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Natural Killer (NK) cells are innate lymphocytes playing pivotal roles in host

defense and immune-surveillance. The homeostatic modulation of germ-line

encoded/non-rearranged activating and inhibitory NK cell receptors (NKRs) determines

the capability of these innate lymphocytes to either spare “self” cells or to kill

viral-infected, tumor-transformed and heterologous cell targets. However, despite being

discovered more than 40 years ago, several aspects of NK cell biology remain unknown

or are still being debated. In particular, our knowledge of human NK cell ontogenesis

and differentiation is still in its infancy as the majority of our experimental evidence on

this topic mainly comes from findings obtained in vitro or with animal models in vivo.

Although both the generation and the maintenance of human NK cells are sustained

by hematopoietic stem cells (HSCs), the precise site(s) of NK cell development are still

poorly defined. Indeed, HSCs and hematopoietic precursors are localized in different

anatomical compartments that also change their ontogenic commitments before

and after birth as well as in aging. Currently, the main site of NK cell generation and

maturation in adulthood is considered the bone marrow, where their interactions with

stromal cells, cytokines, growth factors, and other soluble molecules support and drive

maturation. Different sequential stages of NK cell development have been identified on

the basis of the differential expression of specific markers and NKRs as well as on the

acquisition of specific effector-functions. All these phenotypic and functional features

are key in inducing and regulating homing, activation and tissue-residency of NK cells

in different human anatomic sites, where different homeostatic mechanisms ensure

a perfect balance between immune tolerance and immune-surveillance. The present

review summarizes our current knowledge on human NK cell ontogenesis and on the

related pathways orchestrating a proper maturation, functions, and distributions.

Keywords: natural killer cell, ontogenesis, hematopoietic stem cell, natural killer cell receptors, cytokines,

self-tolerance, education

INTRODUCTION

Natural Killer (NK) cells were first described as large granular lymphocytes with a natural ability to
kill tumor cells without a previous activation (1). Currently, it is well-known that NK cells mediate
immune-surveillance not only via cytotoxic effector-functions, but also by serving as regulatory
lymphocytes able to secrete cytokines and to interact with both innate and adaptive immune cells,
such as monocyte/macrophages, dendritic cells (DCs), and T lymphocytes (2–5). These activities
are governed by a balance between activating and inhibitory NK cell receptors (aNKRs and iNKRs)
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expressed on cell surface (6–9). Under homeostatic conditions,
NK cells remain in a resting state due to the engagement
of iNKRs [i.e., inhibitory Killer Immunoglobulin-like receptors
(iKIRs), the C-type lectin receptor NKG2A, Ig-like transcripts
(ILTs), and the leukocyte Ig-like receptors (LIRs)], that recognize
a broad spectrum of classical and non-classical Human
Leukocyte Antigen (HLA)-I molecules constitutively expressed
of autologous “self ” cells (10, 11). Viral infected, tumor-
transformed or allogeneic “non-self ” cells down-regulate, lack
or express different HLA-I alleles, thus boosting the NK cell-
mediated killing of these dangerous targets via the engagement
of aNKRs, that includes Natural Cytotoxicity Receptors (NCRs)
(NKp30, NKp46, and NKp44), C-type lectin receptors (NKG2C,
NKG2D), DNAM-1 and activating KIRs (aKIRs) (“missing self
hypothesis”) (6, 12–14).

NK cells comprise two main subsets defined on the
basis of CD56 and CD16 surface expression: the cytotoxic
CD56dim/CD16pos (CD56dim) population accounting for
up to 90% of circulating NK cells and the regulatory
CD56bright/CD16neg (CD56br) NK cell subset producing
high amount of pro-inflammatory cytokines, such as interferon
(IFN)-γ. These two NK cell populations also differ for the
expression of several NKRs that determine their ability to
respond to different stimuli (15). Both genetic and environmental
(i.e., infections and microbes) factors also contribute to generate
NK cell diversity in terms of NKR repertoire and functions
(16). Indeed, extensive flow-cytometry and mass-spectrometry
data clearly showed that a large diversity in the phenotype
of NK cell subsets can coexist especially at tissue levels (17–
20). This heterogeneity is also associated with the different
microenvironments in which NK cells develop and reside
(21). However, although these cells are widely distributed in
several tissues and organs of human body, most of the current
knowledge on these innate lymphocytes is limited to peripheral
blood (PB-) NK cells (22). In this context, how and to what
extent NK cells are exchanged between blood and human tissues
and which anatomic compartments host tissue-resident NK cells
represent important matters of scientific debate.

In this review, we discuss our current knowledge of the several
steps of human NK cell ontogenesis with a special focus on those
related mechanisms regulating their development, tissue homing
and residency.

TISSUE SITES OF NATURAL KILLER CELL
DEVELOPMENT

The production and the maintenance of NK cells in the blood
are sustained by CD34pos hematopoietic stem cells (HSCs).
However, the exact sites of NK cell development are poorly
defined, as hematopoietic cell precursors have been found in
different anatomic compartments of the human body both in
intra-uterine and adult lifespan (23). In the embryo and fetus
the hematopoiesis takes place in the yolk sac, aorta-gonad-
mesonephros region, and liver, while in adults bone marrow
(BM), thymus, spleen, omentum, and liver are considered the
main sites of blood cell development (24).

