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Psoriasis is chronic inflammatory skin disease affecting skin, joints, cardiovascular

system, brain, and metabolism. The pathogenesis of psoriasis is mediated by a complex

interplay between the immune system, inflammatory mediators of different pathways,

e.g., TNF-alpha and the IL-23/IL-17 pathways, psoriasis-associated susceptibility

loci, autoantigens, and multiple environmental factors. Psoriasis is triggered by the

combination of genetic and environmental factors. A novel environmental risk factor with

rising importance is obesity. Several studies proved that obesity is an independent risk

factor for the onset and severity of psoriasis. Due to the dramatic increase of obesity

worldwide this minireview focuses on obesity as a major environmental risk factor for

psoriasis and the mechanisms of obesity-mediated exacerbation of psoriasis.
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INTRODUCTION

Psoriasis is a polygenic chronic inflammatory skin disease (1–3). A large proportion (20–30%) of
the psoriasis patients suffer from additional joint involvementmainly affecting the distal extremities
but also larger joints (3). Plaque-type psoriasis, the most common disease variant, which is seen
in ∼85% of cases, commonly manifests as dull-red, erythematous, scaly plaques particularly on
the extensor surfaces of elbows, knees, and on the scalp. Less common psoriasis subtypes include
pustular, guttate, inverse, erythrodermic, and palmoplantar psoriasis (4).

Psoriasis has a significant genetic background as shown by the enhanced risk for the
development of the disease in offsprings and siblings of psoriasis patients and familial
occurrence (5, 6). Genetic associations in psoriasis vulgaris were mainly described for the major
histocompatibility complex (MHC) locus on chromosome 6 carrying the human leukocyte antigen
(HLA) genes and other immune-regulatory genes such as complement factors and TNF-α (6). The
strongest association was observed for the HLA-C allele Cw6, a classical HLA class I allele that
was found in 46% of psoriasis patients but only in 7% of a control population (7). Subsequent
genome-wide linkage studies by microsatellite analysis provided a further set of possible genomic
regions with linkage to psoriasis such as the PSORS1 locus and other, non-MHC loci such as
PSORS2-5 loci (8). More recently performed genome-wide association (GWAS) studies on psoriasis
vulgaris have identified several additional psoriasis risk factors that comprise genes associated with
chronic inflammation including IL12B (9, 10), IL23A and IL23R (9), IL2/IL21 (7), TNFAIP3 and
TNIP1 (9), ZNF313 (11), and epidermal/antimicrobial genes such as SLC12A8 and HBD (human
β-defensin gene) (12) and the LCE (late cornified envelope) gene cluster (10).

In contrast to psoriasis vulgaris, pustular psoriasis shows genetic associations with mutations
in the IL36RN gene with the strongest association for generalized psoriasis pustulosa and a
weaker association for palmoplantar pustulosis and acrodermatitis continua of Hallopeau (13).
Palmoplantar pustulosis shows higher prevalence in female subjects and smokers. Guttate psoriasis
is associated with environmental factors such as stress and infections, but no distinct genetic
background has been defined so far. The different pathogenic mechanisms may also impact on
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treatment response, e.g., guttate psoriasis is less responsive
to treatment with anti-TNF antibodies than plaque-type
psoriasis (14).

Psoriasis is currently regarded as an auto-immune disease
because it shares many features with other autoimmune diseases
such as chronicity of the clinical symptoms and chronic
inflammation, involvement of TNF-α and a genetic background
with overlapping gene loci with other auto-immune diseases
(15, 16). Potential autoantigens such as keratin 17 with sequence
homologies to streptococcal M-proteins, the antimicrobial
peptide LL37 and the melanocytic autoantigen ADAMTSL5 have
been identified recently. LL37 and ADAMTSL5 are recognized
by T-cells after binding to HLA-C∗06:02 underlining the role of
distinct HLA genotypes in the pathogenesis of psoriasis (17–19).

The central pathogenic cell types in psoriasis are epidermal
keratinocytes, antigen presenting cells, and inflammatory T cells
with complex feedback mechanisms (1, 2, 20–22).

