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NK cells play important roles in the innate immune responses against tumors. The

effector function of NK cells relies on the integration of activating and inhibitory signals.

Emerging checkpoint receptors and molecules are being revealed to mediate NK cell

dysfunction in the tumor microenvironment. Inhibition of some NK cell surface checkpoint

receptors has displayed the potential to reverse NK cell dysfunction in tumors, and

to boost anti-tumor immunity, both in clinical trials (anti-KIR and anti-NKG2A), and

in preclinical studies (e.g., anti-TIGIT, and anti-CD96). To fully exploit the potential of

NK–based checkpoint immunotherapy, more understanding of the regional features of

NK cells in the tumor microenvironment is required. This will provide valuable information

regarding the dynamic nature of NK cell immune response against tumors, as well

as novel checkpoints or pathways to be targeted. In this Review, we discuss recent

advances in the understanding of NK cell dysfunction in tumors, as well as emerging

strategies of NK-based checkpoint immunotherapy for tumors.

Keywords: inhibitory receptors, checkpoint blockade, immune evasion, immune tolerance, regional immunity

INTRODUCTION

Limited response rates of T cell–based checkpoint immunotherapies against CTLA-4 (CytoToxic
Lymphocyte Antigen 4) and/or PD-1 (Programmed-cell Death protein 1)/PD-L1 indicate that
additional checkpoints/pathways exist to suppress efficient tumor immunity (1–3). Moreover,
tumors usually escape T cell immune surveillance by downregulating the expression of major
histocompatibility complex (MHC) class I to compromise the tumor antigen presentation pathway
(4–6), making these tumors difficult to be recognized by T cells. However, these tumors are highly
susceptible to NK cell elimination via the “missing-self ” recognition (7, 8). On the other hand,
tumors with low mutational loads usually trigger less effective T cell responses than tumors with
high mutational loads (9–11). Nevertheless, even tumors with low mutational loads should be
recognized and killed by NK cells. These alternative features suggest that NK cells could serve as
the major anti-tumor effector cells where tumors should develop mechanisms of escaping T cell
surveillance, thus providing additional benefits to T cell–based immunotherapies. Therefore, NK
cells represent an emerging target for tumor immunotherapies (12, 13).

On the other hand, multiple intrinsic, and extrinsic immune suppressive checkpoints/pathways
exist to prevent NK cells from fully displaying the anti-tumor potentials in the tumor
microenvironment (14, 15). Among these checkpoints/mechanisms that inhibit tumor-associated
NK cell functions, targeting some of the checkpoint receptors of NK cells by monoclonal antibodies
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has been shown to unleash the anti-tumor effector function of
tumor-associated NK cells, highlighting NK cells as a potential
target for checkpoint immunotherapy. However, a lot of further
work lies ahead to unveil the dynamics of anti-tumor NK cell
responses, as well as the regional features of tumor-infiltrating
NK cells, not only in the tumor immune suppression landscape,
but also in the settings of tumor immunotherapies. Unless we
have a better understanding of the basic biology of tumor-
associated NK cells, we cannot rationally design strategies that
efficiently harness the anti-tumor potential of NK cells.

ROLE OF NK CELLS IN TUMOR IMMUNITY

The roles of NK cells in tumor surveillance are well-established.
Since cytolytic activity is one of the features of NK cell effector
functions, decreased cytolytic activity of NK cells has been
associated with higher tumor incidence (16, 17), indicating that
NK cell cytolytic function is normally required for tumor control.
Among various types of tumors, the role of NK cells in the
control of blood cancers and tumor metastasis is especially
well-recognized. For example, the expression levels of NK cell
activating receptors, NKp30 and NKG2D, in lymph nodes with
metastasis from tumor patients was negatively correlated with
the levels of metastasis (18). In patients with metastatic prostate
cancers, NK cells from patients with longer overall survival and
castration resistance display high expression levels of activating
receptors and high cytotoxicity (19). In mouse models of
metastasis, the depletion of NK cells, as well as genetic deficiency
of IFN-γ or perforin, resulted in higher levels of metastasis in
mice (20, 21). Besides the role in the surveillance against blood
cancers and tumor metastasis, the infiltration of NK cells into
solid tumors also affects the tumorigenesis (22), at least in some
tumors from the colon (23), the stomach (24), lung (25), and the
renal (26).

