
in modulating CP activation on necrotic cells, but they differ
in their relative abundance in different tissues. The pCRP is
present in plasma, while the mCRP is detected mainly on
the surfaces of damaged cells and platelets (44). While the
molecular function of the FH-CRP interaction is known, it is
still unclear whether binding of FHRs to CRP will enhance

C activation and/or promote CRP-mediated opsonization. The
FHRs, however, appear to play a particular role in C activation,
as exemplified by the association of several reported genetic
variations, e.g., FHR deletions and hybridmolecules, with various
diseases (45).

Unlike CRP and SAP, PTX3 has been described as an octamer
composed of eight identical subunits. It is produced locally in a
number of tissues and expressed by several cell types, including
fibroblasts, monocytes, macrophages, myeloid dendritic cells
and neutrophils (3). It can opsonize target surfaces, such as
fungal (Aspergillus) and bacterial pathogens and apoptotic cells
to initiate complement activation. PTX3 binds C1q, mannan-
binding lectin, M-ficolin (ficolin-1) and L-ficolin (ficolin-2), and
thereby activates both the CP and LP (36). Binding of PTX3 to
C1q is calcium-independent, as opposed to CRP and SAP that
both require this divalent cation for their interaction with C1q
(34). In addition, PTX3 binds FH, and FHL-1 to inhibit excessive
complement activation (27). Also, FHR-1 and FHR-5 have been
observed to bind PTX3. By competing out factor H FHRs may
actually promote complement activation.

ALTERATIONS IN FH-PENTRAXIN
INTERACTIONS AND THEIR POSSIBLE
DISEASE ASSOCIATIONS

Recently, it has become clear that AP dysregulation is a
central event in the development of several complement related-
diseases involving factor H mutations or polymorphisms in
domains FH1-5, FH7, and FH19-20 (Table 1). While mutations
in FH19-20, or autoantibodies against this region, are associated
with atypical hemolytic uremic syndrome (aHUS), the Y402H
polymorphism in domain 7 is associated with age-related
macular degeneration (AMD) (54, 55) and dense deposit
disease (DDD) or C3-glomerulonephritis (C3GN) (26). DDD
and C3GN are collectively referred to as C3 glomerulopathy
(C3G), which is linked to mutations in the N-terminus of
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FIGURE 4 | Role of CRP and FH in promoting clearance of dying cells. On viable cells (Left) accidentally deposited C3b is rapidly inactivated to iC3b and no C

activation takes place. On surfaces, from where protective polyanions, like sialic acids, are lost as a consequence of cell damage, factor H binding is decreased

(Right). This together with CRP-mediated classical pathway activation leads to complement activation. During a prolonged time course, the large number of

deposited C3b molecules, will, however, be inactivated to iC3b with the help of factor H recruitment by CRP. Deposited iC3b molecules promote phagocytosis of the

debris without leading to further activation of the terminal pathway.

TABLE 1 | Diseases related to factor H mutations or variants that have potential effects on interactions with CRP, PTX3, C3b or polyanions.

Disease Factor H or FHR

polymorphisms/mutations

Interactions affected Functional effect of disease-related variant References

AMD FH Y402H (domain 7)

FHL-1

CRP, polyanions Insufficient clearance of drusen, inflammation (46–50)

aHUS FH mutations in domains 19-20 PTX3, C3b/d, sialic

acid

C attack against vascular and blood cells,

C-mediated inflammation

(24, 27, 51)

Atherosclerosis FH I62V (associated with high

MMP-8 levels)

C3b Increased release of MMP-8 from neutrophils (52)

DDD FH domains 1-5 (e.g., R83S) C3b AP overactivation in the fluid phase, C3b deposition

on basement membranes

(51, 53)

FH Y402H (domain 7) CRP, polyanions Inflammation (26)

C3GN FHR abnormalities (e.g., hybrids),

FHR5

CRP, C3b Competition with factor H, AP dysregulation (21)

FH Y402H (domain 7) CRP Inflammation (26)

AMD, age-related macular degeneration; aHUS, atypical hemolytic-uremic syndrome; DDD, dense deposit disease; C3GN, C3 glomerulonephritis; FHR, factor H-related protein; AP,

alternative pathway.

