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Glucocorticoid-induced leucine zipper (GILZ) is a protein with multiple biological roles

that is upregulated by glucocorticoids (GCs) in both immune and non-immune cells.

Importantly, GCs are immunosuppressive primarily due to their regulation of cell signaling

pathways that are crucial for immune system activity. GILZ, which is transcriptionally

induced by the glucocorticoid receptor (GR), mediates part of these immunosuppressive,

and anti-inflammatory effects, thereby controlling immune cell proliferation, survival,

and differentiation. The primary immune cells targeted by the immunosuppressive

activity of GCs are T cells. Importantly, the effects of GCs on T cells are partially

mediated by GILZ. In fact, GILZ regulates T-cell activation, and differentiation by binding

and inhibiting factors essential for T-cell function. For example, GILZ associates with

nuclear factor-κB (NF-κB), c-Fos, and c-Jun and inhibits NF-κB-, and AP-1-dependent

transcription. GILZ also binds Raf and Ras, inhibits activation of Ras/Raf downstream

targets, including mitogen-activated protein kinase 1 (MAPK1). In addition GILZ inhibits

forkhead box O3 (FoxO3) without physical interaction. GILZ also promotes the activity of

regulatory T cells (Tregs) by activating transforming growth factor-β (TGF-β) signaling.

Ultimately, these actions inhibit T-cell activation and modulate the differentiation of T

helper (Th)-1, Th-2, Th-17 cells, thereby mediating the immunosuppressive effects of

GCs on T cells. In this mini-review, we discuss how GILZ mediates GC activity on T

cells, focusing mainly on the therapeutic potential of this protein as a more targeted

anti-inflammatory/immunosuppressive GC therapy.

Keywords: glucocorticoids, glucocorticoid-induced leucine zipper (GILZ), T-cell activation, T-cell, immune

response, glucocorticoid receptor

INTRODUCTION

Glucocorticoids (GCs) are the mainstay of current immunosuppressive and anti-inflammatory
therapies (1). Decades of study have revealed that their primary mechanism of action involves GC
binding to GC receptors (GRs) tomodulate gene transcription (2–5). However, the biological effects
of GCs are diverse and are likely controlled by several mechanisms. Given this functional diversity,
identifyingmolecules that are transcriptionally induced byGCs, and canmediate specific GC effects
presents a significant challenge.
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One potential molecule is glucocorticoid-induced leucine
zipper (GILZ), a ubiquitously expressed protein that is primarily
under GR transcriptional control. GILZ was originally identified
in 1997 when searching for genes that mediate GC-induced
apoptosis (6). However, since that time, the roles of GILZ
have expanded to include most of the anti-inflammatory,
and immunosuppressive effects of GCs (7). Indeed, GILZ
is now known to regulate cell apoptosis, proliferation,
and differentiation by modulating transcription factors,
and signaling pathways associated with host immunity, and
inflammation (8–12).

GILZ has a high degree of homology with other members of
the TSC22D family. The TSC22D family includes leucine zipper
proteins that are differentially expressed and involved in the
regulation of multiple biological processes (13). TSC22D isoform
heterodimers regulate cell cycle entry and exit (14).

One mechanism by which GCs induce immunosuppression
is through regulation of the T-cell response (15, 16). In this
review, we discuss the literature concerning how GILZ mediates
the effects of GCs on T cells. Regardless of the specific
role of GILZ, we highlight information about GC-dependent,
and GC-independent GILZ functions to expand the current
understanding of the GC mechanism of action. Ultimately, such
understanding is critical to improving GC clinical use.

GCS AND THE T-CELL RESPONSE

T-cell activation is an essential part of the adaptive, cell-
mediated immune response. GCs modulate T-cell differentiation
and activation regulating: (1) antigen-presenting cells (APCs);
(2) T helper (Th) cell differentiation; and (3) T-cell receptor
(TCR) signaling (Figure 1) (15). The GR acts through genomic
and non-genomic mechanisms, regulating adhesion molecules,
co-accessory molecules, and cytokines implicated in T-cell
activation (17–19).

Acting directly on T cells, GCs function through different
mechanisms, most of which involve GR/transcription factor
interaction. GCs affect the activity of transcription factors
downstream of TCR activation, including nuclear factor-κB
(NF-κB), activator protein-1 (AP-1), and nuclear factor of
activated T cells (NF-AT) (15). GCs can also act through
non-genomic mechanisms to limit kinase activity downstream
of TCR activation, ultimately inhibiting the above-mentioned
transcription factors and T-cell activation (20) (Figure 1).