In addition to the role of NK cells in direct tumor surveillance,
NK cells also contribute to T cell anti-tumor immunity. In mouse
models, NK cells facilitated the accumulation of T-bet+CD4+

T cells in the tumor region (27), promoted the production
of effector molecules, TNF-α and IFN-γ, by tumor-infiltrating
CD8+ T cells, suppressed the expression of exhaustion marker
PD-1 on these CD8+ T cells (28), and promoted the induction of
tumor-specific T cell memory (29). In vitro data suggest that NK
cells might facilitate the differentiation of anti-tumor Th1 cells
via production of IFN-γ in an NKG2D-dependent manner (27).
Also, NK cells are required for the accumulation of conventional
type I dendritic cells (cDC1) in tumors in mouse models, as
NK cells produce CCL5 and XCL1 chemoattractants (30). Such
recruitment of cDC1 is critical for T cell anti-tumor immunity. In
human cancers, intratumoral CCL5, XCL1, and XCL2 transcripts
correlated with gene signatures of both NK cells and cDC1, and
were associated with increased overall patient survival (30). This
evidence highlights the role of NK cells as a “helper” in formation
of an efficient anti-tumor T cell response.

The “helper” effects of NK cells are important in the context
of T cell–based checkpoint immunotherapy. Although anti-
PD-1 immunotherapy largely targets T cells, the frequency

of intratumoral NK cells was found to correlate with patient
responsiveness to PD-1 blockade immunotherapy, and with
increased overall survival (31). These intratumoral NK cells
formed clusters with intratumoral stimulatory dendritic cells,
and thus played a role in stimulating anti-tumor T cell activity
(31). In line with this, data from mouse models showed that
depletion of NK cells abrogated the efficacy of PD-L1 blockade
immunotherapy (28). The presence of NK cells prevented
formation of a more exhausted status of tumor-infiltrating CD8+

T cells even under conditions of PD-L1 blockade, as evidenced
by decreased expression of degranulation marker CD107a, and
effector cytokines, TNF-α and IFN-γ, and increased expression
of exhaustion marker PD-1 by CD8+ T cells, after NK cell
depletion (28). Therefore, by facilitating an efficient anti-tumor T
cell response, NK cells contribute to the PD-1/PD-L1 checkpoint
immunotherapy. Also, higher levels of intratumoral NK cells
might serve as a biomarker to predict better clinical response to
PD-1/PD-L1 checkpoint immunotherapy.

NK CELL ACTIVATION

Unlike T cells that majorly use antigen-specific T cell
receptors (TCR) to recognize target cells for activation, the
activation of NK cells relies on the integration of signals
from an array of cell surface activating and inhibitory
receptors (7, 32, 33). NK cell activation receptors (33–
36) include CD16, natural killer gene 2D (NKG2D),
natural cytotoxicity receptors (NCRs), activating KIRs in
humans (Ly49D and Ly49H in mice), CD226, as well as the
signaling lymphocytic activation molecule (SLAM) family of
receptors (SFRs).

On the other hand, NK cell inhibitory receptors (37–
39), potentially druggable targets in tumor immunotherapy,
are referred to as “checkpoint” receptors, which involve
killer inhibitory receptors (KIRs), CD94/NKG2A, T cell
immunoreceptor with Ig, and immunoreceptor tyrosine-based
inhibition motif (ITIM) domains (TIGIT), CD96, T cell
immunoglobulin- and mucin-domain-containing molecule
3 (TIM-3), PD-1, CTLA-4, lymphocyte activation gene 3
(LAG-3), and V domain immunoglobulin suppressor of T cell
activation (VISTA).

The triggering of NK cell activation usually involves
two modes: “missing-self ” recognition and “induced-self ”
recognition (8, 40–42). “Missing-self ” recognition happens
when the target cells display lower or even absent surface
expression of MHC I molecules, which is usually linked with
viral infection or cellular transformation. This would result in
dampened inhibitory signaling from theMHC-I-binding KIRs or
CD94/NKG2A (and Ly49 family members in mice), leading to
activation of NK cells. Alternatively, “induced-self ” recognition
requires the engagement of stress-induced or virus-encoded
ligands on target cells by germline-encoded activating receptors.

