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Platelets are small anucleate cells present in the blood stream, their typical role in

primary hemostasis has been well-described. However, new evidence suggests that

they have critically important roles in cancer progression and inflammation. Cancer cells

can activate platelets, thus using them as physical shields from blood shear forces

and natural killer (NK) cells. The activated platelets may also regulate hematopoietic

and immune cell migration toward the tumor site; therefore, contributing to the

cancer-associated inflammation. The activation of platelets by cancer cells may also

contribute to metastasis and cancer progression by stimulating deep venous thrombosis

and neutrophil extracellular trap formations (NETs) that “hide” cancer cells. We strived

to review the current literature to dissect the role of platelets in cancer-associated

thrombosis and tumor microenvironment inflammation.
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PLATELET MORPHOLOGY AND PHYSIOLOGY

Platelets were first described by Bizzozero in 1882 who described them microscopically and
established that platelets were the first component of the blood to adhere to damaged blood
vessel walls in vivo and, in vitro (1). Since his discovery, platelets have been traditionally linked
to hemostasis and thrombus formation (1–4). However, recent studies have shown that they are
key players in tumor progression and metastasis, inflammation, atherogenesis, and antimicrobial
host defense (1–4).

Platelets are arguably the most beautiful cells in the human body as they have an extraordinary
capacity for morphological change and powerful secretion properties (5). As small, anucleate,
discoid cells they are the smallest in blood circulation; measuring 2–5µm in diameter with
a thickness of 0.5µm and a mean cell volume of 6–10 fl (5–7). Platelets are originated from
big, nucleated cells called megakaryocytes that reside in the bone marrow and are part of the
hemopoietic cell line (6). Platelets have an average lifespan of 5–7 days in the blood stream; where
they endure such harsh conditions that as they age, they are reduced in size (5, 8). The average
healthy human has 150,000–400,000 platelets permicroliter (platelets/µl) in circulation at any given
time, and changes in total platelet count and mean platelet volume are often related to pathological
conditions and are used as an acute inflammatory marker (5, 9, 10).

The platelet membrane is covered in glycoproteins like GPIbβ-IX-V, GPVI, and GPαIIbβIII;
which are essential for complete platelet aggregation and adhesion (11). The membrane also has
protease activated receptors: PAR-1, PAR-4, and the P2Y family receptors that mediate activation
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and aggregation (11). Platelets also contain three different kind
of secretory granules: α-granules, dense granules, and lysosomal
granules (12, 13).

The α-granules are the most represented and contain
membrane-associated and soluble proteins that are expressed
in the platelet membrane when it is activated (13). These
membrane markers are involved in various processes; including
cell adhesion, coagulation, inflammation, cell growth, and
host defense (5, 13). They include P-selectin, fibrinogen,
vonWillenbrand factor, epidermal growth factor, vascular
endothelium growth factor, platelet-derived growth factor, and
complement C3 and C4 precursors; to name a few (3, 7, 10).

Dense granules, on the other hand, are slightly rarer with
just three to eight per human platelet (7, 13). They contain
high concentrations of adenine nucleotides, specifically ADP and
ATP; along with serotonin and histamine, which are released
upon platelet activation (7, 13, 14). The third granule group,
or lysosomes, is the least common with only 1–2 per cell (7,
13). They contain protein degrading enzymes like cathepsins,
elastases, collagenases, and glucosidases as well as LAMP-1,
LAMP-2, and CD63 (7, 13, 14).

Platelet activation may occur through contact with different
agonists, the most predominant being: thrombin, ADP, von
Willenbrand factor, and collagen (15). Thrombin is the most
powerful platelet agonist; it acts on the GPIb-IX-V and the PAR
receptors (7, 15). The PAR receptors have 4 subgroups: PAR2 is
not present in the platelets and PAR3 functions only as a cofactor
to PAR4 activation (15, 16). PAR1 is the most potent receptor for
thrombin induced platelet activation, as it more sensitive to lower
thrombin levels than PAR4 (15, 16).

