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Innate lymphoid cells (ILCs) are specialized immune cells that rapidly respond to

environmental challenges, such as infection and tissue damage. ILCs play an important

role in organ homeostasis, tissue repair, and host defense in the mucosal tissues intestine

and lung. ILCs are sentinels of healthy tissue function, yet it is poorly understood how

ILCs are recruited, strategically positioned, and maintained within tissues. Accordingly,

ILC migration is an area that has recently come into focus and it is important to define

the signals that control ILC migration to and within tissues. In this context, signals from

the local tissue microenvironment are relevant. For example, ILCs in the intestine are

exposed to an environment that is rich in dietary, microbial, and endogenous metabolites.

It has been shown that the Vitamin A metabolite retinoic acid promotes ILC1 and

ILC3 homing to the intestine. In addition, recent studies have discovered cholesterol

metabolites (oxysterols) as a novel class of molecules that regulate ILC migration through

the receptor GPR183. ILCs are considered to be largely tissue-resident cells, yet recent

data indicate that ILCs actively migrate during inflammation. Furthermore, the discovery

of circulating ILC precursors in humans and their presence within tissues has fueled

the concept of local ILC-poiesis. However, it is unclear how circulating ILCs enter tissue

during embryogenesis and inflammation and how they are directed to local tissue niches.

In this review, I will discuss the metabolic signals that regulate ILC homing and their

strategic positioning in healthy and inflamed tissues. It is becoming increasingly clear

that ILC function is closely linked to their tissue localization. Therefore, understanding

the tissue signals that control ILC migration could open new avenues for the treatment

of chronic inflammatory diseases and cancer.
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BACKGROUND

Innate lymphoid cells (ILCs) are immune cells of lymphoid origin that quickly respond to
perturbations of tissue homeostasis. Apart from their role in barrier immunity and host defense,
ILCs are also essential for organ homeostasis, recovery from tissue injury, andmetabolism (1–5). In
addition to cytotoxic natural killer (NK) cells, three different ILC types can be distinguished based
on signature transcription factors and effector cytokines, similar to CD4+ T helper lymphocytes:
(1) T-BET+ ILC1s produce interferon-gamma (IFNγ); (2) GATA3high ILC2s produce interleukin-5
(IL-5) and IL-13; (3) RORγt+ ILC3s produce IL-17 and/or IL-22. RORγt+ ILC3s include
fetal lymphoid tissue-inducer (LTi) cells and adult LTi-like cells that have a similar phenotype
(CCR6+NKp46−) and mainly reside in lymphoid tissues (6, 7). LTi cells are now considered a
separate ILC lineage due to their unique ontogeny (5, 8). α4β7+CXCR6+ ILC3 precursors (ILC3Ps)
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develop into LTi cells in the fetal liver (9). In contrast, adult
LTi-like ILC3s can derive from bone marrow precursors that
upregulate RORγt in peripheral tissues, such as the intestine,
in a Notch-dependent manner (9). Perinatal RORγt+ ILCs
give rise to long-lived ILC3s in the small intestine (10), yet
it is unclear whether and to what extent embryonic LTi cells
persist in the adult. Therefore, the developmental relationship
between fetal LTi cells and adult LTi-like ILC3s remains to be
defined. Adult mice also have T-BET-expressing CCR6−NKp46+

ILC3s that are derived from CCR6−NKp46− ILC3s (11). Dietary
phytochemicals acting through the aryl hydrocarbon receptor
(AHR) are required for the post-natal expansion of these CCR6−

adult ILC3s (12–14). Both fetal LTi cells (15) and adult ILC3s in
the intestine (16, 17) are dependent on the Vitamin A metabolite
retinoic acid.

Many features of ILCs are shared with T cells, but ILCs
also have unique, non-redundant, functions, such as the ability
to orchestrate the formation of lymphoid tissues, which is
carried out by ILC3s with LTi function (12, 13, 18–21). In
mice, the prenatal formation of lymphoid tissues (lymph nodes
and Peyer’s Patches) is carried out by CD4+ fetal LTi cells,
whereas adult ILC3s mediate the development of intestinal
cryptopatches and isolated lymphoid follicles that develop after
birth (22, 23). Besides their beneficial effects, ILCs have been
implicated in chronic inflammatory responses that underlie
human disease (24–26).

The main focus in the research on ILCs has been on
cell lineage relationships, transcription factors, and effector
function—mostly based on analogies with T lymphocytes.
ILC migration has only recently become an active area of
investigation. Their strategic position within tissues allows ILCs
to fulfill their role as sentinels of healthy tissue function.
Furthermore, local ILC clustering and rapid migration in
response to inflammatory signals may explain why ILCs
exert such powerful effects on tissue immunity (Figures 1–
3). However, much remains to be learned about the pathways
that regulate the migration and tissue localization of ILCs. In
this review, I mainly discuss the migration of ILCs other than
NK cells.

TISSUE DISTRIBUTION OF ILCs

ILCs are found in many organs, but are enriched in mucosal
tissues (intestine, lung) that are most exposed to the environment
(10, 16, 27–31). Furthermore, the relative abundance of ILC
subsets differs between tissues in mice (10, 16, 28) and humans
(30, 31), with ILCs perhaps less compartmentalized in humans
than in mice (31). For example, ILC3s are abundant in the small
intestine and ILC2s in the skin as well as in adipose tissue,
whereas NK cells predominate in bone marrow, spleen, liver,
and lung (32). In addition, there are regional differences in ILC
distribution within the same organ. For example, NKp46+ ILC3s
are enriched in the small intestine, whereas in the colon adult
LTi-like ILC3s are more prevalent. In addition, ILC2s are more
abundant in the colon than in the small intestine (32). Moreover,
ILC abundance differs between steady-state and inflamed tissue

(33–35). Finally, developmental age of the organism influences
ILC tissue distribution. For example, LTi-like ILC3s are present in
the fetal gut, whereas NKp46+ ILC3s are largely absent (10), only
expanding after birth in response to diet-derived AHR ligands
(12–14) and signals from the maternal microbiota (36). Similarly,
ILC2s seed the mouse lungs within the first 2 weeks of life (37).
The differential tissue distribution of ILCs is likely related to their
migratory behavior, e.g., due to temporal seeding of tissues during
embryogenesis (10, 38) and due to organ-specific expression of
integrins and chemokine receptors on ILCs (Figures 1–3).