Besides the balance of surface receptors-mediated
signaling, priming also affects strength of NK cell effector
activity. Stimulation by infections, cytokines [e.g., type I
interferon (IFN), interleukin-15 (IL-15), IL-12, IL-18, IL-21 and
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IL-1β; either alone or in combinations], and pathogen-associated
molecular patterns (PAMPs) can prime NK cells by lowering the
threshold for further activation (43), and by inducing expression
of effector molecules (44, 45).

Downstream of the surface receptors are common signaling
molecules that regulate the triggering and strength of NK
cell activation and responses upon ligand engagement or
cytokine stimulation (13, 46). For NK cell activating surface
receptors, downstream signals converge on SH2 domain-
containing leukocyte phosphorylation of 76 kDa (SLP-76)-
mediated phosphorylation of Vav1, which is negatively regulated
by the E3 ubiquitin ligase, Casitas B-lineage lymphoma-b (Cbl-
b) (47). On the other hand, IL-15, the NK cell key cytokine
signals through the JAK-STAT pathway, which is inhibited by
cytokine-inducible Src homology-2 (SH2)-containing protein
(CIS) (48). These molecules are also emerging “checkpoints” in
tumor immunotherapy.

NK CELL DYSFUNCTION IN TUMORS

Upon activation, NK cells normally form conjugations with
target cells, and release cytotoxic granules containing perforin
and granzymes for target cell lysis (49–51), or induce target cell
apoptosis via TNF-α, FasL, and TRAIL (32, 52, 53). Besides,
NK cells are responsible for early and rapid production of
anti-tumor effector cytokine IFN-γ (54, 55). However, the
tumor microenvironment possesses unique regional immune
features compared with the peripheral and other immune
organs, resulting in the impaired effector functions of tumor-
associated NK cells (14, 15). Firstly, NK cells usually display
decreased percentages along tumor progression (56). Secondly,
the “quality” of single NK cells is also compromised, as shown by
lower effector molecules expression of IFN-γ, CD107a, granzyme
B, FasL, TRAIL, and perforin in tumor-infiltrating NK cells as
assessed by intracellular staining for flow cytometry (27, 57–61).
Notably, the decreases in both “quantity” and “quality” of NK
cells in tumors were reported to positively connect with each
other (62), indicating that the dysfunction of tumor-associated
NK cells is multi-aspect.

The suppressed expression of effector molecules by NK
cells suggests that the NK-specific signaling/transcriptional
program should be altered in the tumor microenvironment.
IL-15 is expressed in the tumor microenvironment, required
for establishing normal levels of NK cell anti-tumor immune
response (63). However, IL-15 signaling is compromised for
NK cells in tumors (64). Therapeutic application of exogeneous
IL-15 directed to the tumor sites activated and recruited NK
cells in mouse models (65), indicating that IL-15 signaling
is essential for NK cell anti-tumor immunity. Furthermore,
expression of key transcriptional factors, Eomes and T-bet, are
also decreased in NK cells in tumor-bearing mice (66, 67). In
line with these alterations, tumor-associated NK cells displayed
defective maturation status both in mice (64, 68, 69) and in
humans (67, 70, 71). Such hypomaturation status of NK cells
has been associated with reduced overall survival and relapse-
free survival of patients with acute myeloid leukemia (AML) (72).

Together, these defects contribute to compromising the effector
program of NK cells in tumors.

The effector function of NK cells is sustained by cellular
metabolism (73–76). However, in the tumor microenvironment,
not only tumor cells (77–79), but also NK cells display
dysregulated metabolism (80). The dysregulated metabolic status
would lead to the dysfunctional status of NK cells (81–83),
as well as other immune effector cells (84). In a KRas -
driven tumor model in the lung, fructose-1,6-bisphosphatase
(FBP1) was highly up-regulated in lung NK cells from mice
bearing advanced lung tumors, compared with lung NK cells
from normal mice (80). FBP1 functions as a rate-limiting
enzyme in gluconeogenesis, facilitating gluconeogenesis, and
inhibiting glycolysis. Up-regulated FBP1 in NK cells in the tumor
settings suppressed the glycolysis of NK cells, compromised their
viability, and effector functions (80).