BM has been considered for long time the major site
of NK cell generation and differentiation after birth. Indeed,
this immunological niche is highly enriched of CD34pos

HSCs and hematopoietic progenitors, including NK cell ones
(25). Herein, NK cell development is supported through
interactions with stromal cells, cytokines, growth factors, and
other soluble molecules. However, whether NK cell ontogenesis
occurs exclusively or primarily in the BM niche is still
being debated.

In this regard, tissue-specific NK cell development had been
reported and even the so-called NK cell “education” ensuring
self-tolerance can occur in certain tissues (25). Indeed, several
lines of evidence demonstrated that, while the early phases
of NK cell development occur in the BM, later stages of
NK cell differentiations can take place in secondary lymphoid
tissues (SLTs), PB, liver, mucosa-associated lymphoid tissues
(MALTs), and uterus (22, 26–29). In particular, tonsils, spleen,
and lymph nodes (LNs) are considered those SLTs hosting
the main extra-medullary sites of NK cell development and
maturation. The para-follicular T cell regions of LNs are
one of the main anatomical districts enriched with NK cells.
Here, more than the 90% of tissue-resident NK cells have a
CD56br phenotype and they are able to differentiate in mature
CD56dim NK cells following stimulation with interleukin (IL)-
2, as circulating CD56br NK cells (15, 30). These findings
suggest that LNs might be one of the major peripheral tissue
sites of NK cell development. This working hypothesis is
further corroborated by other evidences showing that human
LNs contain CD34dim/CD45RAbr hematopoietic precursors that
likely origin from HSCs in the BM and then traffic in this SLT via
the PB. Once in LNs, they can differentiate in CD56br NK cells
upon activation mediated by LN-resident T cells (26).

The existence of CD34pos lymphoid precursors endowed with
the ability of differentiating in NK cells in vitro have been also
reported in human thymus (31). However, patients either affected
by the Di George syndrome (32) or undergone thymectomy (33,
34) and splenectomy (35) have normal frequencies of circulating
NK cells, that are also phenotypically and functionally similar
to those of healthy donors (30). For that reason, thymus as well
as spleen are not considered major sites of NK cell ontogenesis.
Although it is possible that these unaltered frequency, phenotype
and functions could be due to the redundancy of NK cell
developmental pathways.

Fetal liver certainly represents one of the major tissue of
NK cell development and this solid organ also retain a residual
ability to generate NK cells even after birth (36). Indeed, human
liver is highly enriched in tissue-resident NK cells that are
phenotypically and functionally distinct from their circulating
counterparts (29, 37–39). Moreover, it has been reported
that human liver perfusates and biopsies contain all NK cell
developmental stages from multipotent CD34pos hematopoietic
progenitors to terminally differentiated cells. In addition, liver-
resident NK cell precursors retain the ability to generate in vitro
fully mature and functional NK cells (29). Taken together, these
data further support the hypothesis that adult liver represents an
important tissue site for NK cell development in vivo even in the
adult life.
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Another peripheral organ highly enriched of tissue-resident
NK cells is the uterus. Here, the so-called uterine NK (uNK) cells
hold a unique phenotypic/functional profile and they are present
at high frequencies in the decidua to ensure mother tolerance
vs. the implanted fetus. uNK cells play also a primary role in
angiogenesis, tissue remodeling, and immunemodulationmainly
during the first trimester of pregnancy (40–42). In this regard, a
population of CD34pos cells able to differentiate in NK cells either
following in vitro stimulation with several cytokines or upon co-
culture with decidual stromal cells had been described in human
decidua (43, 44).

Although ∼10–20% of total lymphocytes in human lungs are
NK cells, they share a very similar phenotype with circulating
CD56dim NK cell subset and express very low levels of tissue-
residency markers. This observation thus suggests that lung NK
cells, different from liver and uterus, likely migrate in this tissue
from the PB (21).

NATURAL KILLER CELL PRECURSORS
AND ONTOGENESIS

Our current knowledge on immune cell hematopoiesis
postulates that the earliest step of HSCs to
undergo the NK cell differentiation relies on their
commitment toward the lymphoid/myeloid lineage
rather than the erythroid/megakaryocyte one. Then,
CD34pos/CD133pos/CD244pos cells acquire the expression
of CD45RA to become Common Lymphoid Progenitors (CLPs),
which have the potential to generate B, T and innate lymphoid
cells (ILCs) (45). This process requires cell-to-cell interactions
with stromal cells in the context of a peculiar microenvironment
characterized by the presence of the stem cell factor (SCF), the
ligand for the fms-like tyrosine kinase 3 (FLT3L), and IL-7 (46).

CLPs can then further differentiate in NK cell progenitors
(NKPs) that are classified in three sequential stages of maturation
named NK cell progenitors (stage 1), pre-NK cells (stage 2),
and immature NK (iNK) cells (stage 3) (Figure 1) (47, 48). The
commitment of CLPs toward NKPs had been first postulated for
analogy with B and T cells progenitors and it is characterized by
the down-regulation of CD34 and by the acquisition of CD122,
the common IL-2 receptor subunit β shared by IL-2 and IL-
15 signaling pathways. The induced expression of CD122 marks
the irreversible fate of CLPs toward the NK cell differentiation
(22, 49, 50). Indeed, both NKPs and pre-NK cells still express
CD34 and retain the ability to differentiate in T cells, DCs and
other ILCs. On the opposite, CD34neg/CD122pos iNK cells loose
this development potential, thus representing the real NKPs
(Table 1) (47, 51).