Parabiosis studies in mice established the concept that, in
contrast to NK cells, ILCs in both lymphoid and non-lymphoid
tissues are largely tissue-resident cells (39). This implies that,
similar to tissue macrophages, ILCs are maintained within tissues
by local self-renewal. However, recent studies have challenged
this concept with the discovery of circulating CD117+ ILC
precursors (ILCPs) in humans (40) and the observation that
inflammatory ILC2s in the mouse can migrate from the intestine
to the lung during helminth infection (41). Circulating ILCs
might therefore constitute mobile a pool of cells that can be
activated and recruited to inflamed tissue on demand in order
to support host defense carried out by tissue-resident ILCs
(Figures 1, 3). Apart from ILCPs, human blood also contains
ILC2s (27), but no mature ILC1s and ILC3s (40). In addition to
more abundant NK cells, circulating putative ILCPs and mature
ILCs, mainly ILC1s, are also found in mice (42, 43).

Interestingly, ILCs occupying vascular vs. tissue
compartments seem to have distinct functions. A recent
study demonstrated that NK cells circulating between blood
and peripheral tissues have effector function, whereas NK cells
trafficking to lymph nodes are long-lived and proliferative
(44). This different migratory and functional behavior has
been associated with the differential expression of transcription
factors (44).

TISSUE NICHES AND ILC FUNCTION

Like other immune cells, ILCs occupy distinct niches within
tissue, which is important for their function and likely regulates
their homeostasis. For example, in the intestine, ILCs reside
in three main anatomical compartments: (i) LTi-like ILC3s
are clustered in lymphoid tissues, such as cryptopatches and
isolated lymphoid follicles (45, 46); (ii) NK cells/ILC1s, ILC2s,
NKp46+ ILC3s are dispersed in the lamina propria (47–49);
(iii) Intraepithelial ILC1s are located within the epithelium (30,
50). This anatomical compartmentalization corresponds to the
diversity of ILC function in the intestine (Figure 2). For example,
LTi-like ILC3s in Peyer’s Patches and isolated lymphoid follicles
interact with B cells to stimulate IgA production (51, 52), which
promotes host commensalism with the local microbiota (53).
Furthermore, lymphoid tissue-resident commensal bacteria are
contained by IL-22-producing ILC3s (54). In addition, ILC3s in
cryptopatches are in close proximity to the cypts, where intestinal
stem cells reside. Accordingly, IL-22 production by ILC3s has
been shown to maintain crypt stem cells after tissue damage (55–
57). In contrast, NKp46+ ILC3s are mostly resident in the small
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FIGURE 1 | Tissue homing and positioning of ILCPs and mature ILCs. ILCPs derived from fetal (liver) or adult (bone marrow) hematopoiesis enter the blood to home

to lymphoid and non-lymphoid organs. This process requires CXCR16 and α4β7 integrin, which bind to CXCL16 and MAdCAM-1, respectively. NK cells egress from

the bone marrow is mediated by S1PR5-S1P. Recent data support the concept that circulating ILCPs are a source of local ILC-poiesis after their migration into

tissues. ILCPs and ILC1s recirculate between lymph nodes and blood through the use of CD62L, CCR7, and S1P receptors. During embryogenesis, LTi cells are

essential for lymph node (LN) formation, which is initiated by their CXCR5-CXCL13-dependent clustering at lymph node anlagen. CCR6-CCL20 positions ILC3s to

hair follicles and recruits ILC3s during skin inflammation. In the liver, CXCR6 and its ligand CXCL16 are essential for NK cell memory responses. ILC2s promote

thermogenesis, but the signals regulating their migration in adipose tissue are unknown.

intestinal villi, located close to the epithelium, where theymediate
host defense against pathogens (58). Interestingly, NKp46+

ILC3s seem to produce IL-22 mainly in response to pathogen-
induced IL-23 secretion by myeloid cells, whereas lymphoid
tissue-resident LTi-like ILC3s produce IL-22 constitutively in
a microbiota-dependent manner (59). Finally, IFNγ-secreting
ILC1s within the intraepithelial compartment are involved in
colitis (50).

Although intestinal ILC3s are tissue-resident (39), they are
not completely sessile cells. For example, in the steady state,
there is a constant influx and egress of ILC3s to and from
cryptopatches and there is increased ILC3 mobilization from
cryptopatches during inflammation (21, 60). The significance
of steady-state ILC3 migration in and out of cryptopatches is
unknown, but could potentially serve the purpose of sampling
or sensing cues from the environment (such as crypt material) to
respond to perturbations of the intestinal stem cell compartment.
Accordingly, it has been suggested that cryptopatches act as a
platform to rapidly amplify ILC-mediated immune responses,
not only through cytokine production, but also through ILC
movement into surrounding tissue (60).

Interestingly, occupancy of tissues niches by ILCs is regulated
by quorum sensing-like mechanisms. Thus, it has recently
been shown that receptor activator of nuclear factor kappa

B (RANK)-RANK ligand (RANKL) interactions adjust the
numbers of mouse CCR6+ LTi-like ILC3s to the size of the niche,
likely within cryptopatches (61). Therefore, regardless of their
outer environment, clustering of CCR6+ ILC3s allows them to
keep one another in check. This mechanism likely operates also
in human tonsil, where CCR6+ ILC3s express both RANK and
RANKL (61).