Another strong platelet activator is adenosine diphosphate
(ADP); it can be exogenous or released from the dense granules
of activated platelets themselves; constituting an activation loop
between converging platelets (10, 17). The ADP receptors in
the platelets are the P2Y protein family (17). P2Y1 initiates
ADP-induced platelet aggregation and is responsible for platelet
shape change and P2Y12 amplifies and stabilizes the aggregation
response (17). As the alpha granules contain ADP, this can
constitute an activation loop between platelets that amplifies their
aggregation (2, 17).

Von Willenbrand factor (vWF) is a large glycoprotein
produced in the Weibel-Palade body of endothelial cells and by
megakaryocytes; it is present in the platelet alpha granules and
subendothelial connective tissue (7, 18, 19). It plays an essential
role in primary and secondary hemostasis; as a mediator of
platelet adhesion, and as a carrier for coagulation factor FVIII
(18). The vWF is exposed in activated endothelial cells where it
interacts with platelet GPIbα and supports platelet translocation
to the subendothelium (19). The platelet αIIbβIII integrin also

Abbreviations: ADP, adenosine diphosphate; CLEC 2, C-type Lectin Like 2
receptors; CXCL, chemokine; F, coagulation factor; IL, interleukin; MHC, major
histocompatibility complex I; MP, microparticle; NET, neutrophil extracellular
traps; PAR, proteinase activated receptor; PDGF, platelet-derived growth factor;
PECAM, platelet-endothelial cell adhesion molecule; PSGL-1, P-Selectin protein
ligand 1; TF, tissue factor; TGF, transforming growth factor; TLR, toll like receptor;
VEGF, vascular endothelial growth factor.

interacts with vWF, causing a cross linking of platelets that
enables platelet aggregation and plug formation (18, 19).

When platelets have been activated, they expose negatively
charged phosphatidylserine (PS) on their membrane through
activation of scramblase (e.g., TMEM16F) (20). This acts as
an anchor for the assembly of the prothrombinase complex
which converts fibrinogen to fibrin (19). Activated platelets also
contribute to the intrinsic pathway of coagulation by secreting
Poly-P in their dense granules that activates fXII (19).Meanwhile,
coagulation in itself will also activate platelets, as thrombin will
cleave and activate PARs on the platelets; thus creating a positive
feedback loop that greatly amplifies the hemostasis/coagulation
process (20, 21).

PLATELETS, THROMBOSIS, AND CANCER

Tumor Cells Can Activate Platelets
The association between cancer and thrombosis has been known
since 1865 when Armand Trousseau first described that localized
cancers can induce venous thrombus formation at distant sites
(21, 22). This malignant-associated thrombosis is one of the
most common clinical manifestations in cancer patients and
is associated to worse prognosis and survival (23). The major
reason for the high thrombotic risk in cancer patients is that
cancer cells can activate platelets and stimulate aggregation
through direct and indirect mechanisms (19, 21). The tumor-cell
induced platelet aggregation (TCIPA) has been demonstrated in
various cell lines like pancreatic, colorectal, and kidney (24–26).
Additionally, the TCIPA has been correlated to higher metastatic
potential (19). There are several mechanisms involved in in
platelet activation and TCIPA (20).

An importantmechanism of TCIPA is the cancer cell secretion
of thrombin (15, 27). Thrombin is a serine protease that converts
fibrinogen to fibrin, but also activates coagulation factors V, VIII,
XI, and XIII and the PAR receptors on platelets themselves (15,
19). Pancreatic and lung cancer in specific have been proven to
activate platelets via thrombin secretion as well as thromboxane
A2 secretion (28, 29). Tumor cells also express ADP, which
activates platelets via the P2Y1 and P2Y12 receptors, making
platelets release more ADP from their dense granules and thus
activating other nearby platelets (30, 31). Interestingly; colon,
prostate, and breast cancer cells can bind platelet FcγRIIa and
induce dense granule secretion in the platelets (11). Different
cancer types like squamous and germinal have also been proven
to express podoplanin which binds to platelet-expressed CLEC-2
and induces platelet activation (32).

Tissue factor is arguably the main activator of the coagulation
cascade once it comes into contact with activated factor VIIa in
the blood stream (2, 5, 30). Tissue factor is often expressed in
cancer cells and cancer derived microparticles (2, 6, 27). Elevated
levels of TF in the serum has been evidenced in several types of
cancer and in chemotherapy-induced thrombosis (28). Platelet as
well as cancer derived microparticles have also been described to
express Tissue Factors in their membrane, and thus contribute to
platelet activations and cancer-related thrombosis (33–35).