More recently, two distinct and additional stages of pre-NK
cells have been described on the basis of their negative (stage
2a) or positive (stage 2b) expression of both IL-1β and IL-2β
receptors (Figure 1 and Table 1). Stage 2a is mainly enriched in
certain tissues (i.e., SLTs and PB) and retains the ability to give
rise to T cells and DCs, while stage 2b represents the so-called
common ILC progenitors, since its commitment is restricted to
the generation of ILCs, including NK cells (48, 52). The transition

from stage 2b to stage 3 is then marked by the acquisition of
aNKR expression (i.e., NKG2D, NKp30, and NKp46) (Table 1).

All the developmental stages of NKPs have been mainly
characterized in the context of the BM niche. However, it is
still an important matter of debate whether distinct organ-
specific NKPs also exist and could undergo a “peripheral
ontogeny” able to generate tissue-resident NK cells (25). In
this regard, a subset of putative NKP has been recently
identified in BM, PB and SLTs, where it can give rise to all
members of ILC lineage. Differently from the above-mentioned
stage 2b pre-NK cells, these latter NKPs are characterized
by a CD34pos/CD45RApos/CD38pos/CD10pos/CD7pos/CD123neg

/CD127neg phenotype sharing several surface markers with both
stage 1 and stage 2 NKPs (53). Finally, an additional CD56pos

subset of CD34neg/CD117pos precursors able to generate NK cells
and ILC3s, but not ILC2s, has been described in tonsils (54).

In our currently accepted linear model of maturation
(Figure 1), the sequential expression of specific markers on the
surface of iNK cells (stage 3) parallels the acquisition of NK
cell self-tolerance and effector-functions. In particular, the shift
from NKPs to mature NK cells is associated with the sequential
acquired expression of CD56, CD94, and of the Killer C-type
lectin receptor CD161 (55). While the functional roles of the
expression of both CD161 and CD56 have not yet been fully
clarified, the acquisition of CD94 surface expression is essential to
allow the formation of the heterodimeric C-type Lectin receptors.
Hence, the CD34neg/CD117pos/neg/CD94pos/HLADRneg/
CD10neg/CD122pos/CD94pos/NKp44low/NKG2Dpos/CD161pos

phenotype defines mature NK cells that can be then further
distinguished into in the 2 final developmental stages according
to the expression of CD56 and CD16 (Table 1) (25, 56, 57).

CD56br NK cell represents the immune-regulatory
and cytokine producer stage 4, characterized by a
CD34neg/CD117low/CD94pos/CD16neg phenotype (Table 1).
More recently, 2 distinct stages 4 of NK cells have been
described in SLTs: 4a and 4b stages that differ for the induced
expression of NKp80 on the latter subset (58, 59). The stage 4a
NKp80neg/CD56br NK cell subset is characterized by constitutive
high expression of NKG2D, NKp30, and NKp46, CD94/NKG2A,
CD161, and is not endowed with potent effector-functions
(Table 1). On the opposite, its stage 4b counterpart can produce
IFN-γ and mediate perforin-dependent cytotoxicity in vitro (48).
Both 4a and 4b NK cell stages are then considered precursors
of the terminally-differentiated and cytotoxic CD56dim NK cells
(stage 5) (25) (Figure 1). Indeed, the CD56br NK cell subset
does not express KIRs and CD57 and it is more immature
as also confirmed by the longer length of its telomeres (60).
Additional experimental evidence demonstrated that the
transition from CD56br to CD56dim NK cells is progressive as
the latter terminally-differentiated subset gradually acquires
the expression of CD16, KIRs, and cytotoxic granules by
generating a transitory population of CD56bright/CD16pos NK
cells (61). During this transition, stage 4 CD56br NK cells lose the
expression of CD117, CD127, and CD94/NKG2A receptor, while
acquiring CD94/NKG2C and down-regulating CD56 (60, 62)
(Table 1). Finally, it has been also recently proposed that stage
5 CD56dim/KIRpos NK cells can be further distinguished from
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FIGURE 1 | Stages of NK cell ontogenesis. Schematic representation of the different stages of NK cell differentiation in human bone marrow and secondary lymphoid

tissues. Gray arrows and red question marks indicate the possible location in NK cell development of unCD56dim, CD56neg, and ml-NK cells.

TABLE 1 | Principal surface markers differentially expressed on NK cell developmental intermediates.