Moreover, GCs can modulate T-cell activation indirectly
through other cells such as dendritic cells (DCs), which are
professional APCs. DCs have dual functionality, as they both
orchestrate adaptive immune responses and also actively
maintain peripheral specific tolerance against innocuous
antigens (21). The balance between the activating and
tolerogenic DC phenotypes is crucial to generating an efficient
immune response while also preventing autoimmunity. GCs
inhibit DC functions, reducing expression of MHC class II,
and costimulatory molecules, decreasing proinflammatory
cytokines and increasing anti-inflammatory cytokines
such as IL-10 (22). Importantly, GCs can also increase

the ability of DCs to capture antigens, suggesting that
GCs drive DCs toward a tolerogenic phenotype (23).
Tolerogenic DCs induce T-cell suppression and anergy and
promote the generation of regulatory T cells (Tregs) (24).
Therefore, GC modulation of DCs indirectly inhibits T-cell
activation (Figure 1).

GCs can also modulate T cells by targeting tissue
macrophages, mast cells, and stromal cells. Myeloid cells
modulate T-cell function, acting as APCs and/or secreting
inflammatory cytokines in response to stimulation of pattern
recognition receptors (PRRs) (15). GCs can attenuate signals
downstream of PRR activation, including the transcription
factors AP-1, NF-κB, and the mitogen-activated protein kinase
1 (MAPK1) pathway (15, 25, 26). Those signaling changes alter
the cytokine network, with important consequences for both
inflammation, and T-cell responses. In fact, this mechanism
may partially account for both GC inhibition of Th-1 and Th-17
differentiation and GC promotion of Th-2 differentiation and
Treg production (27, 28) (Figure 1).

What is the role of GILZ in this context?

GILZ AND THE T-CELL RESPONSE

Similar to the GCs, GILZ inhibits innate, and adaptive
immune responses, affecting T-cell function (activation,
differentiation, and apoptosis) either directly or through APCs
(7, 9, 10) (Figure 2).

GC-induced GILZ expression in T cells is involved in multiple
GC effects (9); however, its endogenous expression in the naïve T
cell suggests a GC-independent function (29).

GCs can modulate T-cell apoptosis, and GILZ can either
induce or protect against apoptosis (6). The first studies on
apoptosis were performed using the T-cell hybridoma 3DO,
which overexpresses GILZ (6, 30). In this cell line, GILZ inhibits
both NF-κB (30), and AP-1 (31), behaves as a GC by inhibiting
CD3-mediated apoptosis and TCR-driven IL-2 production
through Fas/FasL modulation (30). Furthermore, T cells from
GILZ-knockout mice (GILZ-KO) show increased antigen-
induced T-cell activation (32). These data indicate mutual
antagonism between GILZ expression and T-cell activation,
suggesting that T cells must inhibit GILZ expression to become
activated (29, 33). Moreover, in T cells, GILZ expression mimics
the antiproliferative effects of GCs by interacting with Ras and
Raf and inhibiting Ras downstream signals, such as MAPK (33,
34) (Figure 2). Notably, IL-2 deprivation in T cells upregulates
GILZ (35), whereas IL-2 treatment (35), and T-cell activation
(29, 30, 33) decrease GILZ expression.Moreover, IL-2 withdrawal
induces cell death and upregulates GILZ by promoting forkhead
box O3 (FoxO3) transcriptional activity in GILZ promoter
region. In turn, GILZ prevents FoxO3 transcriptional activity,
promoting its nuclear exclusion through a mechanism involving
the nuclear export receptor Crm1 (36), and inhibiting its
own expression and that of the proapoptotic gene Bim. In
this case, GILZ protects T cells from IL-2 withdrawal-induced
apoptosis by regulating its own expression (35, 37). The role of
GILZ in T-cell apoptosis has been further clarified using GILZ
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FIGURE 1 | Glucocorticoids and the T-cell response. Glucocorticoid (GCs) and glucocorticoid receptor (GR) interactions induce: (1) a tolerogenic

antigen-presenting cell (APC) phenotype with decreased production of both proinflammatory chemokines and costimulatory molecules and development of regulatory

T cells (Tregs). This subsequently inhibits T-cell activation; (2) a modulation of naïve T-cell differentiation, including inhibition of Th-1 and Th-17 cell development and

induction of Th-2 cells and Tregs; and (3) inhibition of T-cell receptor (TCR) signaling by inhibiting (genomic effects) key transcription factors such as NF-AT, AP-1, and

NF-κB (3A) and disruption of TCR-associated multiprotein complexes containing GR, LCK, and FYN (rapid, non-genomic effects) with inhibition of NF-AT, AP-1, and