There are other indirect mechanisms of platelet activation by
the cancer cells. For example, cancer-cell expressed mucins can
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force platelets and granulocytes to interact (36). Subsequently,
there is bidirectional signaling and Cathepsin G release by
the granulocytes, which cleaves the platelet protease activated
receptor-4 (PAR4) and activating G proteins (Gq and G12/13)
to induce shape change and platelet activation (36, 37). There
are also malignancy-linked deficiencies of the vWF cleaving
protease: ADAM13. Its deficiency causes large vWF multimers
to circulate which can in turn activate platelets (11, 36,
38). A correlation between the presence of metastatic tumors
and the concentration of vWF multimers in circulation, as
well as aberrant ADAM13 in circulation has been previously
demonstrated (39, 40).

The activation of platelets by cancer cells has a myriad of
pro-cancerous effects like stimulating tumor growth, preparing
the metastatic niche, and helping the metastatic cells survive
in circulation. The induction of a cyclooxygenase 2 (COX-2)
mediated paracrine signaling between the stromal and epithelial
cells in the adenoma mediated by activated platelets can give
the ensuing cancer cells a more aggressive phenotype (41–43).
However, it has been shown that low-dose aspirin can have
an antimetastatic effect by inhibiting COX-1 (43–45). This
inhibition would decrease the cancer-mediated platelet activation
and aggregation; thus, having an anti-metastatic effect on the
tumor cells (41, 44).

Platelets Influence Tumor Growth
Platelets have a myriad of growth factors stored in their
alpha (α) granules (5–7, 13). They are present in the tumor
microenvironment outside of the vasculature where they can
come into direct contact with the malignant cells (31, 46). When
activated, they secrete transforming growth factor beta (TGF-β),
vascular endothelial growth factor (VEGF), and platelet derived
growth factor (PDGF) (47, 48). These factors not only induce
tumor growth, but also promote angiogenesis and tumoral
neovascularization (14).

It is important to also take into account that platelets also
have anti-cancerous effects. Recently, platelet-derived microRNA
has been identified as an important regulator of tumor
development (49). Platelet-derived microparticles transfers miR-
24 into cancer cells which targets mt-Nd2 and Snora75; triggering
mitochondrial regulation and inhibiting tumor growth (49). This
shows that platelet function and effects on cancer progression
may be stage and context dependent (21, 49).

Platelet Receptors Mediate Distant
Pre-metastatic Niche Preparation
Platelets are covered in membrane receptors that promote
heterotypic cell interactions (27, 30, 31). These interactions play
a crucial role in tumor growth and metastatic spread (11, 30, 31).
Cancer cells that enter blood circulation during the metastatic
process are exposed to high shear stress and to the immune
system; to survive they use activated platelets to shield themselves
(10, 27).

P-selectin is expressed on the surface of activated platelets and
endothelial cells and is an important adhesion molecule (27).
Cancer cells can bind to platelet P-selectin through TCIPA and
form aggregates to protect themselves from the blood circulation

and “hide” from NK cells (50). It has been proposed that platelet
αIIbβ3 integrin can link fibrin with tumor αVβ3 integrin (19,
46, 47). The role of thrombin and integrin signaling is also very
important in the platelet-cancer cell bonding mechanism (4, 27,
51). Thrombin increases the mRNA and protein levels of αVβ3
integrin and serves as a ligand to this receptor, it also increases the
secretion of vascular-endothelial growth factor (VEGF) in human
prostatic cancer cells (51).

Platelets also have an important effect on the preparation
of the pre-metastatic niche (31, 52, 53). Primary tumors
secrete metastasis-related proteins to the target organ that
stimulate the migration of bone marrow-derived cells to create
this pre-metastatic niche and stimulate neo-vasculogenesis (52,
53). Platelets have a role in managing the pre-metastatic
communications; they secrete CXCL5 and CXCL7 upon contact
with tumor cells to recruit granulocytes for the formation of the
early metastatic niche (52–54). Activated platelets also release
growth factors from their α granules, as well as metalloproteases
that contribute to the degradation of the extracellular matrix
and the preparation of the aforementioned metastatic niche
(13, 54, 55).