NK cell’s dysfunctional status in tumors is accompanied by
a series of phenotypic alterations. Multiple NK cell activating
receptors have been reported to be down-regulated in tumors.
For example, NK cells express decreased levels of NKG2D
in various types of cancers (57, 59, 85). In addition, DAP10,
the adaptor for transducing NKG2D receptor signaling, was
also found to decrease in the chronic viral infection setting,
and probably also in tumors, which might further add to the
compromised NKG2D signaling (86). Other NK cell activating
receptors reported to show decreased expression in tumors
include CD16 (57), NCRs (57, 59, 85), and CD226 (56, 57, 85, 87).
The downregulation of activating receptors could be restored
in remission (57), suggesting that this detrimental regulation of
NK cell activating receptors expression is an active suppression
mechanism by the tumor microenvironment.

The detrimental regulation of NK cell receptors also involves
the upregulation of inhibitory receptors. For example, TIGIT
expression on mouse NK cells was up-regulated during tumor
progression. In humans, the constitutive expression of TIGIT on
NK cells was further up-regulated in tumor regions compared
with peritumoral regions in colorectal tumors (28). Other
inhibitory receptors reported to be upregulated on NK cells in
tumors involve CD96 (88), NKG2A (60), and PD-1 (89–92). The
immune suppressive cytokines, such as IL-10 and TGF-β, might
contribute to the upregulation of inhibitory receptors (60, 93).

One recently discovered aspect regarding the dysfunction of
tumor-associated NK cells is the intratumoral differentiation
of NK cells. The dissection of the lineage differences between
NK cells and ILC1s has been revealed in multiple tissues (94,
95). This complexity has recently been extended to the tumor
microenvironment. TGF-β receptor signaling in NK cells was
found tomediate the intratumoral differentiation of conventional
anti-tumor effector NK cells into ILC1-like cells, which were
unable to control tumor growth (96, 97).

NK–BASED CHECKPOINT
IMMUNOTHERAPY

The success of T cell–based checkpoint immunotherapy has
revolutionized the treatment for cancer, which has established a
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concept that unleashing the potential of anti-tumor immunity
is capable of controlling tumors. At the same time, the
limited responsiveness of current checkpoint immunotherapies
is driving the area toward discovering new “checkpoints” on
not only T cells, but also on other immune cells, such as
on NK cells (Figure 1). On the other hand, recent studies
have shed light on the potential of targeting some common
signaling regulators to stimulate the anti-tumor activity of
immune cells. These molecules have broadened the conventional
concept of “checkpoints,” representing new areas in NK–based
tumor immunotherapy.

KIR
The history of NK–based checkpoint immunotherapy started
with blocking KIRs on NK cells. Early studies on bone marrow
transplantation with acute myeloid leukemia patients showed
that 5-year recurrence rate was 75% for donor’s NK-KIRmatched
with recipient’s MHC I molecule. However, strikingly, for those
mismatched cases, this number dropped to 0% (98). This and
other related evidence together indicate that absence of the
matching/recognition between NK cell inhibitory receptor KIRs
and target cell MHC I molecules would trigger the activity of
NK cells, leading to the rejection of these target cells. This lays
the rationale of KIR blockade for stimulating NK cell activity
against tumors. In clinical trials, KIR blockade showed limited
side effects (99). Neither KIR single blockade (NCT01687387),

FIGURE 1 | Targeting NK cell dysfunction via checkpoint inhibition tumor

immunotherapies. NK cells display a dysfunctional status in tumors, along with

detrimental upregulation of some checkpoint molecules (e.g., TIGIT, CD96,

PD-1, and FBP1). These molecules, as well as other constitutively expressed

checkpoint molecules (e.g., KIRs, NKG2A, A2AR, and IL-1R8), functions to

impair the anti-tumor effector potentials of NK cells in tumors. These

checkpoint molecules represent potential targets for NK–based

immunotherapy. Therapeutically targeting these molecules by blocking

monoclonal antibodies or small molecule inhibitors might unleash NK cells

from those immune suppressive mechanisms, and boost NK cell anti-tumor

activity. Antibody and inhibitor symbols in light color (those for CIS and IL-1R8)

indicate that the agents have not been developed yet.

nor combined with anit-CTLA-4 (NCT01750580), displayed
better efficacy than anti-CTLA-4 alone. However, combination
blockade of KIR and PD-1 showed the trend of increased
objective response rate for advanced head and neck tumor
patients previously treated with chemotherapy (NCT01714739).
Moreover, preliminary data from KIR blockade in combination
with 5-azacytidine, a DNA methyltransferase inhibitor, as
a therapy for refractory or relapsed AML showed that 20
percent of the first 25 patients responded to therapy, with two
patients achieving complete remission (CR) (NCT02399917).
These preliminary data have given us confidence on more
ongoing clinical trials on KIR blockade alone or combined
therapies (e.g., combined with anti-CD20 in NCT02481297, with
anti-PD-1, and 5-azacytidine in NCT02599649, or with anti-
SLAMF7 in NCT02252263). In addition, more investigations
on new indications and the data mining on previous clinical
trials might further reveal the potential of KIR blockade in
tumor immunotherapy.