NF-κB (3B). Ultimately, these interactions impair TCR signaling and T-cell activation/proliferation. Red T-headed leaders indicate inhibition; green arrow-headed leaders

indicate activation.

transgenic mouse models (GILZ-TG). Thymocytes from GILZ-
TG mice undergo apoptosis through caspase-8 activation and
Bcl-xL downregulation (38), regulating the thymic repertoire
similar to GCs. However, these cells are rescued by TCR-
induced apoptosis, suggesting a GC-like mechanism of mutual
exclusion (39). In contrast, GILZ does not induce apoptosis in
peripheral mature mouse T lymphocytes (40). The ability of
GCs to induce the apoptosis of lymphoid cells supports their
inclusion in protocols for the treatment of lymphohematopoietic
malignancies. GILZ upregulation may underlie these effects of
GCs. For example, in multiple myeloma, for which GCs are
used, decreasing GILZ levels by siRNA knockdown inhibited
GC-induced apoptosis (41).

Constitutive expression of GILZ in naïve T cells (29) plays
a major role in their differentiation (Figure 2). GILZ promotes
Treg differentiation by activating transforming growth factor-β

(TGF-β) signaling (42) and is partly responsible for GC-mediated
effects on Tregs (15). In fact, dexamethasone (DEX) treatment
augments the frequency of splenic Tregs in WT, but not GILZ-
KO, mice (42).

Moreover, GILZ overexpression in CD4+ lymphocytes from
GILZ-TG mice promotes Th-2 and inhibits Th-1 differentiation
(43); thus, GILZ behaves like GCs (27, 44). As a consequence,
GILZ-TG mice are less susceptible to Th-1-mediated diseases,
such as experimental dinitrobenzene sulfonic acid- (DNBS-)
colitis (45), and spinal cord injury (46). In these models, GILZ-
TG mice exhibit an attenuated immune response, which may
be explained by GILZ-mediated inhibition of NF-κB, which is
crucial for Th-1 cytokine production, in T cells of the intestinal
lamina propria, and in spinal cord lesions, respectively (45, 46).
Accordingly, injection of mice with either the transactivator
of transcription (TAT)-glutathione-S-transferase (GST)-GILZ
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FIGURE 2 | GILZ and the T-cell response. GILZ, expressed basally and/or in response to GCs, induces: (1) a tolerogenic dendritic cell (DC) phenotype and inhibition of

human monocyte and mouse macrophage activation via inhibition of NF-κB, thereby limiting production of both proinflammatory chemokines, and costimulatory

molecules. In DCs, GILZ expression is regulated by a GR corepressor, DC-specific transcript (DC-SCRIPT), whose recruitment inhibits GILZ expression. GILZ-induced

inhibition of APC functions promotes development of Tregs and ultimately inhibits T-cell activation; (2) a modulation of naïve T-cell differentiation (expressing

endogenous GILZ) that includes induction of Th-2 cells and Tregs (favoring TGF-β signaling), inhibition of Th-1 cells, and inhibition or development of Th-17 cells; (3) an

inhibition of TCR signaling by inhibiting pathways, such as MAPK, and transcription factors, such as AP-1, and NF-κB, through protein-protein interactions. Red

T-headed leaders indicate inhibition; green arrow-headed leaders indicate activation.

(TAT-GST–GILZ) fusion protein or high doses of DEX, which
upregulates GILZ in mucosal T lymphocytes, rescues mice from
Th-1-mediated experimental colitis, again by inhibiting NF-κB
(45). GILZ, in this model, is crucial for effects on Tregs cells.
In fact, in GILZ-KO mice, the severity of DNBS-colitis is
increased compared with WT due to impaired generation of
Tregs cells. Transfer of WT Treg cells reverses the augmented
vulnerability. DEX ameliorates the symptoms of DNBS-colitis in
WT, but not GILZ-KO, through Treg augmentation. Therefore,
GC anti-inflammatory activities in this model may be mediated

by GILZ expression in T lymphocytes (45), and GILZ-induced
Treg generation (42). However, in other murine models of
inflammation, GILZ does not appear to be involved in the anti-
inflammatory activity of GCs. For example, endogenous GILZ is
detectable in the synovia of mice with collagen-induced arthritis
(CIA), and in patients with active rheumatoid arthritis, and
is upregulated by GC therapeutic doses (47). Moreover, GILZ
reduction by RNAi worsens the symptoms of CIA, suggesting
a role for GILZ as an endogenous inhibitor (47). However, its
deletion does not impair the effects of exogenous GCs in CIA
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and does not affect the severity of antigen-induced or K/BxN
serum–transfer arthritis (32). In fact, no difference in arthritis
severity was found between GILZ-KO and WT mice, although
antigen-induced T-cell proliferation was higher in GILZ-KO
mice. However, injection of adeno-associated virus expressing
GILZ (GILZ-rAAV) in CIA mice results in joint GILZ expression
and attenuation of joint inflammation without affecting T-cell
proliferation (32). These data suggest different roles for GILZ
in inflammation, again as a brake for T-cell proliferation, an
endogenous natural anti-inflammatory protein, and as a drug.