FH or to FHR abnormalities. Interestingly, the AMD/DDD-
associated domain 7 of FH mediates binding to CRP as well as
to glycosaminoglycans (56). In addition to this short pentraxin,
the long pentraxin 3 (PTX3) interacts with FH (33). However,
unlike CRP binding to FH, the PTX3 binding to FH is not
affected by the AMD-associated polymorphism. This implies
different molecular functions for these two pentraxins within
the complement regulatory system. Because CRP and PTX3 are

both acute phase proteins, while FH is the main regulator of the
AP, these interactions most likely are relevant during episodes of
inflammation and/or tissue injury.

Age-Related Macular Degeneration (AMD)
AMD is a progressive blinding disease that makes the individual
unable to perform basic activities requiring vision, such as
reading, recognizing faces, and driving. Globally, AMD affects
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170 million people. Therefore, it is the leading cause of visual
disability in the industrialized countries. While age is the
strongest risk factor for AMD, several genetic risk factors have
also been reported. Of these, theY402H polymorphism in FH is
the strongest (6).

FH binds CRP at three sites, one located at domain 7, the
second within domains 8 to 11 (32) and the third in domains
19-20 (57). CRP is thought to play an important role in helping
to direct CP activation and suppressing AP activation at the site
of tissue damage and during local inflammation. While CRP
induces CP activation and C3b formation on apoptotic and
damaged cells by recruiting C1q, the binding of FH to CRP blocks
further AP activation and inflammation caused by accelerated C
attack (Figure 5). Therefore, blocking of AP at this stage is crucial
to prevent excessive damage of autologous cells and tissues at the
site of inflammation.

An aberrant complement regulation may contribute to the
etiology of inflammatory diseases, as exemplified by the strong
association of the FH Y402H polymorphism with AMD (46–
48). As a result of a single nucleotide polymorphism that leads
to the substitution of tyrosine in position 402 in domain 7 of
FH by a histidine, the binding of FH to CRP is reduced (49). It
has also been observed that the 402 polymorphism may affect
FH binding to certain local polyanions in the retinal tissue
(58). The reduced binding of FH to CRP and/or to polyanions
could partially explain why individuals homozygous for 402H
have an up to 10-fold increased risk for developing AMD than
individuals homozygous for 402Y. This is supported by the
finding that drusen, lesions developed in early AMD between
the basal surface of the retinal pigmented epithelium (RPE) and
Bruch’s membrane, contain numerous proteins associated with
the complement system, including the membrane attack complex
(MAC) (59). This same study found that drusen contain proteins
common to extracellular deposits associated with atherosclerosis,
elastosis, amyloidosis and DDD. Thus, suggests partially shared
pathogenetic mechanisms for these diseases. However, the results
of studies analyzing associations of FH and CRP with these
diseases are still controversial.

The FH Y402H polymorphism is strongly associated with
AMD. However, it is still unclear how diminished CRP
interaction with FH contributes to the disease development.
Ultimately, the binding of FH to both CRP and PTX3 prevents
further complement activation. In the case of AMD, the described
effect on the molecular interaction between CRP and FH is
logical and supported by the synergistic effects between 402H
homozygosity, CRP expression and AMD (60, 61). No genetic
association to AMD has been observed with FH family proteins
FHR-4 and FHR-5, although they are known to interact with
mCRP. In contrast, individuals with an FHR-3–FHR-1 deletion
have a smaller risk for AMD (40, 62). Because the binding
sites in the C-terminal domains of FH and FHR-1 are nearly
identical, it is possible that the protective effect of FHR-3–FHR-
1 deletion could be primarily caused by the FHR-1 deficiency.
Because FHR-1 competes out FH it could actually promote,
rather than inhibit, AP activation on CRP-coated necrotic cells,
although contradictory results have also been reported (41, 63).
In addition to Y402H in FH, the same polymorphism is found in

FHL-1. It has been suggested that FHL-1 is a major regulator of
complement in the retinal Bruch’s membrane, as it can passively
diffuse through the membrane, whereas the full-sized FH cannot
(50). In addition, FHL-1 was reported to have slightly different
binding properties to CRP and PTX3 than FH (64).