In many tissue niches, ILCs have an intimate relationship
with non-hematopoietic cells, such as stromal cells. For example,
an ILC3-stromal cell niche in secondary lymphoid organs has
been reported in both mice and humans (62). Moreover, ILC2s
occupy a distinct perivascular localization close to stromal
cells in the lung (63, 64). In this specific niche, adventitial
stromal cells promote ILC2 homeostasis in steady-state and
in response to helminth infection through the production
of IL-33 and thymic stromal lymphopoietin (TSLP) (64). In
turn, ILC2-derived IL-13 supports the expansion and IL-33
production by adventitial stromal cells (64). The close proximity
of lung ILC2s to blood vessels has been proposed to allow
efficient recruitment of eosinophils from the blood (63), further
underscoring the importance of ILC intra-tissue localization
(Figure 3). Furthermore, ILC2s are strategically positioned
within the airways, near airway branch points (65), where inhaled
particles are thought to accumulate. This puts ILC2s in close
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FIGURE 2 | ILC trafficking and positioning in the intestine. ILC homing to the small intestine is mediated by α4β7 integrin and the chemokine receptor CCR9 and their

respective ligands MAdCAM-1 and CCL25. ILC2s in the bone marrow already express CCR9 and are therefore capable of homing to the small intestine directly. In

contrast, retinoic acid is required to induce CCR9 expression in ILC1s and ILC3s after their CCR7-dependent trafficking to mesenteric lymph nodes (mLN). After

homing to the intestine, ILC3s are positioned within different tissue niches by distinct signals: (i) CCR6+ LTi-like ILC3s localize to cryptopatches (CP) and isolated

lymphoid follicles (ILF) through the GPR183-mediated sensing of 7α,25-dihydroxycholesterol (7α,25-OHC). CP/ILF-resident ILC3s stimulate IgA production by

interacting with B cells and support crypt stem cells through the constitutive production of IL-22. (ii) NKp46+ ILC3s are positioned to intestinal villi through

CXCR6-CXCL16, which promotes host defense against intestinal pathogens via IL-22. (iii) Microbiota-produced butyrate regulates the regional residence of NKp46+

ILC3s in Peyer’s Patches (PP), which controls intestinal tolerance through GM-CSF secretion and regulatory T cells (Treg). (iv) GPR183 and its ligand 7α,25-OHC are

also essential for the localization of CCR6+ LTi-like ILC3s to the interfollicular region within mLNs, where they interact with T follicular helper cells (TFH) and B cells to

regulate IgA production.

contact with neuroendocrine cells that activate ILC2s through
the release of calcitonin gene-related peptide (65). ILC-neuron
interactions also occur in intestinal cryptopatches (66) and
accordingly neuronal circuits have been shown to regulate ILC
function in different contexts (66–71).

Furthermore, there is the emerging concept that different
tissue microenvironments specify ILC function, as has been
shown for ILC2s (72). Local tissue niches might also regulate
ILC function through stimulating ILC plasticity. In vitro, ILC
plasticity occurs through the exposure to polarizing cytokines,
such as IL-1β and IL-12, which induces the conversion of
ILC2s and ILC3s into ILC1s (35, 73–76). However, it is unclear
where these factors are produced in vivo and where ILC
trans-differentiation occurs within tissue. One possibility is
that migratory signals induced by inflammation guide ILCs to
specific niches, where they are exposed to polarizing cytokines.
Alternatively, the polarizing cytokines might be produced within
the same niche in response to inflammatory stimuli.

Overall, the signals and migratory receptors regulating the
co-localization and interaction of ILCs with stromal cells and
other immune cells, such as T cells, are largely unknown. Subsets

of ILCs interact with T cells through the expression of major
histocompatibility complex (MHC) class II, CD1d, OX40 ligand
(OX40L), and CD30 ligand (CD30L) (77). In the intestine, MHC
class II+ ILC3s suppress CD4T cell responses against the local
microbiota (78, 79), whereas the interaction of MHC class II+

ILC2s with CD4T cells promotes type 2 immunity in the lung
(80). Moreover, OX40L-expressing ILC2s stimulate Th2 and
regulatory T cell (Treg) responses in lung and adipose tissue
(81). Interestingly, adult LTi-like ILC3s constitutively express co-
stimulatory ligands (OX40L, CD30L), whereas fetal LTi cells do
not (82).

Another interesting area for future investigation is the
occupation of tissue niches by ILCs and their adaptive
counterparts, i.e., T cells. This is particularly relevant since both
ILCs and T cells largely dependent on the same factors (γc
cytokines) for their homeostasis and expansion, therefore likely
competing with each other. Accordingly, intestinal ILC2s and
ILC3s expand in T cell-deficient mice, e.g., in mice lacking Rag
genes (16), most likely due to increased availability of IL-2 and
IL-7. This notion is supported by the finding that intestinal ILC3s
outcompete T cells for IL-2 (79) and that IL-7 consumption by
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FIGURE 3 | ILC migration in the lung. Suppression of CXCR4 by IL-33 enables ILC2Ps to egress from the bone marrow and home to the lung, where they occupy a

perivascular niche. This strategic localization likely allows ILC2-mediated recruitment of eosinophils from the circulation into the lung. In addition, prostaglandin D2

stimulates ILC2 migration in the lung through the interaction with its receptor CRTH2 on ILC2s. ILC2s thereby promote type 2 barrier immunity, but also allergic

inflammation as in asthma. During helminth infection, IL-25-responsive inflammatory ILC2s (iILC2s) are capable of trafficking from the intestine to the lung, where they

support anti-helminth immunity. This inter-organ trafficking requires S1PR1-S1P. LTi-like ILC3s migrate in the lung using CXCR5-CXCL13 and likely

neuropilin-1-VEGF-A. LTi-like ILC3s mediate the formation of inducible bronchus-associated lymphoid tissue (iBALT), which is essential for the early control of

tuberculosis (TB) in the lung, but may also be involved in inflammatory responses occurring in chronic obstructive pulmonary disease (COPD).

ILCs regulates the amount of IL-7 that is available to T cells (83).
Finally, it has been suggested that IL-2 produced by proliferating
T cells maintains LTi-like ILC3s in lymphoid structures (77), in
accordance with the observation that mesenteric lymph node-
resident ILC3s are reduced in T cell-deficientmice (84). However,
in many tissues it has not been thoroughly investigated whether
ILCs and T cells occupy distinct or overlapping niches.

ILC TRAFFICKING TO TISSUES

Trafficking Receptors on ILCs
Mature ILCs are largely tissue-resident cells (39), yet the signals
that control the migration of ILCPs and mature ILCs into
tissues during embryogenesis, adult life, and inflammation are
still incompletely understood. Similar to T lymphocytes, ILC
trafficking to tissues is regulated by integrins and chemokine
receptors (Table 1) that are often expressed in an ILC subset-
specific manner with similar chemokine receptor expression as
the corresponding T helper subsets (32).