TIGIT
TIGIT is an inhibitory receptor expressed majorly on T cells and
NK cells (100, 101). TIGIT binds ligands CD155 and CD112.
The inhibitory functions of TIGIT depend on the intracellular
ITIM and ITT-like domain (101, 102), on the competition with
activating receptors CD226 for ligand interactions (103), as well
as on the ligand signaling from CD155 upon interaction (100).
The interaction of TIGIT with its ligands suppressed the cytolytic
activity and IFN-γ production of NK cells in vitro (101, 104).
Such effects are critical for its role in maintaining NK cell self-
tolerance in acute inflammations (105) and tissue regenerations
(106), which, however, in turn lead to the exhausted status of NK
cells in tumor settings, promoting the progression of tumors (28).

The expression of checkpoint inhibitory receptor TIGIT on
NK cells was up-regulated along tumor progression in mice
(28). The tumor-associated expression pattern of TIGIT is
not dependent on the adaptive immune system, since TIGIT
was also highly expressed on tumor-infiltrating NK cells in
SCID mice (28). In humans, TIGIT is constitutively expressed
by NK cells, which was up-regulated on NK cells in tumor
regions compared with NK cells from peri-tumoral regions (28).
Consistently, CD103+ tumor resident NK cells displayed higher
expression of TIGIT than CD103− circulating NK cells. In
addition, tumor-infiltrating NK cells from tumor patients with
lymph node invasion expressed higher levels of TIGIT, compared
with those from patients without lymph node invasion. These
studies demonstrate that the expression of TIGIT on NK cells
is associated with tumor progression both in humans and in
mice. Importantly, while the expression pattern of two well-
established T cell checkpoint receptors, PD-1 and CTLA-4, are
more restricted on tumor-infiltrating T cells, TIGIT was highly
expressed not only on T cells, but also on NK cells in tumors
(28), highlighting TIGIT as a checkpoint receptor more specific
to NK cells.

Monoclonal antibody blocking TIGIT reversed the exhaustion
status of tumor infiltrating NK cells (28). Such effect adds to the
T cell -stimulating effects on both regulatory T cells (107) and
effector T cells (103) by TIGIT blockade. With these supportive
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results from preclinical studies, therapeutic blockade of TIGIT in
advanced cancers is currently being tested in various clinical trials
alone in NCT03119428 and NCT03628677, or in combination
with anti-PD1 in NCT03119428 and NCT03628677, or with anti-
PD-L1 in NCT03563716. Therefore, blocking the checkpoint
receptor TIGIT represents a potential strategy to explore
in immunotherapy.

NKG2A
NKG2A is a cell surface inhibitory receptor expressed both
on T cells and on NK cells, which forms a heterodimer with
CD94 (108). In mice, about 40–60% of NK cells both in the
peripheral and inside the tumors express NKG2A. In humans,
more than half of NK cells are NKG2A+ not only in the blood,
but also in tumors [e.g., squamous cell carcinoma of the head
and neck (SCCHN)] (109). The expression of NKG2A on NK
cells could be further up-regulated upon IL-15 stimulation (109).
Importantly, among NKG2A+ NK cells, there is a subset co-
expressing NKG2A and PD-1. On the other hand, non-classical
MHC-I, HLA-E, is the ligand of NKG2A in humans, which is
widely expressed by various types of tumors (e.g., lung, pancreas,
stomach, colon, head and neck, and liver tumor tissues) (109). In
mice, the ligand of NKG2A is Qa-1b. Binding of NKG2A/CD94
to its ligand suppresses the effector functions of T and NK cells
by recruitment of the SHP-1 tyrosine phosphatase to the ITIM in
the intracellular domain of NKG2A.