Dysregulation of this complex interplay of cells of the innate
and adaptive immune system promotes the proliferation and
attenuates the differentiation of epidermal keratinocytes resulting
in the distinctive thickened, scaly plaques seen in psoriasis
vulgaris. Psoriasis is mediated by a plethora of cytokines and
chemokines where TNF-α and the IL-23/IL-17 axis play an
outstanding role (20, 23). IL-23 which is produced by antigen-
presenting cells supports the development of IL-17-secreting
CD4+ memory T cells (Th17 cells). Differential expression
of both components of IL-23 (IL-23p19 and IL-12p40) was
observed in psoriatic skin lesions in contrast to non-involved
skin. However, there were no significant differences for the IL-
12p35 subunit, suggestive for a particular role of IL-23 and
not IL-12 in psoriasis (24). Th17 cells, neutrophils and mast
cells produce IL-17A which exerts a feedforward inflammatory
response in keratinocytes by triggering chemokine and cytokine
production in keratinocytes. IL17 also activates neutrophils, B
cells, monocytes, and macrophages (25, 26). The feedforward
keratinocyte responses are self-amplifying, resulting in sustained
pathogenic immune infiltration and the development of mature
psoriatic plaques. Interestingly, inflammatory bowel diseases,
which show a significant association with psoriasis vulgaris,
and where IL-17 cytokines play a major pathogenic role, do
not respond to anti-IL-17 treatment, while psoriasis does.
This may be due to the fact that IL-17A can also play
a protective role in the intestinal tract under inflammatory
conditions as shown in an experimental mouse model of
colitis (25).

The role of IL-23 as a master regulator in psoriasis was
highlighted by the induction of psoriasis-like ear swelling,
epidermal hyperplasia and acanthosis upon injection of IL-
23 into mouse ears, which was dependent on IL17- and
IL-22 (27, 28). These findings were supportive for a role
of IL-23, IL-17, and IL-22 in psoriasis. The role of these
cytokines in psoriasis pathogenesis is further emphasized by
the currently used highly effective treatment modalities for
psoriasis and psoriasis arthritis using antibodies directed against
TNF-α, IL-23p19, and IL-17 (4, 29, 30). The analysis of gene
expression patterns in psoriasis lesional skin under treatment
with biological agents showed that gene expression patterns

of IL-23- and IL-17-induced genes were indeed reduced by
treatment with an anti-IL-12/23 antibody in healing skin
lesions (31).

The detrimental feedforward inflammatory process in
psoriasis is not restricted to the skin. The uncontrolled
inflammatory response contributes to a number of comorbid
conditions in psoriasis including cardiometabolic disease, stroke,
and metabolic syndrome (obesity, hypertension, dyslipidemia,
and diabetes) (32–36).

In general, psoriasis is believed to be triggered by the
combination of genetic and environmental factors. It has been
accepted that the interplay between environmental and genetic
factors contributes to the onset, development and clinical
symptoms of psoriasis. A significant number of studies identified
ultraviolet light, drugs, smoking, alcohol, and infections as well
as mental and biomechanical stress as environmental risk factors
affecting psoriasis by interfering with its genetic predisposition
and immune response (37).

A novel risk factor for psoriasis of high socioeconomic
importance is adiposity. Several studies have shown
that obesity is an independent risk factor for the onset
and severity of psoriasis (38, 39). Due to the dramatic
increase of obesity worldwide, this minireview focuses
on obesity as one environmental risk factors for psoriasis
and the mechanisms of obesity-mediated exacerbation
of psoriasis.

PSORIASIS AND OBESITY

The incidence of psoriasis among adults had almost doubled
between the 1970s and 2000 (40). Since the genetic basis should
have not significantly changed, environmental factors including
the Western lifestyle might have played a role in this growing
prevalence (41). The dietary habits in industrialized nations often
support high-fat, high-salt, and high-sugar diets with excess
caloric intake resulting in obesity and metabolic syndrome (42).
In a current large population-based Norwegian study including
close to 35,000 subjects, an association of metabolic syndrome
with an increased risk to develop psoriasis has been described.
The analysis of metabolic factors indicated that adiposity is
a central factor in this association (43). Similar findings were
reported by others [reviewed in (38, 39)]. It is difficult to
show what comes first, psoriasis or obesity. Pronounced social
isolation, poor eating habits, depression, increased alcohol
consumption, and decreased physical activity in patients with
psoriasis might explain how psoriasis might lead to obesity (38).