Surface marker Stage 1 Stage 2a Stage 2b Stage 3 Stage 4a Stage 4b Un

CD56dim
Stage 5 Stage 6 ml-NK CD56neg

CD34 + + + – – – – – – – –

CD10 + +/– +/– – – – n.d. – – – –

HLA-DR + + + – – – n.d. – – + +

CD117 – + + + +/low low/– – – – – –

CD127 + + + + – – – – – – +

CD45RA + + + + +/– +/– n.d. – – – –

IL-1 βR – – + + +/low low/– n.d. low/– low/– low/– –

CD122 – – + + + + n.d. + + + +

CD161 – –/low –/low –/+ + + n.d. + + low/– +

CD56 – – –/low –/low ++ ++ + + + + –

CD94 – – – – + + + +/– +/– + +

NKG2A – – – – + + + low/– low/– low/– low/–

NKG2D – – – –/low + + + + + + +

NKp30 – – – –/low + + + + + low/– low

NKp46 – – – –/low ++ ++ –/low + + low low

NKp80 – – – – – + n.d. + + + +

NKG2C – – – – low/– low/– low/– + + ++ +/low

CD16 – – – – – – – + + + +

KIRs – – – – – – low + + + +

CD57 – – – – – – – – + + +

n.d., not determined.

stage 6 based on the expression of CD57, a surface marker of
replicative senescence (Figure 1 and Table 1). Although this is
still a matter of scientific discussion, a recent study confirmed at
transcriptome, epigenome, and proteomic levels that this linear
developmental trajectory starts from CD56br NK cells and ends
with the final acquisition of CD57 (63).

ADDITIONAL STAGES OF NK CELL
MATURATION

Memory-like NK Cells
While stage 6 CD56dim NK cells show a poor responsiveness
to cytokine stimulation, they retain high degree of cytotoxicity
and can expand in response to several viral infections (64, 65).

In this regard, it has been shown that some viruses can change
the NKR repertoire and can also induce the clonal expansion
of peculiar NK cell subsets endowed with adaptive features.
These latter populations display higher effector-functions when
re-encountering the same virus and they are defined “memory-
like” NK (ml-NK) cells (Figure 1) (16, 19, 66, 67). ml-NK
cells are characterized by a peculiar KIRspos/CD57pos/NKG2Cpos

phenotype and lack the expression of CD161, NKp30, and CD7
(68–70). Among the main viruses inducing the expansion of
these NK cells endowed with adaptive traits there is the Human
Cytomegalovirus (HCMV) that drives a profound epigenetic
reprogramming in ml-NK cells. This HCMV-driven mechanism
increases the IFN-γ production whenml-NK cells are re-exposed
to the same viral pathogen (71–75).
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ml-NK cells have been described not only in PB but also
in tissues and associated with different antigens. Indeed, a
subset of a hepatic CXCR6pos NK cells with adaptive properties
against haptens or viral antigens had been also reported. This
latter subset of ml-NK cells is liver-resident and express a
CD49apos/DX5neg phenotype (76, 77).

CD56neg NK Cells
Besides the induced expansion of ml-NK cells, viral infections
can also drive the emergence of another dysfunctional
CD56neg/CD16pos (CD56neg) NK cell subset. These cells
had been firstly described during the course of HIV-1 infections
and then in other viral diseases, in autoimmune-disorders and
in elderly. CD56neg NK cells are present at very low frequency
in the PB of healthy subjects, but they represent the majority of
total NK cells in AIDS patients showing high levels of HIV-1
viremia (74, 78–81). Despite being identified and characterized
more than 2 decades ago, the ontogenesis of this subset is still
unknown. The repertoire of NKRs expressed on CD56neg NK
cells shared several similarities with that of stage 3 iNK cells.
However, the high constitutive expression of CD94/NKG2A,
NKG2D, and CD16 together with the retention of a certain
degree of cytotoxicity represent phenotypic and functional
differences that do not allow a completely overlap between
CD56neg NK cells and stage 3 iNK cells (Table 1) (79, 82).
Indeed, the high surface levels of KIRs, CD57 and CD107a
degranulation marker on CD56neg NK cells suggest that they
rather represent exhausted lymphocytes that already engaged
target cells (Figure 1) (83).

Unconventional CD56dim NK Cells
The latest NK cell subset to be identified and characterized is
represented by the so called unconventional NK cells holding a
CD56dim/CD16neg phenotype (unCD56dim) (84). This neglected
population is extremely rare under homeostatic conditions,
although it displays a significantly higher cytotoxicity compared
to that of CD56br and CD56dim NK cell subsets. However, a very
few studies characterized the homeostasis, the phenotype and
the functional relevance of unCD56dim NK cells subset although
there is not yet a consensus on its name and classification (85–
89). Unexpectedly, other and we recently reported that, in the
context of the lymphopenic environment of patients affected by
hematologic malignancies and undergone haploidentical stem
cell transplantation (haplo-HSCT), unCD56dim NK cells are by
far the largest subset of NK cells immune-reconstituting in
the first 2–4 weeks after the transplant (88, 90). Indeed, in
this short window after haplo-HSCT the very low frequency of
the conventional cytotoxic CD56dim NK cells are compensated
by the high expansion of unCD56dim NK cells that lack the
expression of CD34, CD117, and CD127 (Table 1). These data
demonstrate that unCD56dim NK cells cannot be classified
as NKPs, but are rather differentiated cells expressing several
NKRs as well as lytic granzyme and perforin. Moreover, the
transcriptional profile of unCD56dim NK cells revealed that
they are placed within an intermediate stage of differentiation
between CD56br and CD56dim NK cells as also functionally
assessed with time-course in vitro experiments of NK cell

differentiation (88). Furthermore, those unCD56dim NK cells
highly expanded early after haplo-HSCT also have a transient
high expression of CD94/NKG2A, an iNKR also involved in NK
cell differentiation. This phenomenon makes this subset anergic
only in this particular human setting in vivo.Hence, the use of an
immunotherapeutic strategy to block this inhibitory checkpoint,
unleashing NK cells thus improving the clinical outcome of
haplo-HSCT early after the infusion of HSCs is currently under
clinical investigation (84). Taken together, these data highlight
the key role played by unCD56dim NK cells in the mechanisms of
immune-reconstitution and also show that this unconventional
NK cell subset could represent and additional or alternative stage
of NK cell differentiation (Figure 1).