Blockade or abrogated expression of NKG2A rescued HLA-
E-mediated suppression of cytotoxicity and IFN-γ production by
NK cells in vitro (109, 110), and rendered NK cells with enhanced
efficacy against HLA-E+ tumors in vivo upon infusion (110).
Combined blockade of both NKG2A and PD-1 synergistically
stimulated the degranulation of NKG2A+PD-1+ NK cells in
HLA-E+PD-L1+ target cell co-culture (109). Disruption of
NKG2A-Qa-1b interaction by knocking out Qa-1b on tumor
cells promoted NK cell–dependent anti-tumor efficacy (109).
Consistent with these functional studies, the expression of
NKG2A and HLA-E in hepatocellular carcinoma (HCC) tissues
correlated with poor prognosis of HCC patients (60).

Monalizumab, a humanized anti-NKG2A antibody, enhanced
NK cell activity against various tumor cells and rescued CD8+

T cell function in combination with PD-1/PD-L1 axis blockade
(109). Importantly, combined blockade of both NKG2A and PD-
1/PD-L1 exhibited synergistic anti-tumor efficacy with improved
survival compared with PD-1/PD-L1 blockade alone (109). This
efficacy was shown to be NK-dependent, since NK cell depletion
greatly shortened the prolonged survival of mice (109). In
addition, since NKG2A is also up-regulated on CD8+ T cells
in tumors, blockade of NKG2A would also stimulate CD8+

T cell–dependent responses (109).
Monalizumab also stimulated NK cell ADCC (antibody-

dependent cell-mediated cytotoxicity) activity against antibody-
coated target cells in vitro (109). In a phase II clinical trial
NCT02643550 for the treatment of SCCHN, monalizumab
combined with cetuximab, an anti-EGFR monoclonal antibody,
resulted in a partial response rate of 31%, and stable disease at
54%, compared with the historical data of 13% objective response
rate for single agent cetuximab, showing that NKG2A blockade

has the potential of treating tumor patients in combination with
tumor-targeting antibodies. Besides, NKG2A single blockade for
the therapy of gynecologic malignancies (NCT02459301), or in
combination with ibrutinib (a BTK inhibitor) for the therapy of
chronic lymphocytic leukemia (CLL) (NCT02557516), are also
under clinical trials.

CD96
CD96 is a transmembrane glycoprotein Ig superfamily receptor
expressed on T cells and NK cells. CD96 was earlier found
to mediate the adhesion between NK cells and tumor cells to
facilitate NK cell cytolysis (111). Later, the use of CD96−/−

mice revealed the role of CD96 as an important checkpoint
for NK cell effector functions. Loss of CD96 rendered NK cells
with hyper-production of IFN-γ in mice challenged with LPS
(112). In chemical-induced tumor models, mice deficient in
CD96 displayed more resistance to tumor growth in both an
NK and IFN-γ –dependent manner (112). In HCC patients, the
percentage and intensity of CD96 on NK cells, as well as the
numbers of CD96+ NK cells, were higher for tumor-infiltrating
NK cells compared with NK cells from peri-tumoral tissues (88).
CD96+ NK cells are more severely dysfunctional compared with
CD96− NK cells, as evidenced by lowered expression of IFN-
γ and TNF-α, as well as lower gene expression levels of Tbx21,
Prf1 and Gzmb, and increased gene expression levels of Il-10 and
Tgf-β (88). Importantly, high expression levels of CD96, or its
ligand CD155 in tumors of HCC patients, was associated with
poor disease prognosis (88).

Therapeutic blockade of CD96 in tumor metastasis models
confirmed its role as a checkpoint receptor on NK cells. CD96
blockade was shown to inhibit experimental metastases in three
different models (113). The efficacy was dependent on NK
cells, CD226, and IFN-γ, but not dependent on activating
Fc receptors (113). Furthermore, when combined with CD96
blockade, anti-CTLA-4, anti-PD-1, or chemotherapy was more
effective. Co-blockade of CD96 and PD-1 resulted in increased
local NK cell IFN-γ production and infiltration (113). These
studies demonstrate that CD96 checkpoint blockade represents
a potential immunotherapy strategy targeting NK cells.