For example, LTi-like ILC3s express CCR6 and CXCR5
(10, 11), both transcriptional targets of RORγt, which are also
preferentially expressed on Th17 cells (CCR6) and T follicular
helper cells (CXCR5). CCR6 and CXCR5 are already expressed

on ILC3Ps that migrate to peripheral tissues from the fetal
liver and adult bone marrow (9). In contrast, NKp46+ ILC3s
express CXCR6 (29, 92), the receptor for CXCL16, which
mediates their localization to the lamina propria (58). ILC1s
also express CXCR6 (92). Furthermore, CXCR6 promotes the
homing of NK cells to the liver, which is important for NK cell
memory (93). Lymphoid tissue-resident human ILC3s with LTi
activity, as well as murine fetal CD4+ LTi cells, not only express
CCR6 and CXCR5, but also Neuropilin-1, which mediates their
migration toward vascular endothelial growth factor-A (VEGF-
A) (99). Finally, distinct subsets of intestinal ILC3s express
CD49a (integrin α1) (86). Moreover, similar to Th2 cells, both
mouse and human ILC2s express CCR4 (27, 29, 100) and other
skin-homing receptors, such as cutaneous leukocyte-associated
antigen (CLA) and CCR10 that bind to endothelial cell-leukocyte
adhesion molecule 1 (ELAM-1) and CCL27/CCL28, respectively
(32). It has been reported that ILC2s in broncho-alveolar lavage
fluid highly express CCR4 (and CCR7) after IL-33 administration
(101), suggesting a role for CCR4 and its ligands CCL17 and
CCL22 in ILC2 migration following activation, although this
prediction requires experimental validation. CCR8 is another
chemokine receptor that shows shared expression in ILC2s and
Th2 cells (29), which may mediate ILC homing to the skin
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TABLE 1 | Receptors involved in ILC migration.

Receptor Ligand Source Function References

INTEGRINS/SELECTINS

α4β7 integrin MAdCAM-1 Endothelial cells LTi cell entry into embryonic LNs; ILC trafficking to small intestine and colon (18, 85)

CD49a Collagen Tissue matrix ILC tissue retention? (30, 86)

αEβ7 integrin E-cadherin Epithelial cells ILC1 interaction with intestinal epithelium? (50)

CD69 NA NA Inhibition of ILC tissue egress by antagonizing S1P receptors (41)

CD62L

(L-selectin)

MAdCAM-1

GlyCAM-1

CD34

Endothelial cells LN entry and recirculation of ILCPs, ILC1s, NK cells (42, 43)

CHEMOKINE RECEPTORS

CCR6 CCL20 Epithelial cells ILC3 positioning to hair follicles; recruitment into inflamed skin (43, 87)

CCR7 CCL19/CCL21 Stromal cells LTi cell clustering at LN anlagen; ILC1/ILC3 migration from BM to mLNs;

ILC LN entry and recirculation; ILC3 trafficking from intestine to mLNs; ILC3

recruitment to tumors

(43, 84, 85, 88–90)

CCR9 CCL25 Epithelial cells ILC trafficking to small intestine (85)

CXCR4 CXCL12 Reticular cells? Inhibition of ILC2P egress from BM (37)

CXCR5 CXCL13 Stromal cells LTi cell clustering at LN anlagen; ILC3 recruitment to infected lung in

tuberculosis; ILC3 clustering with stromal cells in tumors

(88, 90, 91)

CXCR6 CXCL16 CX3CR1+ DCs

Other cells?

Positioning of NKp46+ ILC3s to small intestinal villi; NK cell homing to liver;

ILC3P migration from fetal liver to periphery; ILCP egress from BM

(58, 92, 93)

OTHER RECEPTORS

GPR109A Butyrate Microbiota Regional ILC3 distribution in PPs (94)

GPR183 7α,25-OHC Stromal cells ILC3 migration to cryptopatches; ILC3 recruitment to small intestine; ILC3

positioning within mLNs

(21, 95, 96)

S1P

receptors

S1P Red blood cells?

Endothelial cells?

NK cell egress from BM and LNs; ILC egress from LNs; ILC2 inter-organ

trafficking in helminth infection

(41, 42, 97)

CRTH2 Prostaglandin

D2

ILC2s? ILC2 recruitment to inflamed lung (98)

Neuropilin-1 VEGF-A Unknown LTi cell recruitment to iBALT? (99)

BM, bone marrow; iBALT, inducible bronchus-associated tissue; LN, lymph node; mLN, mesenteric lymph node; PP, Peyer’s Patch.

in response to CCL1. In contrast, ILC1s and NK cells share
preferential expression of CXCR3, the receptor for CXCL9,
CXCL10, and CXCL11, with Th1 cells (102). Furthermore,
expression of CD49a and CD49d (integrin α4) can be used to
distinguish subpopulations of intestinal ILC1s (86). NK cells also
express integrins, such as CD49a and CD49b (integrin α2) (32).
In addition to subset-specific expression, migratory receptors
are also expressed in a tissue-specific manner within the same
ILC subset. For example, ILC2s in adipose tissue have higher
expression of Itgae, Ccr6, and Cxcr4 than ILC2s from other
tissues (72).