SIGNALS AND MECHANISMS
REGULATING THE DIFFERENTATION OF
NK CELLS

Cytokines
NK cell differentiation is finely tuned by different cytokine
signals (48, 91). As previously mentioned, HSC survival and
proliferation are preserved by FLT3L and SCF. Indeed, mice
lacking their receptors FLT3 and c-Kit (CD117) show a consistent
reduction in the frequency of CLPs (46, 92–94). In addition,
the engagements of FLT3/FLT3L and c-Kit/SCF axes induce the
expression of CD122 and/or IL-15Rα (CD215), thus increasing
the sensitivity of NKPs to IL-15 (51, 95). Although both IL-15
and IL-2 stimulation promote the maturation of CD56br toward
CD56dim NK cells in vitro (96), only IL-15 is involved in NK cell
differentiation both in humans and mice.

This is confirmed by the experimental evidence showing that
mature NK cells are nearly absent in mice lacking any of the 3
different subunits that compose the IL-15 heterotrimeric receptor
(IL-15R) complex: CD215, CD122, and CD132 (γc chain) (97–
101). Accordingly, patients showing an X-linked gene mutation
in the γc gene (il2rg) are affected by a severe combined immune-
deficiency characterized by a high susceptibility to infections
due to developmental defects of lymphocytes (including NK
cells) (100). Despite the γc chain of IL-15R is shared by other
relevant cytokines (i.e., IL-2, IL-4, IL-7, IL-9, and IL-21) for their
downstream signaling (102), dysfunctions of this subunit affects
only the IL-15 pathway. Indeed, knockout mice lacking IL-2, IL-
2Rα, IL-7, IL-7Rα, and IL-21R have normal frequencies of mature
circulating NK cells (103–106).

The production of IL-15 at NK cell developmental site is
mainly exerted by BM stromal and myeloid cells (107). The
binding of soluble IL-15 to CD215 on the surface of surrounding
cells mediates the trans-presentation of this complex to NK
cells expressing CD122 and CD132 heterodimer (108–110). This
engagement of IL-15R on NK cells induces the activation of
JAK1/3 downstream cascade that, in turn, activates STAT3/5 and
the mitogen-activated protein kinase (MAPK). These signaling
pathways mediate NK cell survival via both the up-regulation
of anti-apoptotic B cell lymphoma 2 (BCL-2) family members
and the down-regulation of pro-apoptotic proteins (111–114).
Indeed, both Stat5-deficient and NK cell-specific Stat5-deficient
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mice show a marked reduction of circulating mature NK cells
(115, 116). In humans, a similar severe reduction in NK cells is
observed in patients with a mutation of STAT5b, one of the two
highly conserved Stat5 human genes (117, 118).

NK cell responsiveness to IL-15 during NK cell development is
also influenced by the expression of phosphoinositide-dependent
kinase-1 (PDK1) that connects IL-15 signaling to the activation of
both E4BP4 (also known as Nfil3) and Inhibitor of DNA-binding
2 (ID2) transcription factors (119–121).

An additional cytokine playing a critical role in the
development of NK cells is IL-21. Indeed, IL-21 stimulation in
vitro, together with FLT3 and IL-15, promotes the differentiation
and the expansion of cytotoxic CD56dim NK cells from
BM progenitors (104, 122). In addition, IL-21 induces rapid
maturation of human NK cells and the acquisition of a KIRpos

mature phenotype from CD34pos cell precursors (123). On the
other side, IL-7 is key in promoting the survival and early
differentiation of NKPs (106). As a matter of fact, although
mice lacking IL-7 or its receptor (CD127) keep a relatively
normal NK cell development (105), the correct engagement
of CD127 expression is key in the early stages of NK cell
differentiation and in the retention of NKPs in SLTs (52).
Moreover, those NK cells enriched in thymus are characterized
by high constitutive expression of CD127 and require IL-7 for
their homeostasis (100).

IL-4 has been recently described of being able to induce
the development of tissue-resident NK lymphocytes in
mice by converting CD49apos/Eomesneg NK cells into their
functional CD49apos/Eomespos counterparts (124). Since
CD49apos/Eomesneg NK cell subset is considered a liver-resident
NK cell subset in mice, these findings could be relevant for a
better understanding of the specific tissue-resident generation
of NK cells (125). However, other than expressing high levels of
Eomesodermin (Eomes) transcripts, human liver-resident NK
cells appear to be much more phenotypically heterogeneous
compared to their murine counterparts (126).