However, epidemiological studies provide strong evidence
that obesity predisposes patients to psoriasis and amplifies
psoriatic inflammation. A study of Setty and co-workers
including 78,626 women (of whom 892 reported having
psoriasis) indicated that adiposity and weight gain were risk
factors for the development of psoriasis (44). Patients with
a body mass index (BMI) of 35 or more had a relative
increased risk for development of psoriasis of 2.69 compared
to lean patients (44). A recent prospective study indicated
that obesity and high abdominal fat mass doubled the risk
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of psoriasis (45). These studies suggest that preventing weight
gain, promoting maintenance of a normal body weight, and
reduction of body mass may reduce incidence of psoriasis.
Indeed, several studies showed a positive impact of weight
loss on the severity of psoriasis (46). Thus, dietary weight
reduction with a hypocaloric diet is recommended in overweight
and obese patients with psoriasis (47). An open question is
whether differences in the type of diet (low carbohydrate,
ketogenic, or vegan/vegetarian diets) have an effect on psoriasis
improvement. Understanding the epidemiological relationship
between obesity/nutrition and psoriasis is important to assess the
relevance of the environmental factors as modifiable risk factors
in psoriasis pathogenesis and to develop new strategies to support
anti-psoriatic treatments (48).

Since adipose tissue is an important endocrine organ secreting
soluble factors involved in inflammation and immunity, it has
been postulated that adipose tissue expansion and its secretion
of pro-inflammatory mediators might worsen psoriasis. High
levels of resistin and leptin have been found in obese psoriasis
patients (39). A recent meta-analysis showed that patients with
psoriasis have higher levels of leptin compared to persons without
psoriasis (49).

In addition, obesity alters the cellular composition and activity
of inflammatory cells in the skin. Nakamizo and co-workers
described an accumulation of IL-17A-producing γδ T cells in
psoriatic skin lesions of high fat diet (HFD)-induced obese
mice, which resulted in an exacerbation of psoriatic dermatitis

(50). Moreover, genetically engineered diabetic (db/db) mice
showed an enhanced psoriatic skin inflammation with enhanced
levels of IL-17A and IL-22 (51). Another study showed that
long-term HFD over 9 months promoted the accumulation
of specific CD11c+ macrophages in the skin, in an epidermal
fatty acid binding protein (E-FABP)-dependent manner (52).
In elegant studies, Christ and co-workers showed that Western
diet (WD) induces a long-lasting trained immunity in myeloid
cells. The authors induced systemic inflammation in Ldlr−/−

mice by WD feeding that subsided after shifting mice to chow
diet. WD induced long-lasting transcriptomic and epigenomic
reprogramming of myeloid progenitor cells resulting in increased
proliferation and innate immune responses (53).

Another important aspect is the fact that obesity and nutrition
affect the microbiome (54, 55). Recently it has been shown that
the microbiome -which stands for the entire microorganisms
that live on human outer and inner body surfaces- exerts a
strong influence on human autoimmune diseases (56). There
is already some evidence that this might also be the case
in psoriasis (57). The role of the microbiome for metabolic
processes has also been emphasized in recent experimental
studies (58). Interestingly, a correlation exists between the
microbiome and IL-17 production in autoimmune diseases (59–
61). Changes in the gut microbiome in psoriasis refer to a
decrease in the Bacteroidetes phylum with an increase in the
Faecalibacterium genus. It was suggested that bacteria shed
their cell wall components, such as lipopolysaccharide and