Seeding of Tissues With ILCs During
Development
In mice, ILCs derived from fetal liver hematopoiesis are among
the first lymphocytes to seed barrier tissues, such as the
intestine before birth (10, 12, 38) (Figure 1). This tissue seeding
prepares the host for the colonization of the intestine with the
microbiota and the intake of food-derived antigens. Moreover,
LTi cells populate organs early to promote the formation of
lymphoid tissues (22). ILCPs express α4β7 integrin, whose ligand
MAdCAM-1 is widely expressed in the fetus, thereby allowing
ILCP migration to a variety of tissues (32). The entry of LTi
cells into embryonic lymph nodes is also dependent on α4β7

integrin (103). Furthermore, the interaction of CXCL13, induced
by retinoic acid in mesenchymal organizer cells, with CXCR5 on
LTi cells is required for the clustering of LTi cells at embryonic
lymph node anlagen and lymph node development, with a minor
contribution of CCL21 and its receptor CCR7 (88). Further work
showed that the amount of maternal retinoic acid regulates the
number of LTi cells and therefore the size of lymph nodes,
which determines anti-viral immunity later in life (15). Before
birth, LTi cells also cluster at embryonic anlagen to promote the
formation of Peyer’s Patches, which is dependent on expression
of RET, a tyrosine kinase receptor for neurotrophic factors,
on LTi cells (104). In addition, arginase 1-expressing ILCPs
accumulate at Peyer’s Patch anlagen, where they can give rise
to ILC1s, ILC2s, and ILC3s in the fetal intestine (38). This
ILCP clustering occurs in a CXCR5- and CCR7-independent
manner, since, in contrast to LTi cells, these Arginase 1+ ILCPs
do not express CXCR5 and CCR7 (38). In contrast to LTi
cells, Arginase 1+ ILCPs also lack lymphotoxin expression and
are therefore dispensable for Peyer’s Patch organogenesis (38).
Finally, fetal α4β7+CXCR6+CCR6+CXCR5+ ILC3Ps migrate
from fetal liver to lymphoid organs and intestine (9, 105) in a
CXCR6-dependent manner (92). ILCs are also found in human
fetal tissues (27), suggesting that early colonization of tissues with
ILCs is conserved between mice and humans.
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Overall, embryonic tissue seeding of ILCPs is reminiscent
of the colonization of tissues with embryonically-derived
macrophages (106, 107). In contrast to organs that are seeded
before birth (e.g., the intestine), other organs, such as the lung
and spleen, are colonized with ILCs after birth. Later, during adult
life, there is likely a second wave of ILCPs from bone marrow (or
other tissues) that enter the circulation and gain access to tissues
to contribute to the ILC pool found in peripheral organs. Again,
this might be in analogy to macrophages, where, in the adult
organism, circulating monocytes enter tissues and, under specific
conditions, can differentiate into tissue-resident macrophages.

ILC Trafficking to Lymph Nodes
In adult mice, ILCs use similar mechanisms as naïve T cells for
lymph node entry (Figure 1). For example, like NK cells, ILCs
(especially ILCPs and ILC1s) enter peripheral lymph nodes using
CD62L (L-selectin) and CCR7 (42, 43). In addition, LTi-like
ILC3s are capable of trafficking from the intestine to draining
mesenteric lymph nodes in a CCR7-dependent manner (84). In
contrast, ILC1s, ILC2s, and NKp46+ ILC3s do not migrate along
this route. Accordingly, LTi-like ILC3s migrate toward the CCR7
ligand CCL21 in vitro, whereas ILC2s are unable to do so (84).
Finally, the trafficking of LTi-like ILC3s to the spleen is not
critically dependent on CCR7 (84).

ILC Trafficking to the Intestine
Tissue-specific signals from the local microenvironment likely
play an important role in the trafficking of ILCs to the intestine,
including cues from the microbiota, which might be particularly
important for intestinal ILC3s (36, 86). In addition, metabolic
cues are essential as has been demonstrated in a few studies so far
(Figure 2). For example, it has been shown that the preferential
homing of ILCs to the small intestine is controlled by diet-
derived nutrients. ILCPs and mature ILC subsets express α4β7
integrin, CCR7, and CCR9 to varying degrees (85, 92) and,
similar to T lymphocytes, ILC1, and ILC3 trafficking to the small
and large intestine requires α4β7 integrin (85) that binds to
MAdCAM-1, abundantly expressed on endothelial cells in the
intestine. Furthermore, the Vitamin A metabolite retinoic acid
is essential for the homing of ILC1s and ILC3s, but not ILC2s,
to the small intestine (85). Specifically, it was found that ILC1s
and ILC3s migrate from the bone marrow to mesenteric lymph
nodes in a CCR7-dependent manner, where retinoic acid induces
expression of α4β7 integrin and CCR9 (85), whose ligand CCL25
is abundant in the small intestine. In contrast, CCR9 expression
is acquired by α4β7+ILC2Ps already in the bone marrow and
therefore retinoic acid-independent (85, 100). This feature likely
links the nutrient status of the host to the type of local immune
response through the preferential migration of specific ILC
subsets to the small intestine. This concept is consistent with the
observation that lack of Vitamin A, as it occurs in malnutrition,
causes a reduction of ILC3s and impaired protection against
bacterial pathogens in the intestine, whereas ILC2s and anti-
helminth responses are increased (16). This switch to type
2 barrier immunity likely ensures continued commensalism
with evolutionary partners (helminths, commensal bacteria) in
the small intestine during nutrient deficiency. In contrast, the
homing of ILC3s to the colon requires α4β7 integrin, but not

CCR9, and is therefore independent of retinoic acid (85). It has
not been explored whether other chemotactic receptors used by
T cells, such as GPR15 (108), enable ILC homing to the colon.

Circulating ILCPs
ILCPs are present within tissues, such as the intestine and other
organs, including blood, in mice and humans (9, 38, 40, 42, 109,
110). Despite the presence of ILCPs in both peripheral blood
and tissues, parabiosis studies in mice indicate that ILCs other
than NK cells in both lymphoid and non-lymphoid tissues are
mainly tissue-resident (39). Subsequently, this concept has been
challenged by the finding that human CD34−CD117+ ILCPs are
present not only in blood, but also in a variety of lymphoid
and non-lymphoid tissues (40), demonstrating that these ILCPs
can leave the circulation and migrate into tissues. Furthermore,
these circulating human CD117+ ILCPs can be considered the
equivalent of naïve T cells since they lack immediate effector
function, but have the ability to differentiate into mature ILC1s,
ILC2s, and ILC3s in vitro and upon adoptive transfer into mice.
ILCPs were therefore proposed to serve as cellular substrates
for local “on-demand” ILC-poiesis within tissue (111). Further
studies are needed to clarify potential species-specific differences
in ILCmigration/tissue residency between humans and mice and
to establish to what extent mature ILCs in tissues are replenished
by circulating ILCPs.