IL-12 can also promote differentiation of NK cells and
can enhance their cytotoxicity in vitro (127). Interestingly, an
alternative pathway of NK cell development that bypasses the
above-mentioned γc-signaling relies on the engagement of IL-
12 in response to viral infections. Indeed, the stimulation of
NKPs with this pro-inflammatory cytokine in the BM generates
an unconventional but yet functional NK cell subset. However,
this pathway is still not exploited in humans and might be
highly relevant in patients with SCID (128). IL-12, together
with IL-18, has been also described for its ability to induce
the differentiation of ml-NK cells. In this regard, IL-12 and
IL-18 have been studied as co-stimulatory factors for the
generation of CMV-specific murine Ly49Hpos ml-NK cells (129).
In particular, the IL-12/STAT4 signaling pathway is required
for the formation and the expansion of these NK cells with
adaptive traits (130). Similarly, the expansion of NKG2Cpos ml-
NK cells in humans upon HCMV infection has been shown to
be IL-12- plus IL-18-dependent (131, 132). In this regard, in
vitro activation of both murine and human NK cells with IL-
12, IL-18, and IL-15 supports the generation of cytokine-induced
ml-NK cells (133, 134). This mechanism has been recently

employed in a clinical trial to boost the expansion of adaptive NK
cells showing enhanced anti-tumor responses against myeloid
leukemia (135).

Transcription Factors
The commitment and differentiation of hematopoietic stem
cells/precursors toward NK cell lineage require the expression of
specific transcription factors (TFs). In this context, the current
knowledge on NK cell development derives from experimental
findings mainly generated either in vitro or in animal models
and very little is known in human setting in vivo. However, it is
widely accepted that several TFs are required by CLPs for their
transition to both NKPs and iNK cells. These mechanisms are
not specific for NK cell development as the same TFs are used to
commit CLPs toward different cell lineages (136, 137). Ets-1 and
PU.1, members of the Ets TF family, are involved in the transition
of CLPs to NKPs and they are broadly expressed in multiple
hematopoietic-derived lineages (138–141). Interestingly, Ets-1-
deficient mice have a severe decrease of circulating NK cells,
while knocking out PU.1 in murine models does not affect
the frequency of NK cells in PB. These latter animals are
also characterized by an up-regulation of Ets-1, thus suggesting
the existence of compensatory mechanisms to ensure a correct
ontogenesis and maturation of NK cells (142, 143).

As previously mentioned, the transition to NKPs also requires
the expression of CD122 that induces STAT5 phosphorylation,
dimerization and nuclear translocation (115–117). Although
the specific gene targets of STAT5 in NK cells have not yet
been clarified, more than 15,000 STAT5 DNA binding sites
have been identified in T cells, including genes required for
lymphocyte proliferation and survival (144). In addition, the
expression of CD122 in NK cells is regulated by the Runx family
of TFs that represent key regulators of lymphocyte lineage-
specific gene expression (145, 146). In particular, Runx3 has been
reported to play an important role both in NK and CD8pos

T cell development, thus indicating its specific involvement
in transcriptional programs of cytolytic lymphocytes (146).
Similarly, Thymocyte selection-associated high mobility group
box protein (Tox) and the interferon-regulatory factor (IRF)
families regulate the transition toward NKPs as well as toward
B and T cells, ILCs and myeloid lineages (147–149). On the
contrary, several other TFs regulating the early steps of NK cell
differentiation are much more restricted to the development of
innate lymphocytes. Indeed, E4BP4-deficient mice lack only NK
cells and ILCs, as the expression of this TF is required to tune
the expression of Eomes and ID2 in early progenitor cells (150–
154). Other reports also claimed the existence of alternative and
E4BP4-independent development pathways for immature and
tissue-resident NK cells (125, 155, 156).

Another TF required for the differentiation of ILCs is ID2,
whose expression is controlled by Ets-1 (138). ID2-deficient mice
show a block of NK cell development between NKPs and mature
NK cells with the subsequent lacking of circulating NK cells
(120, 121). Recently, it has been also reported that ID2 regulates
NK cell responsiveness to IL-15 through the modulation of
DNA-binding helix-loop-helix E proteins (E2A) (157).

Frontiers in Immunology | www.frontiersin.org 6 August 2019 | Volume 10 | Article 1812

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Di Vito et al. NK Cell Ontogenesis

In later stages of NK cell maturation, T-box protein 21 (T-
bet) and Eomes play a major role in promoting the expression of
cytolytic and IFN-γ production machineries (158, 159). Indeed,
mice deficient for both these latter TFs have a systemic lack of
circulating mature NK cells (160, 161). However, whether or not
Eomes and T-bet act in the same pathway is not yet clear as these
two members of the T-box family are believed to function in a
sequential manner during NK cell maturation. T-bet is required
for the production of iNK and it is detectable just prior this
development stage (154). Indeed, T-bet deficiency results in an
accumulation of iNK cells in BM (161, 162). On the contrary,
Eomes tunes the differentiation of mature NK cells from iNK
cells and it is also critical to discriminate between NK and ILC1
subsets (158, 159). In addition, T-bet and Eomes have been
reported to regulate NK cell development at different anatomical
site as T-bet is primarily required for the production of NK cell at
extramedullary sites (125, 163, 164).