Atypical Hemolytic Uremic Syndrome
(aHUS)
Hemolytic uremic syndrome (HUS) is a disease characterized
by thrombocytopenia, microangiopathic hemolytic anemia and
acute renal failure. The more frequent, “typical” form of HUS is
associated with infections caused by Shiga-like toxin-(verotoxin)
producing bacteria, such as enterohemorrhagic E. coli (EHEC),
while aHUS is usually linked to mutations in complement
proteins (FH, factor I, membrane-cofactor protein/MCP, factor
B, C3), thrombomodulin or to antibodies against FH. aHUS
is characterized by severe endothelial and blood cell damage,
which is caused by a dysregulated and misdirected complement
attack. Endothelial injury can be simulated ex vivo by the patient
serum also in cases, where no mutations or autoantibodies have
been found. These observations indicate that dysregulation of the
AP on the cell surfaces is the central event in aHUS pathology
(65). An abnormal recognition of cell or platelet surface sialic
acids or C3b by mutated FH is the key mechanism behind the
FH-mutation associated aHUS (66).

Binding of C1q to PTX3 has previously been shown to have
a dual role, enhancing or inhibitory, upon C function. This
depends on whether PTX3 recruits C1q to fluid phase molecules
or to cellular surfaces, such as bacteria or apoptotic cells (67).
Binding of the C-terminal domains of FH or of FHR-1 to PTX3
has been shown to be affected by aHUS-associated mutations
within domains 19-20 of FH and by autoantibodies against FH
and FHR-1. These findings suggest that a reduced binding of
FH/FHR-1 to PTX3 could also have a role in the enhanced local
C-mediated inflammation and endothelial damage in aHUS (27).
Genomic rearrangements resulting in the generation of hybrid
genes between FH and FHR-1 or FHR-3 or deletions are not
unusual. From these, some have been reported to associate with
aHUS or C3G but their interactions with PTX3 have not yet
been studied.

Atherosclerosis
Atherosclerosis is a disease, where arterial walls lose their
dynamic properties because of lipid accumulation. The arteries
may become narrow and in later stages obstructed because
of plaque formation. Total obstruction, because of e.g., of
plaque rupture, may lead to a local infarction e.g., in the
myocardial coronary arteries. Atherosclerosis is considered to
be a multifactorial disease driven by inflammation. Somewhat
elevated levels of CRP are related to the long-term risk of
death from cardiac causes (68). CRP is known to bind to
phosphocholine (PC) and cholesterol in modified LDL particles
and colocalize with LDL in human atherosclerotic lesions (37,
69). It has been suggested that FH has a protective role in the
development of atherosclerosis, as it binds to apolipoprotein
E and thereby increases cholesterol efflux by macrophages
(70, 71). A marker of atherosclerosis, elevated level of matrix
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FIGURE 5 | Role of factor H-CRP interaction in regulating complement activation on host cells during the course of inflammation. CRP deposition initially activates the

classical pathway of complement on injured cells, which leads to deposition of large amounts of C3b. Binding of factor H to CRP blocks further AP activation and

inflammation on the damaged cells by promoting inactivation of the C3b molecules to iC3b. In contrast, only a few iC3b molecules are formed on healthy cells due to

the rapid inactivation accidentally bound C3b-molecules by sialic acid-bound factor H. On injured cells the density of iC3b molecules is high enough to lead to

phagocytosis.

metalloproteinase 8 (MMP-8), was also strongly linked to FH
gene polymorphisms in a large unbiased population study (52).