Progenitors upstream of human CD34−CD117+ ILCPs
express the adhesion/homing receptor CD34 and are found in
a variety of tissues, but not in blood (111). It is plausible that
loss of CD34 expression on CD34+ ILCPs triggers the entry of
CD34−CD117+ ILCPs into the circulation (111). Furthermore,
IL-1β (in combination with IL-2 and IL-7) acts as a growth factor
for CD117+ ILCPs in vitro (40) and it has been suggested that
production of IL-1β induced by disruption of tissue homeostasis
promotes the migration of ILCPs from blood into tissue (111).
However, as a cytokine, IL-1β lacks direct chemotactic activity
and therefore other, yet unknown, chemotactic guidance cues and
their corresponding receptors must be involved.

ILCP Egress From Bone Marrow
In mice, ILCPs and ILC2Ps, unlike common lymphoid
progenitors, express the chemokine receptor CXCR6 and
their egress from the bone marrow is partially dependent on
CXCR6, thereby regulating ILCP entry into the circulation (92).
In contrast, adult ILC3Ps migrate from the bone marrow to the
periphery in a CXCR6-independent manner (9). Furthermore,
a recent study demonstrated that IL-33 signaling is required for
the egress of ILC2Ps from the bone marrow during the perinatal
period by downregulating CXCR4 expression (37). Finally,
the bioactive lipid sphingosine-1 phosphate (S1P) promotes
lymphocyte egress from several organs (112) and S1P receptor 5
(S1PR5) is essential for the bone marrow egress of NK cells (97).
However, it has not been investigated whether S1P receptors also
regulate the egress of ILCPs from bone marrow.

ILC Recirculation
Both mouse and human ILCPs in the blood express CD62L,
which promotes lymph node entry of ILCPs, whereas lymph node
exit requires S1P receptors (42). The later possibility is further
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supported by the finding that treatment with the S1P agonist
FTY720, which disrupts S1P gradients and results in S1P receptor
internalization from the cell surface (112), causes ILC-penia,
while increasing the number of ILCs in lymph nodes (113). These
studies are consistent with the concept that, similar to naïve T
cells, ILCPs and some mature ILCs have the ability to re-circulate
between blood and lymphoid organs (Figure 1). This notion is
further supported by a recent study in mice, demonstrating that
ILC1s (similar to NK cells) recirculate between blood and lymph
nodes in a CD62L- and CCR7-dependent manner, whereas ILC3s
in lymph nodes are mainly tissue-resident (43). Furthermore,
among human ILCs, NKp44− ILC3s, likely representing ILCPs
(40), have higher expression of genes encoding surface receptors
involved in lymphocyte recirculation (CD62L, CCR7, S1PR1)
than NKp44+ ILC3s (114). Finally, compared to their circulating
counterparts, human lymphoid tissue-resident ILC3s express
CXCR5 and CCR7, known to regulate positioning within
lymphoid organs (114).

Tissue Retention of ILCs
Finally, less is known about the factors that retain ILCs
within tissues once they are recruited. This likely involves the
same receptors that are required for the tissue retention of T
lymphocytes (115) (Table 1). For example, intestinal and skin
ILCs express CD69 (41, 48, 92), which antagonizes the egress
receptor S1PR1 (116). In addition, ILC2s from human tissues
express the collagen-binding integrin CD49a (30) that has been
shown to promote T cell retention in tissues. Populations of
mouse ILC1s and ILC3s also express CD49a (86) as do human
intraepithelial ILC1s in the intestine (50). In addition, the latter
subset expresses CD103 (αE integrin) (50), which together with
β7 integrin binds to E-cadherin on epithelial cells. CD103+ ILC2s
have also been identified in mouse skin (117). Further studies
(such as genetic ablation in mice) are required to demonstrate
a direct role for specific receptors in the tissue retention of ILCs.

ILC POSITIONING WITHIN TISSUE

ILCs occupy strategic positions within tissues to perform their
organ-specific functions. Proper ILC positioning within tissue
is also critical for the spatial compartmentalization of tissue
immunity. For example, as discussed above, ILCs inhabit tissue-
specific niches, which facilitates the interaction with other
immune cells as well as with non-hematopoietic cells. However,
there is very limited knowledge regarding the signals and
receptors that direct ILCs to local tissue niches. Recent work
elucidated how metabolic signals ensure that ILCs are properly
positioned in the intestine to carry out their function. We found
that intestinal ILC3s lacking the G protein-coupled receptor
GPR183 (also known as EBI2) exhibit aberrant localization (21).
GPR183 recognizes hydroxylated metabolites of cholesterol, so-
called oxysterols, with 7α,25-dihydroxycholesterol as the main
GPR183 ligand (118, 119). We demonstrated that oxysterols
sensed through the receptor GPR183 function as guidance cues
to position ILC3s within intestinal cryptopatches, which is critical
for lymphoid tissue formation in the colon (21) (Figure 4).
Similar findings have been subsequently reported by two other

FIGURE 4 | The GPR183-oxysterol pathway positions ILC3s in the colon. In

steady-state, LTi-like ILC3s are recruited to cryptopatches by the receptor

GPR183 that senses locally produced cholesterol metabolites (oxysterols). The

GPR183 ligand 7α,25-dihydroxycholesterol (7α,25-OHC) is produced by

CD34+ fibroblastic stromal cells. The interaction of GPR183+ LTi-like ILC3s

with stromal cells leads to cryptopatch formation in steady-state. Inflammation

increases 7α,25-OHC production and promotes the migration of GPR183+

ILC3s and myeloid cells to inflammatory foci within the colon. Adapted from

reference (21).

labs (95, 120). Chu et al. found that GPR183 also regulates
ILC3 recruitment to the small intestine (but not to the colon),
possibly through promoting α4β7 integrin surface expression on
ILC3s (95). We further showed that oxysterols are produced by
specialized stromal cells located within cryptopatches/isolated
lymphoid follicles (21). The intriguing possibility that dietary
cholesterol in breast milk is a source of oxysterols required for
post-natal lymphoid organogenesis in the colon remains to be
explored (119).