SURFACE MOLECULES REGULATING NK
CELL TRAFFICKING AND MATURATION

Very little is known about the mechanisms orchestrating the
trafficking of human NKPs and mature NK cells from PB to
tissues/organs and vice versa (165). Several lines of evidence
indicate that this trafficking is governed by several adhesion
molecules, such as integrins, selectins, and chemokine/cytokine
receptors. Among them, CXCR4, the alpha-chemokine receptor
specific for the stromal derived factor-1, has a role in maintaining
HSCs in the BM niche (166–168). Indeed, it has been shown that
the treatment with a CXCR4 antagonist promotes the progenitor
mobilization from the BM (169, 170). CXCR4 appears to also
play a key role in the first steps of NK cell ontogenesis since it
is highly expressed by NKPs and iNK cells, while its surface levels
gradually decrease during NK cell maturation (171).

Differently from CXCR4, the down-modulation of CX3C
chemokine receptor 1 (CX3CR1) in response to stimulation
with transforming growth factor (TGF)-β prevents the NK
cell egress from the BM (172, 173). Furthermore, CX3CR1,
together with CC chemokine receptors (CCRs)-7 and−5, tunes
NK cell maturation as the acquisition of a CD56dim phenotype
is associated to its induced expression (174, 175). Similar to
CX3CR1, the sphingosine-1-phosphate receptor 5 (S1P5) is
involved in the NK cell release in the bloodstream and in NK
cell differentiation. Indeed, terminally differentiated stage 6 NK
cells up-regulate S1P5 and migrate in response to sphingosine-
1-phosphate (S1P) (176). The active role of this bioactive
sphingolipid in determining the NK cell trafficking is also
suggested by the observation that S1P creates a gradient with
highest concentrations in the blood and lymph, while its levels
are maintained low in tissue parenchyma (177).

Several other adhesion molecules and chemokine receptors
regulate the preferential localization of CD56br and CD56dim

NK cells in SLTs, PB and inflamed tissues (178). Indeed, while
S1P5 seems to be involved in retaining CD56dim NK cells in
the bloodstream, CD62L, CCR7, and CXCR3 are involved in
the selective homing of CD56br NK cell to LNs. Indeed, these

latter surface molecules are either absent or expressed at very
low levels on CD56dim NK cells (30, 62, 179, 180). Furthermore,
CD69 is now considered not only as a marker of cell activation,
but also as a tissue-residency one. Indeed, CD56br NK cells
in tissues (i.e., liver, uterus, LNs) express high levels of CD69,
while their counterparts in PB are CD69neg (38, 181). Moreover,
highly cytotoxic CD56dim cells infiltrating metastatic LNs express
CD69 and CCR7 and can upregulate CXCR1 (182–184). CD103
and CD49a are other tissue-residency markers that are up-
regulated by NK cells in response to TGF-β (185, 186). CD103
heterodimerized with β7 and binds to E-cadherin on epithelial
cells, thus retaining NK cells in tissues (187). Moreover, the
heterodimer β1-CD49a is involved in the tissue retention of
NK cells via the binding to collagen (188). Those CD56dim NK
cells preferentially migrating toward inflamed tissues, express a
different patterns of cytokine/chemokine receptors that include
CXCR1, CXCR2, and ChemR23 (59, 175, 189).

NK CELL EDUCATION AND ACQUISITION
OF TOLERANCE TO SELF

Although NK cell ontogenesis and education are two separated
processes, there are quite a few interconnections between these
two key mechanisms of NK cell homeostasis. The acquired
expression of iNKRs together with their binding to self-HLA
molecules in BM during NK cell development represent the
mechanism generating functional NK cells that are also tolerant
against autologous targets (190). Indeed, the direct cell-to-cell
interactions with “self ”-MHC-I educate NK cells to sense the
down-regulation or lack of matched HLA alleles on target cells
in order to mount an efficient effector-responses only against
threatening viral-infected or tumor-transformed or allogeneic
targets (190–192). Hence, the so-called process of “NK cell
education” relies on the avidity of binding between NKRs and
self-HLA molecules and on the level of response of an NK cell
to activating signals (i.e., stress ligands, inflammatory cytokines,
and Fc receptor engagement) (193, 194).

In addition to the recognition of self-HLA/MHC antigens in
trans on neighboring cells, the expression of MHC-I molecules
on the NK cell itself has been shown to play an important role
in regulating NK cell activity and licensing in mice, by Ly49
interaction in cis (195, 196). In agreement, evidences in literature
indicate that KIR:HLA interactions could occur both in trans and
in cis in humans too. While the HLA-I trans-presentation seems
to be mainly involved in NK cell education, the cis interaction
in humans could play a major role in the maintenance of NK cell
effector potential (190). However, since, unlike Ly49, KIRs do not
have a flexible stalk, it has been proposed that this cis interaction
between HLA-C and KIR2DL could occur in endosomes rather
than on the cell surface (197).