Circulating Tumor Cell Survival and Arrest
Is Mediated by Platelets
It is now widely accepted that increased platelet counts enhance
cancer’s metastatic power; while thrombocytopenia (low platelet
count) may hinder the process (56). As previously stated,
platelets have many adhesion molecules including integrins
(αIIbβ3), selectins (P-selectin), leucine rich glycoproteins
(P-selectin glycoprotein ligand -PSGL-1- and GPIb/V/IX), and
immunoglobulin superfamily proteins (platelet-endothelial
adhesion molecule -PECAM-1) (30, 31). These molecules allow
them to form aggregates with cancer cells to protect them from
the shear forces that would otherwise destroy their membranes
(31, 50). These aggregates also serve to stabilize cancer cell arrest
on the endothelial wall (27, 53, 55).

The TCIPA results in platelets coating the cancer cell
and thus protecting it from the natural killer (NK) cells
in the blood stream (57). They can also impair the NK
cell mediated cytolytic/tumorilytic activity by secreting platelet
TGF-β (57). The TGF-β impairs NK granule mobilization
and interferon-γ secretion by downregulation the NKG2D
immunoreceptor (50, 57). Another way that platelets aid the
cancer cells escape the immune system is by membrane protein
transfer (47, 48). In the midst of the platelet aggregate; the
cancer cells can co-express platelet markers as well major
histocompatibility (MHC) molecules to further camouflage
themselves (58).

Platelets support cancer cell arrest in the same manner
as it contributes to leucocyte arrest: by selectin (P-selectin)
dependent rolling/tethering and integrin dependent adhesion
(αIIbβ3, GP-Ibα, and vWF all contribute to firm adhesion) (21,
22). It is also important to note that many cancer cells express
“platelet receptors” like αIIbβ3, αVβ3, or GP-Ibα (31, 58). These
receptors not only help cancer cells escape the immune response
but also mediate direct cancer-endothelial and cancer-leucocyte
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interactions that promote cancer cell extravasation and prepare
them for the colonization of the target tissue (31, 59).

Another important TCIPA effect on cancer endothelial
transmigration is the release of ADP from the activated platelets’
dense granules (31, 60, 61). ADP interacts with the endothelial
PY2 receptor (P2Y1R), causing endothelial cell junctions to
become laxer and enabling cancer cells to pass through more
easily (60–62). Serotonin is also contained in the dense granules,
and experimental studies have demonstrated that by blocking its
receptor metastatic spread was inhibited (31, 63). Cancer patients
that tend to have higher than average serotonin levels in the blood
have a worse prognosis and survival (63).

PLATELETS, INFLAMMATION, AND
CANCER

Malignant tumors have often been described as wounds
that do not heal (64). Two of the most important tumor
characteristics are their constitutive angiogenesis and perennial
inflammation as well as the fibroblast infiltration and constant
stroma regeneration (64). The vasculature in tumors is often
fenestrated, facilitating the trans-endothelial transport, and
exposing subendothelial factors like collagen and TF (14, 65).
As we have previously stated, cancer cells can activate platelets

through the various TCIPA mechanisms; with the added effect
of the exposed subendothelial procoagulant factors there is a
continuous platelet-activation loop (5, 19, 66). The activated
platelets release their granule content that modulates the tumor
microenvironment, including pro-inflammatory cytokines (67).

The proinflammatory cytokines released by the platelets
are powerful recruiters and activators of leucocytes (67).
These molecules include CXCL1, CXCL4, CXCL5, CXCL7,
CXCL12 (SDF-1), and interleukin-8 (IL8) (67, 68). The CXCL12
chemokine attracts hematopoietic cells to the tumor site,
stimulating tumor growth, and angiogenesis (69). Macrophages
are also CXCR4 positive cells that are recruited to the tumor
site by the platelet-expressed CXCL12 (67). On the other hand,
CXCL5, and CXCL7 platelet secretion in distant sites to the
primary tumor recruit granulocytes to prepare the pre-metastatic
niche (5, 50, 52–54).