PD-1
Compared with the checkpoint receptors discussed above, the
expression of PD-1 on NK cells is relatively minor. The levels of
PD-1 on NK cells could be substantially up-regulated upon viral
infections or in specific tissue/organs (114). In tumors in both
humans and mice, NK cells displayed higher expression of PD-
1 above baseline, although not at a high percentage (115, 116).
PD-1+ NK cells, unlike TIGIT+, or CD96+ NK cells, displayed
stronger effector potentials than PD-1− NK cells, as shown by
higher levels of IFN-γ and granzyme B upon IL-2 stimulation in
vitro (116). However, in the tumormicroenvironment where PD-
L1 is expressed at high levels, this subset of PD-1+ NK cells might
be dysfunctional under effects of the inhibitory signaling from
interaction between PD-1 and PD-L1. Based on these studies,
PD-1/PD-L1 blockade might therefore reverse the dysfunctional
status of PD-1+ NK cells in this context, adding to the benefits
from enhanced T cell responses upon PD-1/PD-L1 blockade.
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Cbl-b
Genetic deletion of the E3 ubiquitin ligase Cbl-b, or treatment
with a small molecule targeting the substrate TAM tyrosine
kinase receptors Tyro3, Axl and Mer, was shown to efficiently
enhance anti-metastatic activity of NK cells in mouse models
(47). In addition, the anticoagulant warfarin stimulated the
anti-metastatic activity of NK cells via Cbl-b/TAM receptors
(47). These data indicate that the Cbl-b/TAM pathway is
a “checkpoint” that normally suppresses NK cell anti-tumor
activity, and that therapeutically targeting this pathway might
unleash the anti-metastatic potential of NK cells.

IL-1R8
Interleukin-1 receptor 8 (IL-1R8), a negative regulator of Toll-
Like and Interleukin-1 Receptor family signaling, is highly
expressed on NK cells, and is increased during NK cells
maturation (117). Also, IL-1R8 is expressed by tumor cells (e.g.,
in breast cancers) (118). Not only the expression of IL-1R8
in NK cells, but also that in the tumor cells, inhibited NK
cell activation and NK -mediated control of tumor growth and
metastasis, highlighting its role as a checkpoint for NK cell
tumor immunity (117, 118). Therefore, therapeutically targeting
IL-1R8 might represent a potential strategy to boost NK cell
anti-tumor immunity.

CIS
CIS is a negative regulator of IL-15 signaling by inhibiting the
downstream JAK-STAT pathway. CIS expression was increased
in NK cells upon cellular activation, such as in response to
IL-15 (48). NK cells deficient in Cish showed increased JAK-
STAT signaling, and enhanced proliferation, survival, IFN-γ
production, and cytotoxicity against tumors (48). Mice deficient
in Cish were resistant to melanoma, prostate, and breast cancer
metastasis in vivo (48). The combination of Cish deficiency with
targeted therapies or immune checkpoint blockade therapies
displayed further improved control of metastasis (119). These
data demonstrate that CIS acts as a potent intracellular
checkpoint to target in NK cell-mediated tumor immunity.

A2A Adenosine Receptor
Adenosine is an endogenous purine nucleoside that binds
adenosine receptors. High levels of adenosine is present in
the tumor microenvironment (120), impairing both the anti-
tumor effector functions and maturation of NK cells (69,
121) via the A2A adenosine receptor on NK cells. Either
inhibition of the adenosine -generating enzymes, CD73 or CD39,
or blockade of A2A adenosine receptor, displayed immune
stimulatory and anti-tumor effects in mouse models (122–
124). Furthermore, a combination of A2A receptor inhibitors
and PD-1 blockade significantly reduced metastasis of CD73+

tumors and prolonged the survival of mice compared with
monotherapy alone (125, 126). Notably, the combination therapy
depended on NK cells and IFN-γ, and to a less extent, CD8+

T cells (125). Recently, monoclonal antibodies targeting human
membrane-associated and soluble forms of CD39 and CD73,
respectively, were reported to efficiently block the hydrolysis
of immunogenic ATP into immunosuppressive adenosine, and

could restore the activation of cancer patient-derived T cells
(127). Importantly, the CD39-inhibiting antibody increased
the anti-tumor activity of the ATP-inducing chemotherapeutic
drug oxaliplatin in a human CD39 knockin mouse preclinical
model (127). Therefore, targeting the A2A adenosine receptor
pathway can enhance NK cell anti-tumor activity, and might
synergize with T cell–based checkpoint immunotherapy or
immunogenic chemotherapy.