Each individual shows a highly stochastic but tolerant HLA-I
specific repertoire of iNKRs, which can be shaped by the subject-
specific immunological history. These phenomena are regulated
by several “licensing” iKIRs, that recognize HLA-A/B/C, and by
CD94/NKG2A, that binds HLA-E (9, 198, 199). During NK cell
maturation, the NKR repertoire is selected to the expression of at
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least one iNKRs specific for self-HLA-I haplotype on eachmature
NK cell. This makes NK cells able to recognize target cells, thus
avoiding autoreactivity (200). CD94/NKG2A is the first HLA-I-
specific iNKR expressed on differentiating NK cells prior to the
appearance of KIRs. Indeed, it is present on CD56br NK cells and
to a less extent on CD56dim NK cells (201). Moreover, in vitro
differentiating NK cells from immature post-natal thymocytes
express high levels of CD94/NKG2A that prevents the lysis of
autologous cells expressing self-HLA-I alleles (202). However,
it is widely accepted that iKIRpos cells represent the main
subset of “educated” NK lymphocytes. Indeed, during NK cell
differentiation, the surface levels of CD94/NKG2A decrease while
the expression of KIRs increases only on terminally differentiated
CD56dim NK cells (201). In this context, the human KIR gene
family shows a certain degree of diversity due to both the high
variability of KIR gene contents and allelic polymorphisms (203,
204). KIR and HLA genes are located on different chromosomes,
and are inherited independently. This phenomenon might affect
the selective evolutionary pressure as well as the NK cell-
mediated susceptibility toward infections and diseases, as it is
possible that KIR genes can be inherited in the absence of the
cognate HLA ligand. Moreover, as previously mentioned, only
NK cells expressing at least one KIR can be considered fully
“licensed” (200, 205).

Although the mechanism tuning the process of NK cell
education has not yet been fully disclosed, NK cell responsiveness
is acquired in a finely regulated manner through KIR–KIR
ligand interactions during development and several working
hypotheses are currently being discussed on this matter. The first
one relies on the concept of “arming” in which a given iKIR
recognizes its cognate self-HLA-I allele, thus allowing the fully
maturation of NK cells. In this regard, an NK cell expressing
more than one iKIR should receive a stronger inhibitory signal,
but this cell should also mediate a more potent alloreactivity
when encountering a non-self-target (206). An opposite theory
is instead based on the idea that NK cells expressing iKIRs
mismatched with self HLA-I alleles are not clonally deleted,
but are rather kept “unlicensed” both in PB and tissues in a
state of hypo-responsiveness to ensure self-tolerance (194, 207,
208). This so called “disarming” working hypothesis states that,
in the absence of self-iKIRs, the chronic stimulation of a still
undetermined aNKR is associated with NK cell anergy (207).

An additional iNKR involved in NK cell education is
ILT2/LIR1, which recognizes HLA-G and other shared epitopes
present in all human HLA-I molecules. It has been shown
that the expression of LIR1 by NK cells is able to prevent the
secretion of IFN-γ (199). This iNKR appears to be expressed
by mature NK cells and its surface level increases upon
cytokine stimulation or HCMV infection, thus representing a
possible escape mechanism from NK cell immune-surveillance
(209–211). Moreover, the LIR1-mediated inhibition of NK cell
effector-functions has been proposed to be also important
in regulating the maternal-fetal immune tolerance during
pregnancy (212).

Besides HLA-I specific iNKRs, several additional surface
molecules have been reported to be involved in NK cell licensing
to prevent their cell activation against self-cells. These additional

mechanisms likely ensure a multi-layered and complementary
system of immune tolerance and education of NK cells. In
this context, the appearance of NKp46 and NKp30 before
HLA-I specific iNKRs during development could ensure an
HLA-I independent self-tolerance at early stages of NK cell
differentiation (198, 213, 214). This hypothesis is also supported
by clinical evidence in human HLA-I-deficient individuals,
in which NK cells do not kill autologous cells although
the engagement of HLA-specific iNKRs is either impaired or
lacking (215, 216). In line with this last theory, it has been
demonstrated that 2B4 could be involved in NK cell education
by being expressed early on the CD34pos NKPs. As a matter
of fact, although 2B4 is an aNKR in mature NK cells, it can
exert an inhibitory function when expressed on immature NK
cells (198, 213).

Finally, another mechanism possibly preventing NK cell
autoreactivity relies on the differential/asynchronous expression
of NK cell receptors and ligands. A classic example is the
expression of NKG2D, an aNKR able of modulating NK cell
receptor activation with different thresholds (217). In adults,
it has an important role in eliminate potentially dangerous
cells expressing NKG2D ligands including tumor-transformed
and viral-infected target cells. On the contrary, NKG2D is not
expressed in embryonic life, when the soluble and exosome-
bound ligands MIC-A and MIC-B are produced by human
placenta. This mechanism thus contributes to prevent the
activation of mother NK cells against the fetus (218, 219).

CONCLUDING REMARKS

Although our current knowledge on the mechanisms tuning
human NK cell ontogenesis greatly advanced over the past 2
decades, several questions still remain unanswered. In particular,
the signals and pathways involved in NK cell development
in SLTs and in other anatomic compartments remain to be
clarified. Furthermore, the intracellular processes by which an
NK cell is able to discern between self and non-self are still
elusive. Emerging evidence from high-throughput technologies
highlighted that NK cell diversity is more complex than expected
and it is determined by genetic and environmental determinants.
Thus, it is possible that this phenotypic NK cell diversity and
apparent redundancy, within the same tissue and between the
different tissues, could be the result of NK cell plasticity and could
mirror the different NK cell functional properties rather than
mere developmental intermediates.

Future efforts in understanding NK cell differentiation,
effector-functions and heterogeneity in both physiological and
pathological conditions will provide insights for the prevention
and the treatment of human diseases. In particular, a better
understanding of NK cell development inmalignancies and other
diseases will facilitate the design and implementation of NK
cell-mediated immunotherapies.
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