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Pertussis is a highly contagious respiratory infection caused by the bacterium Bordetella

pertussis. Humans are the only known natural reservoir of B. pertussis. In mice,

macrophages and NK cells have a key role in confining B. pertussis to the respiratory

tract. However, the mechanisms underlying this process, particularly during human

infections, remain unclear. Here we characterized the activation of human macrophages

and NK cells in response to B. pertussis and unraveled the role of inflammasomes in this

process. NLRP3 inflammasome activation by B. pertussis in human macrophage-like

THP-1 cells and primary monocyte-derived macrophages (mo-M8) was shown by the

visualization of ASC-speck formation, pyroptosis, and the secretion of caspase-mediated

IL-1β and IL-18. In contrast to macrophages, stimulation of human CD56+CD3− NK

cells by B. pertussis alone did not result in activation of these cells. However, co-culture

of B. pertussis-stimulated mo-M8 and autologous NK cells resulted in high amounts

of IFNγ secretion and an increased frequency of IL-2Rα+ and HLA-DR+ NK cells,

indicating NK cell activation. This activation was significantly reduced upon inhibition

of inflammasome activity or blocking of IL-18 in the mo-M8/NK cell co-culture.

Furthermore, we observed increased secretion of proinflammatory cytokines in the B.

pertussis-stimulated mo-M8/NK co-culture compared to the mo-M8 single culture.

Our results demonstrate that B. pertussis induces inflammasome activation in human

macrophages and that the IL-18 produced by these cells is required for the activation of

human NK cells, which in turn enhances the pro-inflammatory response to this pathogen.

Our data provides a better understanding of the underlying mechanisms involved in the

induction of innate immune responses against B. pertussis. These findings contribute

to the knowledge required for the development of improved intervention strategies to

control this highly contagious disease.
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INTRODUCTION

Pertussis, also known as whooping cough, is a highly contagious
and acute disease of the upper respiratory tract, which can
be fatal in newborns and non-vaccinated young children.
Pertussis is caused by the Gram-negative bacterium Bordetella
pertussis (1, 2) and humans are the only known natural
reservoir for this pathogen (3). Despite pertussis being a vaccine
preventable disease, it has reemerged in vaccinated populations
(4, 5). Proposed reasons for this reemergence include pathogen
adaptation and waning of vaccine-induced immunity (6–8).
Prevention and control of this disease requires new and improved
intervention strategies for which a better understanding of the
underlyingmechanisms involved in shaping a protective immune
response is crucial.

The innate immune system is the first line of defense against
invading microorganisms. Upon activation, it immediately
combats microbes and additionally orchestrates an adaptive
immune response. Innate immune cells, including dendritic
cells (DCs) and macrophages, contribute to B. pertussis induced
immunity (9–11). Sensing of B. pertussis by murine DCs
and macrophages has been shown to result in inflammasome
activation (9, 12). Inflammasomes are multiprotein complexes
that form in the cytosol of immune cells, particularly in
macrophages (13, 14). The best characterized inflammasomes
are composed of a specific sensor protein of the nucleotide-
binding oligomerization domain-like receptor (NLR) family,
the apoptosis-associated speck-like protein containing a caspase
activation and recruitment domain (ASC) adaptor protein and
pro-caspase-1 (15). Activation of the sensor protein results in
the formation of a single, compact speck by the ASC protein,
which is essential for the oligomerization and activation of
caspase-1 (16). Active caspase-1 cleaves pro-IL-1β and pro-IL-18
resulting in the release of bioactive IL-1β and IL-18, and induces
pyroptosis, a form of proinflammatory cell death (17–19). In
mice, inflammasome activation is associated with the induction
of an antigen-specific T helper (Th) 17 response and clearance of
the pathogen (9, 12).Whether B. pertussis induces inflammasome
activation in human cells and whether this enhances the immune
responses against this pathogen is unknown.

Another innate immune cell that has been shown to be
essential in the clearance of B. pertussis is the natural killer (NK)
cell. In mice lacking NK cells, B. pertussis disseminates from the
respiratory tract and causes a lethal infection (20, 21). One of
the main functions of NK cells during bacterial infections is the
secretion of the proinflammatory cytokine IFNγ (22). Disruption
of IFNγ signaling during a murine infection with B. pertussis
results in a lethal disseminating disease (21). Furthermore, IFNγ

enhances the killing of B. pertussis by murine macrophages (23).
These studies imply an essential role for IFNγ secreting NK cells
in the protective immune response against B. pertussis in the
mouse model. However, the mechanism by which NK cells are
activated during B. pertussis infection and how the secretion of
IFNγ is induced is unknown in mice and humans.

Since inflammasome activation in macrophages results in the
secretion of IL-18 and this cytokine is known to activate NK cells
(24–27), we investigate the potential crosstalk between human

macrophages and NK cells in response to B. pertussis and the
role of inflammasomes in this process. We show for the first
time that B. pertussis induces inflammasome activation in human
macrophages and that caspase-mediated IL-18 release is required
for the activation of NK cells by the pathogen.