PERSPECTIVE

In conclusion, the well-documented role of NK cells in tumor
surveillance has been further substantiated by recent progresses
in NK-based checkpoint blockade immunotherapy, which targets
NK cells to stimulate anti-tumor responses. More importantly,
some strategies displayed the potentials to further improve
current T cell–based immunotherapies. These studies indicate
that NK-based immunotherapy represents a promising direction
worthy of further investigations, especially in the current age of
tumor immunotherapy.

Among these studies, while most have confirmed the roles of
NK cells in controlling blood cancers and tumormetastasis, some
have also proposed a role for NK cells in surveillance against
solid tumors with evidence from either mouse models or clinical
relevance, at least in some contexts (22). Based on this limited
yet ever-growing evidence, it is not unreasonable to assume that
NK cells might fully exhibit their anti-tumor effector potentials
even in solid tumors, provided that we could be able to remove
some of the either current or unknown checkpoints 1 day. In
order to do so, apparently, a long way still lies ahead. Most of
the studies on NK cell biology have been performed in normal
mice, instead of in the immune suppressive landscape of tumors.
As discussed in the above sections, intratumoral NK cells are
mostly dysfunctional, and display alterations in many aspects
compared with peripheral NK cells in normal mice. Not only
NK-intrinsic biology, but also various NK-extrinsic factors from
the tumor microenvironment governs the actual responses of
intratumoral NK cells, making it difficult to interpret our basic
knowledge for NK cell biology locally in the tumors. Therefore,
more studies are required on the tumor regional features of
NK cells.

In addition, the current age of immunotherapy urges the
focus of investigations in tumor immunology to be on why
so many patients are unresponsive to therapies, and how to
increase the response rates. This requires us to look into the
mechanisms regulating NK cell functions not only in the tumor
immune suppressive landscape, but also in the settings of
tumor immunotherapies, hopefully leading to novel strategies to
improve current therapies.

Currently, the physiological roles in tumor surveillance by
NK cells, as well as the therapeutic potential, of many surface
receptors on NK cells have been demonstrated (e.g., KIR,
TIGIT, NKG2A, CD96, and PD-1), while those of many others
still remain to be shown (e.g., LAG-3 and TIM-3). For the
ongoing interest in searching for novel “checkpoints” to target,
it is important to describe the expression pattern of specific
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checkpoint receptors on NK cells (as well as their ligands
on other cells), as well as on T cells, in specific tumors,
in specific tumor stage, and in specific therapeutic settings.
The underlying rationale is that only when the checkpoint
(as well as its ligand) is expressed at functional levels, should
the targeting be antagonizing its function. As we discussed
in the above sections, checkpoint molecules display different
expression patterns: (1) some are constitutively and stably
expressed by NK cells; (2) some are normally absent or lowly
expressed, and are up-regulated upon stimulation; (3) some are
constitutively expressed normally, and are further up-regulated
in special contexts. However, more detailed information is
required. For example, in future studies on checkpoints,
we also need to pay attention to whether the expression
pattern of a specific checkpoint molecule is different in “hot”
tumors and in “cold” tumors, and whether it is altered in
hosts receiving anti-tumor therapies. The intensity of anti-
tumor immune responses, as well as the immune suppression
by the microenvironment, might be different under these
different contexts, which might affect the expression levels of
these checkpoint molecules. Therefore, detailed information is
required for the complete description of the spatiotemporal
expression profile of these checkpoint molecules. Only when
we have sufficient knowledge about the immune checkpoint
landscapes of specific tumor microenvironments could we
rationally design therapeutic strategies precisely targeting the

functional checkpoints for the proper indications at the
right time.

Collectively, accumulating evidence has indicated a role
of NK cells in surveillance against not only blood cancers
and metastasis, but also solid tumors, at least in some
contexts. In recent years, a lot of progress has been made
regarding the role of NK cells, as well as the role of NK
cell checkpoints in anti-tumor immunity. Targeting those
checkpoints displayed the potential of boosting NK cell activity
against tumors. Importantly, somemight improve current T cell–
based checkpoint immunotherapies. Although a lot remains to be
understood, recent studies demonstrate the promise that further
investigations into the regional features of NK cells in tumors
might give rise to novel checkpoint immunotherapies in future.
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