A pharmacological use of the GILZ protein was also
shown in experimental autoimmune encephalomyelitis (EAE),
an inflammatory model for human multiple sclerosis. GILZ
peptide (GILZ-P) binds to and inhibits NF-κB, suppresses T-cell
activation, and shows therapeutic efficacy when administered in
EAE mice. Specifically, GILZ-P inhibits NF-κB, Th-1 cytokines,
and T-Bet transcription but increases expression of GATA-3 and
Th-2 cytokines, mimicking GILZ (48), and GC activity (17, 27).

GILZ negatively modulates Th-17 development by binding
to IL-21 and Irf4 sites, as demonstrated via ChIP-seq analysis
of Th-17 cells. These sites overlap the binding sites of
major transcription factors involved in Th-17 polarization.
Therefore, GILZ may act as a transcriptional repressor, inducing
displacement of Th-17 transcription factors from their sites
with inhibitory effects on Th-17 development (49). Consistently,
GILZ downregulation in naïve CD4+ T cells is required for
development of Th-17 (29). GILZ expression in T cells is
protective against several pathologies, including psoriasis, a
disease commonly treated with GCs, and myocardial infarction,
in which Th-17 lymphokines are pathogenetic (29, 50). However,
conflicting data were obtained in vivo with imiquimod (IMQ),
a murine model for IL23-, and IL17-dependent psoriasis.
Some researchers demonstrate that IMQ-induced psoriasis is
more serious in GILZ-deficient mice, with upregulation of Th-
17 cytokines and Th-17 proliferation (29). In contrast, other
researchers show that IMQ-induced psoriasis is more severe in
GILZ-TG mice, with increased Th-17 cytokines (51) (Figure 2).
Thus, based on this model, GILZ can be proinflammatory,
similar to the effects of prolonged GC treatment (51), or anti-
inflammatory (29).

As mentioned, GILZ can modulate T-cell activity indirectly
through its actions on APCs. Its effects on myeloid cells have
a broad spectrum of action on all cells of the immune system
(9). DC subsets constitutively express GILZ at different levels
depending onDC functional status (52). Endogenous GCs appear
to regulate constitutive DC GILZ expression, whereas exogenous
GCs upregulate DCGILZ in vivo and in vitro. Thus, by mediating
the effects of GCs, GILZ can regulate the balance between
activating and tolerogenic DCs (53, 54). GILZ expression is
transcriptionally regulated by the GR, which can either induce or
inhibit GILZ by recruiting its corepressor, DC-specific transcript
(DC-SCRIPT) (Figure 2). Importantly, neutralizing DC-SCRIPT
augments GR-induced GILZ expression (55). This suggests that
the tolerogenic-promoting effects of GILZ in DCs are so crucial
that a biological brake on its expression is required. Indeed, GILZ
overexpression induces a DC tolerogenic phenotype comparable
to that induced by GCs (56), downregulating the costimulatory

molecules CD86, CD83, and CD80 (57, 58), and reducing
CD4+ T-cell proliferation (53) (Figure 2). Knocking down GILZ
in activated monocyte-derived DCs (Mo-DCs) promotes more
efficient CD8+ T-cell secondary responses (59). In vitro GC
treatment of human Mo-DCs induces GILZ expression, driving
a DC tolerogenic phenotype that prevents efficient antigen
presentation (57), and induces IL-10-promoting Tregs. Together,
these changes inhibit the T-cell response (58). This effect is
reproduced by GILZ overexpression (60) and abolished by GILZ
silencing (57, 59). Finally, GILZ expression in tumor-infiltrating
DCs drives a tolerogenic DC phenotype, and T-cell tolerance
against the tumor (54). This suggests that tumor cells may “learn”
to secrete GCs to induce GILZ as an escape mechanism against
the immune system. These results may explain how GCs, both
endogenous and exogenously administered, can either block or
worsen tumor progression (especially epithelial tumors) through
GILZ expression (61).