The activated platelets also express IL-1β (synthesized
in the platelet from pre-mRNA) (70). The IL-1β induces
TF expression in endothelial cells and stimulates expression
of endothelial-leucocyte adhesion molecules (70). IL-1β also
promotes platelet activation in an autocrine manner via the IL-1
receptor (67).

Transforming growth factor β (TGF-β) expressed and secreted
by activated platelets in the tumor microenvironment has
immunosuppressive properties and aids in the cancer cell escape

FIGURE 1 | Schematic review of the different mechanisms of platelet activation that can lead to thrombo-inflammation in cancer. Figure created using Servier Medical

Art available at http://smart.servier.com/. Copyright Ana Luisa Palacios-Acedo.
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from immune system recognition (71). TGF-β is also partially
responsible for the transformation of the neutrophils toward a
pro-tumorigenic phenotype (67).

PLATELETS AND NET FORMATION IN
CANCER

Neutrophils are the body’s first line of defense and have been
traditionally characterized by two modes of action: pathogen
engulfment and anti-microbial substance secretion (72). In
recent years a new function has been identified: neutrophil
extracellular traps (NETs) (72). The NETs are the result of
the neutrophils’ chromatin and granular content being expelled
from the nucleus to form a web-like structure (67, 72). This
structure can physically entrap and kill pathogens (67, 72).
There are recent studies that suggest that NETs may also be
involved in tumor progression, metastasis, and cancer-associated
thrombosis (73).

Platelet TLR4 can trigger NETosis in activated neutrophils;
and histones 3 and 4 released during the process can in
turn, activate the platelets in a continuous loop (73, 74).
The extracellular DNA in the NETs is capable of binding
and activating coagulation factor XII as well as activating
platelets directly (75). Additionally, activated platelet P-selectin
can prime neutrophils through P-selectin glycoprotein ligand-
1 (PSGL-1) activation and trigger NET formation (76, 77).
These activation routes suggest that NETs are indeed a
procoagulant factor as they provide a strong stimulus as well
as a scaffold for thrombus formation (78). NETs promote
fibrin deposition, recruit red blood cells and enhance platelet
activation, and in turn, platelet activation promotes NET
formation (76, 78).

Indeed, the link between NET formation and venous
thromboembolism has long been established. In a baboon model
of occlusion induced iliac thrombosis, researchers demonstrated
an increase in circulation of NETs after 48 h that was maintained
for 6 consecutive days; along with the presence of DNA markers
in the thrombus (74). Another group demonstrated that plasma
DNA is elevated in patients with deep vein thrombosis vs. healthy
patients (79).

It is interesting to note that neutrophils originated from cancer
patients are more prone to NETosis when exposed to PMA
than those from healthy patients (80). This may be partially
explained by the NET-activating properties of granulocyte
colony-stimulating factor (G-CSF), and IL-8; which are locally
secreted by tumor cells (67).

It has been proposed that tumor educated platelets may exert a
pro-NETosis effect on the tumor-microenvironment neutrophils
(80, 81). Cancer cells can allegedly use the NETs to protect
themselves from shear stress in the circulation and from the
immune system during the metastatic process (67, 81). The NET-
induced platelet activationmight play an important role in cancer
progression, enhancing TCIPA, and the pro-thrombotic state
(76). However, further research and information is needed to
shed light on the contribution of platelets to the generation of
NETs and their involvement in cancer progression.

CONCLUSION

Platelets are small but very powerful cells that interact with
all components of the circulatory system. They are the main
player in primary hemostasis but contribute to the secondary
wave as well. As of recently, their involvement in the immune
response was described, showing their power in regulating
their environment. Their interactions with cancer cells and
the tumor microenvironment are very complex and seem to
have dual behaviors: pro and anti-cancerous, with the pro-
cancerogenic effect out-numbering the anti-cancerous effects
(Figure 1). However, it may seem that tumor education of
platelets recruits them to the cancer cause, making them an
ideal ally of tumor progression. This in turn, causes platelets
to be continuously activated enhancing their thrombotic power
and augmenting cancer-associated thrombosis. Moreresearch is
needed in order to be able to establish the true power of
these cells.
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