FIGURE 1 | HFD-derived SFAs amplify psoriatic inflammation. (1) A diet rich in saturated fatty acids (SFAs) increases SFA serum concentration. (2) Chronic intake of a

high fat diet increases adipose tissue, resulting in obesity with high SFA serum levels. (2) SFAs sensitize myeloid cells resulting in an amplified pro-inflammatory

response with enhanced secretion of pro-inflammatory mediators in the presence of a danger signal. (3) The enhanced myeloid cell activation contributes to a

disturbance of keratinocyte proliferation, differentiation, and (4) enhances the production of chemokines and S100 proteins. (5) Consequently, more myeloid immune

cells are recruited into skin lesion and activated, further enhancing psoriatic skin inflammation. (6) Dietary reduction of SFAs dampens psoriatic skin inflammation,

which might support treatment efficacy in psoriatic patients.
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lipoteichoic acid into the blood stream thereby supporting a
chronic inflammatory state. Along this line, pro-biotic substances
have been shown to exert an influence on autoimmune diseases
such as Crohn’s disease, colitis ulcerosa, and rheumatoid
arthritis but so far have not been tested for their impact on
psoriasis (62).

PSORIASIS AND FATTY ACIDS

Interestingly, psoriatic patients on low energy diet showed a
significant decrease of serum lipids in parallel to a reduction

of skin involvement compared to a control group on a normal
diet (63). However, body weight did not differ between both

groups linking obesity and psoriasis independent of adipose

tissue. In line with this, a recent study by our group using
an imiquimod-induced psoriasis mouse model showed that
specific dietary components, rather than obesity itself, may
exacerbate psoriasis (64). In this study, a correlation of serum
concentrations of free fatty acids (FFAs) with severity of psoriatic
inflammation inHFD -induced obesemice was observed (64, 65).
Interestingly, these data could be recapitulated in a human cohort
of psoriasis patients where blood levels of FFAs correlated with

FIGURE 2 | Regulation of the pro-inflammatory response in psoriasis. (Left half of the figure) Obesity and high fat diet (HFD) increase the concentration of saturated

fatty acids (SFAs). SFAs are able to stimulate directly the expression of pro-inflammatory cytokines. SFAs activate toll-like receptors (TLR), and bind to cytoplasmic

epidermal fatty acid binding proteins (E-FABPs) activating retinoid acid receptor (RAR) and stimulate the differentiation of CD11c+ macrophages (MØ). An Increase of

SFAs modulates ceramide synthesis. (Right half of the figure) SFAs amplify the pro-inflammatory response in the presence of a danger signal. SFAs stimulate the

expression of pro-inflammatory cytokines via binding to PPARs, by inflammasome activation, and by modulation of ceramide synthesis. Until now it is not clear which

receptors are involved in FFA binding, translocation into the cell and subsequent pro-inflammatory activity.
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the severity of psoriatic skin lesions (64). In accordance with
these findings, in the above mentioned large population-based
Norwegian study only blood fat levels and adiposity showed
a positive association with psoriasis while glucose levels did
not (43). To examine the causal relationship between FFAs and
the HFD-induced exacerbation of psoriatic skin inflammation
we fed mice for only 5 weeks (64). At this time point mice
are lean and metabolically healthy while expressing elevated
levels of serum FFAs. Psoriatic skin inflammation was strongly
enhanced accompanied by an increased tissue infiltration of
myeloid cells, epidermal thickening and expression of S100
proteins, chemokines, and pro-inflammatory cytokines such as
IL-1β (64). Consistently, ob/ob mice, another model of murine
obesity on normal diet, did not exhibit enhanced psoriatic skin
inflammation (50). To further discriminate between the impact
of adipose tissue and FFAs we used different dietary approaches
(64). First, mice received standard HFD with high saturated
FA (SFAs) for 2.5 weeks, which was then changed to a HFD
with reduced SFAs but enriched polyunsaturated FAs (PUFA)
content for additional 2.5 weeks. After 5 weeks, weight did
not significantly differ between these groups but the modified
HFD fed mice showed significantly lower SFA blood levels, and
psoriatic inflammation was strongly reduced. Mice were then fed
for 20 weeks with HFD to mimic the situation of obese patients.
Then, the diet was switched to a low-fat chow diet without
PUFA supplementation. Again, diet change decreased the serum
concentration of SFAs without effect on weight. Importantly,
these obese mice with reduced serum concentration of SFA
exhibited a reduced psoriatic skin inflammation compared to
obese mice on HFD (64). This study showed that dietary SFAs
seem to be key amplifiers of psoriatic inflammation and suggest
that restriction of SFAs may be beneficial for both lean and obese
patients (Figure 1).