Accumulation of lipids in the lesions caused by inefficient
removal of modified LDL by macrophages has been recognized
in both atherosclerosis and AMD. Interestingly, AMD and
atherosclerosis partially share similar pathological and
histological features (72). Complement dysregulation may
play a role in the development and progression of both diseases.
However, the results of studies investigating the link between
CRP, FH Y402H polymorphism and atherosclerosis have
yielded controversial results (60, 73). Studies showing that
mCRP dissociated from pCRP mediates local proinflammatory
effects suggest that mCRP is a proatherogenic factor. mCRP
might thus contribute to the formation of atherosclerotic
plaques and induce plaque rupture or destabilization (74).
To what extent polymorphisms or binding properties of FH
or FHL-1 could alter mCRP effector functions has not yet
been elucidated.

C3 Glomerulopathy (C3G)
Dense deposit disease (DDD, membranoproliferative
glomerulonephritis type II) and C3 glomerulonephritis (C3GN)
constitute a group of rare kidney diseases (C3G). The kidney
histology in DDD is characterized by the presence of dense
deposits in the glomerular basement membranes in electron
microscopy. The deposits stain for complement C3/C3b, while
immunoglobulins are absent. The fundamental cause of DDD is
relatively well-understood. The disease is due to hypercatabolism
of the alternative complement pathway in the fluid phase and
C3b deposition to targets (basement membranes) that lack
membrane regulators of complement, like CD46 or CD55.
C3 glomerulonephritis, however, is less well-understood. It is
characterized by C3 deposits in the absence of glomerular dense
deposits and immunoglobulins, although they may be present in

small amounts. In a proportion of cases C3G is associated with
monoclonal gammopathy (17, 75, 76).

Mutations, allelic variants, sequence duplications and
deletions within the FH/FHR gene cluster are known to
associate with C3GN and DDD (26, 53, 77). They include
the Y402H polymorphism in the CRP interacting domain
7 on FH. One significant SNP in FHR-5 associates strongly
with a particular type of C3GN. This SNP is located in the
FHR-5 domain 1 that is homologous to the short consensus
repeat 6 of FH, which interacts with CRP. This is particularly
interesting as this could affect the FHR-5-CRP interaction,
and thereby influence complement activation and control in
C3GN (26).

Other Diseases
According to what has repeatedly been shown, interactions
between pentraxins, and the C system play a crucial role
in the development and regulation of inflammation. These
interactions play an important role in handling tissue damage
and priming it for clearance. Thus, they are involved also
in conditions such as cancer and infectious diseases, where
tissue damage and necrosis often occur. It has been suggested
that FH expression levels could be increased in certain
tumors, such as urinary bladder and skin tumors (78, 79). In
humans, PTX3 expression is increased in different cancers,
while in mice FH recruitment by PTX3 to C3b deposited on
tumor cells has been shown to restrict the development of
local inflammation. This indicates that PTX3-FH interaction
could play a role in tumor-associated inflammation (80).
In a few studies, genetic polymorphisms in FH/FHRs
have been associated with microbial infections (81–84),
but further studies will be necessary to define their real
significance. Probably indicating its importance, CRP only
shows polymorphism in the non-coding regions that could
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influence its expression levels. Reduced expression of CRP has
been observed e.g., systemic lupus. No deficiencies in CRP have
been observed.

CONCLUDING REMARKS

After the first discovery of the interaction between FH
and pentraxins (32), it is now widely accepted that these
molecules together regulate the balance between C activation and
inhibition. Biochemical, histological and genetic data clearly link
these factors to various inflammatory diseases indicating that
they participate in the development and progression of these
diseases. There are several polymorphisms and mutations in the
pentraxin interacting domains of the FH family proteins. Some
of them alter pentraxin-FH interactions suggesting a role for
thesemolecules in disease development. However, further work is

needed to characterize the exact molecular mechanisms and roles
of pentraxin-FH interactions in the initiation and progression of
inflammation in these diseases.
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