This complements previous work showing that CXCL16
produced by CX3CR1+ dendritic cells guides the positioning of
CXCR6+ NKp46+ ILC3s to the villi of the small intestine, where
they contribute to epithelial defense through the production of
IL-22 (58). Notably, the chemokine receptors CCR6 and CXCR5
(and their respective ligands CCL20 and CXCL13), although
specifically expressed by LTi-like ILC3s, are not required for
ILC3 migration to cryptopatches, neither in the small nor large
intestine (121, 122). However, it has recently been reported
that skin ILC3s are positioned within hair follicles in a CCR6-
dependent manner (87). In mesenteric lymph nodes, ILC3s
are found in a specific anatomical location, the interfollicular
region (84), and GPR183 also promotes the proper positioning of
ILC3s to this region, whereas CCR6 and CXCR5 are dispensable
(95, 96).

Apart from NK cells that largely lack GPR183, ILC subsets
other than LTi-like ILC3s also express GPR183 to varying degrees
(21). However, the specific functions of GPR183 in other ILC
subsets is unknown. Overall, our recent work and that of others
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indicates an important role for local cholesterol metabolites in
directing ILC migration.

Other lipids, such as leukotrienes and prostaglandins, are
likely relevant for the intra-tissue localization of ILCs (Figure 3).
For example, human ILC2s are phenotypically defined by the
expression of CRTH2 (27), the prostaglandin D2 receptor, and
prostaglandin D2 induces the chemotaxis of ILC2s in vitro (123).
Accordingly, CRTH2 mediates accumulation of mouse ILC2s in
the inflamed lung (98). Moreover, human ILC2s found in asthma
are responsive to the lipid mediators prostaglandin D2 and
lipoxin A4 (124). As mentioned above, amino acid derivatives,
such as a tryptophan metabolites, can regulate ILC homeostasis
through AHR. However, it is currently unknown whether amino
acid-derived molecules can also act as chemotactic cues, guiding
ILC positioning.

Apart from host-derived signals, the gut microbiota also
likely regulates ILC migration and positioning through the
local production of metabolites. For example, lymphoid-tissue
resident commensal bacteria promote ILC3 localization
to mesenteric lymph nodes and Peyer’s Patches (125).
Furthermore, the short-chain fatty acid butyrate controls
the compartmentalization of ILC3s in Peyer’s Patches (94).
Specifically, it has been shown that butyrate, sensed through
the receptor GPR109A on ILC3s, is more abundant in ileal
than jejunal Peyer’s Patches, thereby inhibiting the residence of
CCR6−NKp46+ (and CCR6+NKp46−) ILC3s in ileal Peyer’s
Patches (94).

Overall, more metabolic signals remain to be identified that
promote proper ILC localization in healthy and inflamed tissue.
The use of lipid metabolites, rather than the exclusive use of
genome-encoded proteins (chemokines), as guidance cues for
ILCs within tissue might be advantageous for the host. Lipid
metabolites can be rapidly produced and inactivated through
enzymatic conversion, as exemplified by the GPR183 ligand
7α,25-dihydroxycholesterol since its synthesis from cholesterol is
controlled by two enzymes, cholesterol 25-hydroxylase (CH25H)
and 7α-hydroxylase (CYP7B1); and it can be further metabolized
into bile acid precursors that lack chemotactic activity by the
enzyme 3β-hydroxysteroid dehydrogenase type 7 (HSD3B7)
(118). This allows tight regulation of 7α,25-dihydroxycholesterol
abundance within tissue. Furthermore, lipid metabolites likely
easily diffuse within tissue, thereby facilitating the generation
of precise local chemotactic gradients. Finally, from the
same precursor molecule, two bioactive metabolites with
distinct functions can be generated: 25-hydroxycholesterol
generated by CH25H from cholesterol has anti-viral and
anti-inflammatory activity, whereas 7α,25-dihydroxycholesterol
synthesized from 25-hydroxycholesterol by CYP7B1 regulates
immune cell migration through GPR183 (118). This feature
likely allows coordinated regulation of tissue-resident immune
function by lipid metabolites.

ILC MIGRATION DURING INFLAMMATION

During infection and other tissue insults, ILCs must migrate
to local sites of inflammation within tissue. For example,

Neuropilin-1+ human LTi cells are present in inducible
bronchus-associated lymphoid tissue (iBALT) in the inflamed
lung in chronic obstructive pulmonary disease (COPD) (99).
A recent study showed that, in Mycobacterium tuberculosis
infection, ILC3s are recruited via the CXCL13-CXCR5 axis to
the lung, thereby mediating the formation of iBALT associated
with granulomas, which contributes to early control of infection
together with the production of IL-17 and IL-22 (91). In
addition, IL-17-producing ILC3s are present in the alveolar
space in asthma patients (126). Similarly, ILC2s are increased
in the broncho-alveolar lavage fluid of humans with idiopathic
pulmonary fibrosis (127). Furthermore, it has recently been
shown that ILCs are recruited into the inflamed skin in a CCR6-
dependent manner (43). Finally, the accumulation of LTi-like
ILC3s in mesenteric lymph nodes after helminth infection is
dependent on CCR7-mediated trafficking (84).

The GPR183-oxysterol pathway also plays an important
role in controlling ILC migration in inflamed tissue (119).
Mobilization of ILC3s from cryptopatches into the surrounding
tissue occurs during intestinal inflammation (60). We showed
that the recruitment of ILC3s (andmyeloid cells) to inflammatory
foci in the colon is dependent on GPR183 (21) (Figure 4). It is
reasonable to assume that increased oxysterol synthesis induced
by tissue injury conveys perturbation of tissue homeostasis
to the immune system, initiating ILC movement and the
inflammatory response (119). It is currently unknown whether
other metabolites produced in inflamed tissue regulate ILC
migration and localization.

An important feature of ILCs is their ability to contribute to
the repair of tissues damaged by infection, inflammation, and
irradiation, which is likely dependent on their local migration
and accumulation within damaged tissues. For example, LTi-like
ILC3s restore lymphoid tissue architecture after viral infection
(128), promote thymic regeneration after irradiation (129), and
protect the intestine from graft vs. host disease-induced damage
after hematopoietic stem cell transplantation (55). Similarly,
ILC2s alleviate virus-induced damage to the lung (33).