Due to limited evidence of a beneficial effect of fish oil
for psoriasis, fish oil supplementation is not recommended for
psoriasis treatment (47). Data from our study might explain
the failure of PUFA supplementation as a therapeutic measure
in psoriasis (66–69). It appears that a reduction of SFAs
is more efficient than PUFA supplementation. At present,
caloric restriction is recommended for overweight and obese
psoriasis patients. Future clinical trials have to verify whether
a specification of this recommendation—the reduction of SFAs
as adjuvant dietary measure—might support conventional anti-
inflammatory therapies.

FATTY ACIDS AND INFLAMMATION

Long chain SFAs such as palmitate are enriched in states of
nutrient excess and obesity (65, 70). SFAs can produce insulin
resistance, endoplasmatic reticulum stress, oxidative stress, and
cell death, a phenomenon referred to as lipotoxicity (70). They
can bind to cell surface molecules such as CD36, free fatty
acid receptors (FFAR1-4) and intracellular receptors/sensors [E-
FABP and Peroxisome Proliferator Activated Receptor (PPAR)
γ] that control inflammatory cell signaling and gene expression
(71). SFAs are able to induce pro-inflammatory cytokines in

human macrophages via pathways involving de novo ceramide
synthesis (72). SFAs, but not unsaturated FAs, bind to E-
FABP which activates retinoid acid receptor (RAR) resulting
in differentiation of CD11c+ macrophages and expression of
proinflammatory cytokines (73). It has been suggested that SFAs,
via binding to TLR2 and TLR4, stimulate the expression of
pro-inflammatory signaling pathways (74, 75). Current findings
indicate that SFAs are not TLR4 agonists, but instead provide
a second hit of activation that is dependent on prior TLR4
activation (76). Consistently, several studies did not detect any
direct FFA-mediated activation of myeloid cells (64, 77, 78).
However, amplification of the pro-inflammatory response of
myeloid cells in the presence of SFAs has been described in
many studies (64, 65, 72, 77–79). How can SFAs amplify the
pro-inflammatory response?

PPARs are specialized receptors detecting FFA-derived
signal molecules. Loss of PPAR-γ dampens de novo sterol
biosynthesis and augments IFN-β production, which in turn
suppresses the transcription of IL-1α and IL-1β in LPS-
stimulated macrophages (80). Uptake of SFAs leads to enhanced
ceramide generation, which in turn activates PKC-ζ and
MAPK, resulting in increased IL-6 and IL-8 secretion upon
LPS stimulation (79).

Elevated FFAs caused by HFD or obesity activate the
NLRP3 inflammasome in macrophages resulting in increased
IL-1β and IL-18 secretion (78). In the presence of danger
signals SFAs induce inflammasome activation by induction of
mitochondrial reactive oxygen species, or by stimulation of
AMP-activated protein kinase, autophagy, or lysosome- and
calcineurin-dependent pathways (70, 78). Excess SFAs uptake
induces intracellular SFAs crystallization that leads to NLRP3
inflammasome activation and subsequent IL-1β release via
lysosomal dysfunction (81).

Taken together, SFAs can amplify the pro-inflammatory
response via direct and indirect actions (Figure 2). Thus,
restriction of dietary SFAs might be helpful to suppress
psoriatic inflammation.

CONCLUSIONS

Psoriasis is a chronic inflammatory skin disease mediated
by a complex interplay between immune cells and tissue
resident cells. Genetic and environmental factors contribute
to psoriasis pathogenesis. Environmental factors such obesity
and nutrition have an important impact on onset and severity
of psoriasis. Recent studies suggest that dietary SFAs seem
to be key amplifiers of psoriatic inflammation and suggest
that restriction of SFAs may be beneficial for both lean and
obese patients. The clinical relevance has to be proven in
future clinical trials to improve psoriasis treatment responses
and co-morbidities.
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