Similar to DCs, human monocytes and mouse macrophages
constitutively express GILZ. GCs further upregulate GILZ
expression, which, via inhibition of NF-κB, mediates GC activity
in these cells (62–64) (Figure 2). In fact, transfecting GILZ into
THP-1 macrophages mimics the effects of GCs and inhibits
the production of chemokines, and costimulatory molecules
(62). Correspondingly, GILZ is downregulated by Toll-Like
agonists, leading to macrophage activation (65). Moreover, GILZ
expression is decreased during neuroinflammation, inversely
correlating with the development of innate immune responses
(66), and in white blood cells from patients with sepsis (67). These
findings confirm the immunosuppressive role of GILZ inmyeloid
cells and the biological necessity of GILZ downregulation for
efficient natural or adaptive immune responses.

Furthermore, expression of GILZ, as with GC (15), limits Th-
17 differentiation, and induced Treg cell activity by modulating
cytokine production by DCs and mesenchymal cells (68, 69).
In a mouse model of rheumatoid arthritis, GILZ expression
in mesenchymal stem cells (MSCs) is required for therapeutic
effectiveness of MSCs in arthritis (68) and inhibition of
transferred- Th-1, and Th-17 cells in immunized mice (70). In
a model of acute kidney injury, TAT-GST-GILZ fusion protein
conferred renoprotection by regulating cross-talk between T cells
and neutrophils, reducing proinflammatory type 1 neutrophils
and Th-17 cells, and increasing anti-inflammatory type 2
neutrophils and Tregs (71).

The role of GILZ in T-cell activation is even more complex
if we consider the effects on its expression following accessory
molecule triggering. Indeed, blocking the co-accessory molecule,
CD80, enhances GILZ expression in activated CD4+ T cells (72).
However, this field of investigation remains unexplored.

PERSPECTIVE AND EXPECTATIONS

Based on our critical review of the literature, we suggest that
GILZ has at least three different functions in T cells: (1)
endogenous; (2) mediator of GC activity; and (3) as a drug.

As discussed above, basal endogenous GILZ expression in
immune cells has a predominant role in T-cell activation, the
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development of CD4+ naïve T cells, and the physiological
control of inflammation. The latter is demonstrated by the
many murine models of inflammation, in which the absence of
GILZ aggravates inflammatory pathologies (12, 29, 32, 42, 47).
However, GILZ expression in T cells underlies many of the
effects of GCs established in experimental in vivo and in vitro
models. These models demonstrate that a lack of GILZ inhibits
the activity of GCs, and overexpression may mimic GC effects
(8–10, 43).

The use of GILZ as a drug is a great challenge given
the potential side effects on metabolism. However, many
experimental models support and encourage this possibility.
Experiments with fusion proteins TAT-GST-GILZ, and HHph-
GILZ, viral constructs GILZ-rAAV expressing GILZ, and GILZ-
peptide GILZ-P provide examples of achieving pharmacokinetic,
pharmacodynamic, and therapeutic efficacy using GILZ in vivo
as a drug (29, 32, 45, 47, 73). Many of the experimental models
discussed above involve pathologies due to an imbalance of
the development of naïve CD4+ cells, demonstrating how the
therapeutic activity of GILZ is related to actions on T cells
(11, 12, 45, 47).

GCs inhibit T-cell activation through genomic and non-
genomic mechanisms. GR-mediated genomic regulation induces
immunosuppressive molecules, including GILZ (8, 15, 74–
76). GCs also modulate T-cell activity through non-genomic
mechanisms that occur immediately after drug exposure (77,
78). In T cells, the GR physically associates with the TCR
in a multiprotein complex with LCK, and FYN. Short-term
treatment with DEX induces the non-genomic destruction of
this complex, thereby limiting TCR activation (20) (Figure 1).
Is it possible to hypothesize that GCs regulate GILZ function
and/or expression through both genomic and non-genomic

mechanisms? The regulation of GILZ by GC non-genomic effects
would lay the groundwork for several future lines of study. In
particular, because GC-induced GILZ transcription in T cells
interacts with and inhibits TCR-triggered signaling pathways
and transcription factors, it is likely that there is a GC-induced
non-genomic effect on constitutive GILZ expression. This would
reveal another mechanism by which GCs regulate the T-cell
response. Such a mechanism might provide further explanation
for the basal level of GILZ in immune cells (63, 79). Therefore, it
would be interesting to investigate whether GC/GR interactions
induce rapid changes in the cytoplasmic basal pool of GILZ, as
such GILZ expression may have alternative functions compared
to those of peak GILZ activation induced by GR-mediated
transcription. Ultimately, building on our understanding of the
molecular mechanisms involving GCs and GILZ may improve
the use of GCs as clinical therapeutics and limit treatment-related
side effects.
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