Moreover, a recent study established the new concept of ILC
inter-organ trafficking during inflammation. Specifically, it was
shown that inflammatory IL-25-responsive ILC2s can migrate
from the intestine to the lung during helminth infection to
support host defense (41). The exit of ILC2s from the intestine
into the blood via the lymphatic system was mediated by S1P
(41), the critical factor regulating lymphocyte egress from tissues
(112). CD69, expressed on tissue-resident ILCs, antagonizes
S1PR1 through downmodulation of S1PR1 from the cell surface
(116). In contrast, inflammatory ILC2s are CD69−, allowing
S1PR1-dependent egress into the circulation (41). A previous
study in mice had found that intestinal NK cells, ILC1s, and
ILC3s are CD69hi, whereas ILC2s are CD69lo, supporting the
concept that intestinal ILC2s might be “less tissue-resident”
than other intestinal ILC subsets (92). Finally, it has been
suggested that signals from the local microbiota promote S1P
receptor expression on ILC2s, thereby allowing them to exit the
intestine (130).

It remains to be tested whether inter-organ trafficking of
ILCs also occurs between other organs. In this context, it is
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relevant that in various inflammatory conditions activated ILCs
are found in peripheral blood. For example, human NKp44+

ILC3s expressing homing receptors for skin and intestine
appear in the circulation after conditioning for hematopoietic
stem cell transplantation (131). Similarly, circulating ILC2s are
increased in humans with asthma (132). These observations
suggests that inter-organ trafficking might also occur in humans
after mobilization of ILCs into the blood in response to
inflammatory stimuli.

As outlined above, the recruitment of blood-borne ILCPs
during infection may contribute to ILC heterogeneity within
tissue. However, the signals activating blood-resident ILCs within
tissue and recruiting them into the inflamed tissue from the
circulation are unknown. This could involve tissue-derived
signals sensed within the local vasculature and/or intra-tissue
signals. Furthermore, the relative contribution of local expansion
of resident ILCs vs. the recruitment of ILCPs to inflamed tissue is
still unclear and may vary between tissues and the type of insult.
For example, inflammatory signals could disrupt RANKL-RANK
interactions, thereby allowing the local proliferation of CCR6+

ILC3s (61).

ILC MIGRATION IN CANCER

Another largely unexplored area that warrants further
investigation is ILC migration in cancer. The tumor
microenvironment constitutes a unique metabolic milieu,
resembling inflamed tissue. Among ILCs, NK cells are often the
predominant population found in the tumor microenvironment,
e.g., in human lung and colon cancer (30). Due to their
cytotoxic activity, NK cells are a promising target for anti-cancer
immunotherapy (133). However, in many human cancers, e.g.,
lung adenocarcinoma, NK cells are under-represented within the
tumor compared to healthy tissue (134), especially the cytotoxic
CD56dim subset (135). This suggests that NK cell recruitment to
tumors is suboptimal and targeting NK cell migration could be a
valuable strategy in cancer immunotherapy. Several chemokines
and their respective receptors mediating NK cell migration to
tumors have been identified, such as CXCL8-CXCR1/CXCR2,
CXCL10-CXCR3, CXCL12-CXCR4, and they are being explored
as clinical targets (136).

Whereas, a role for NK cells in controlling cancer growth and
metastasis has been well-established, the function of other ILC
subsets in cancer, especially in regards to migration, is poorly
understood (133). In several hematological malignancies, human
ILC1s, ILC2s, and ILC3s are increased in the blood compared to
healthy individuals (133), supporting the notion that ILCs can be
mobilized into the circulation during malignancy. There is also
some evidence that circulating human ILC2s could contribute to
immunosuppression in gastric cancer (137).

Furthermore, ILC3s with likely LTi function are enriched in
solid tumors both in mice and humans. For example, NKp46+

ILC3s invade B16 mouse melanoma expressing IL-12 (138). It
was shown in the same model that lymphoid tissue-resident
(splenic) Rorcfate−map+ ILCs have superior anti-tumor activity

than intestinal or hepatic Rorcfate−map+ ILCs and Rorcfate−map−

ILC1s/NK cells (139). NKp46+CCR6+CXCR5+ ILC3s with
LTi properties are also enriched in tumor-associated tertiary
lymphoid structures in human non-small cell lung cancer (140).
Both studies showed that tumor-associated ILC3s upregulate
adhesion molecules on the tumor vasculature, which likely
promotes anti-tumor immunity through the recruitment of T
cells. These tertiary lymphoid structures are of interest because
of their importance for T cell-mediated anti-tumor immunity
and their general positive prognostic value for cancer outcome,
e.g., in lung cancer (141). However, tumor-associated lymphoid
structures may also promote cancer growth. For example, one
study reported that high amounts of CCL21 recruit CD4+

LTi cells to tumors in a CCR7-dependent manner, which is
associated with the formation of tumor-promoting lymphoid-
like stroma in melanoma (89). In a mouse model of breast
cancer, it was also shown that CCL21 recruits CCR7-expressing
ILC3s with an LTi phenotype (CD4+CCR6+) to the tumor
environment (90). Furthermore, CXCL13 was required for the
clustering of CXCR5+ ILC3s with mesenchymal stromal cells
in the tumor microenvironment, which supported lymph node
metastasis (90).

Interestingly, complementary to our findings in the intestine,
it has recently been shown that oxysterol recognition through
GPR183 is required for the development of iBALT (142), a
common feature of active lung inflammation. However, this
study did not determine the role of GPR183-expressing ILCs
in this process. Overall, it seems plausible that the oxysterol-
GPR183 pathway could also be involved in the formation of
tertiary lymphoid structures in cancer.

CONCLUDING REMARKS

ILCs maintain healthy organ function and it is increasingly
recognized that ILC function is critically dependent on their
trafficking to and localization within tissues. Accordingly, ILC
migration and the mechanisms of ILC tissue recruitment are
areas that are beginning to be explored in more depth. It is
important to comprehensively identify the guidance cues and
receptors that control ILC localization and motility in tissues.
In the long-term, cell surface receptors regulating ILC migration
to inflamed or malignant tissues could serve as new therapeutic
targets for human diseases.
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