MATERIALS AND METHODS

Ethics Statement
This study was conducted according to the principles described
in the Declaration of Helsinki. Buffy coats were provided
by the Sanquin Blood Supply. For the collection of samples
and subsequent analyses, all blood donors provided written
informed consent. Blood samples were processed anonymously
and the research goal, primary cell isolation, required no
review by an accredited Medical Research Ethics Committee,
as determined by the Dutch Central Committee on Research
involving human subjects.

Culture Media
THP-1 cells (InvivoGen) were cultured in Roswell ParkMemorial
Institute 1640 medium (RPMI; Gibco) enriched with 10% fetal
bovine serum (FBS; Gibco), 100 U/ml penicillin, 100µg/ml
streptomycin, 29.2µg/ml L-Glutamine (Gibco), and 100µg/ml
NormocinTM (InvivoGen), from here on referred to as RPMI
culture medium. NK cells were cultured in Iscove’s Modified
Dulbecco’s Medium (IMDM) supplemented with 10% FBS,
100 U/ml penicillin, 100µg/ml streptomycin, and 29.2µg/ml
L-Glutamine, from here on referred to as IMDM culture
medium. Monocytes were differentiated to macrophages in
IMDM supplemented with 1% FBS, 100 U/ml penicillin,
100µg/ml streptomycin, 29.2µg/ml L-Glutamine, and 50 U/ml
human GM-CSF (PreproTech), from here on referred to as
monocyte differentiation medium. mo-M8 and mo-M8/NK
co-cultures were stimulated in IMDM medium enriched with
1% FBS and 29.2µg/ml L-Glutamine (Lonza), from here on
referred to as infection medium. HEK-Blue IL-1R and HEK-
Blue-Null1 cells were cultured in Dulbecco’s Modified Eagle
Medium (DMEM; Gibco) enriched with 10% FBS, 100 U/ml
penicillin, 100µg/ml streptomycin, 100µg/ml NormocinTM, and
29.2µg/ml L-Glutamine, from here on referred to as HEK-Blue
culture medium.

Bacterial Strains and Growth Conditions
The streptomycin and nalidixic acid resistant B. pertussisTohama
I derivative, B0213, and a B. pertussis clinical isolate from 2015,
B4393, were used in this study. To ensure consistency in bacterial
inoculates between experiments, flash freeze vials (FFV) of both
strains were prepared. To prepare the FFV, the bacteria were
plated on Bordet Gengou (BG) agar plates, supplemented with
1% glycerol and 15% defibrinated sheep blood (BD Bioscience)
and incubated at 35◦C and 5% CO2 for 4 days. Next, bacteria
were sequentially passaged on two successive days on BG agar
plates and incubated at 35◦C and 5%CO2 for 1 day. Bacteria were
collected from the BG agar plates and suspended and extensively
washed in Thalen-IJssel medium (28). Bacterial suspensions were
prepared at OD590 0.5 in Thalen-IJssel medium supplemented
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with 15% glycerol and snap frozen prior to storing at −80◦C.
After thawing, FFV were spun down for 10min at 16,000 × g
and the pellet was suspended in infectionmedium prior to use for
cellular in vitro infection. To ensure that the freezing process did
not affect bacterial viability, colony forming units were confirmed
on BG agar plates.

THP-1 Cell Culture
The THP-1, THP-1 ASC-GFP, and THP-1 NLRP3 deficient cell
lines (InvivoGen) were cultured in RPMI culturemedium at 37◦C
and 5% CO2. Every other passage selective antibiotics, 100µg/ml
ZeocinTM (InvivoGen) for THP-1 ASC-GFP and 200µg/ml
Hygromycin B Gold (InvivoGen) for NLRP3 deficient THP-1,
were added to the RPMI culture medium.

Human Monocyte and NK Cell Isolation
and Macrophage Differentiation
Buffy coats from healthy human donors were used for the
isolation of CD56+CD3− NK cells and CD14+ monocytes
for the subsequent generation of mo-M8. First, peripheral
blood mononuclear cells (PBMC) were obtained by gradient
centrifugation of buffy coats diluted eight times in PBS at
1,000 × g for 30min on Lymphoprep (Nycomed). PBMC
were either frozen at −80◦C in 50% IMDM culture medium,
10% dimethylsulfoxide (DMSO; Sigma), and 40% FBS for later
isolation of NK cells or were used for monocyte isolation using
magnetically activated cell sorting in combination with anti-
CD14 microbeads (Miltenyi Biotec). The purity of the CD14
positive cells was determined by flow cytometry. For this,
monocytes were stained with anti-CD14-PE (BD Biosciences)
followed by data acquisition on the LSRFortessa X-20 (BD
Biosciences). Data analysis was performed using FlowJo software
(version 10.5.3; Tree Star). Monocyte purity was more than
90% for every donor. To facilitate differentiation to mo-M8,
monocytes were cultured in flat-bottom 96-well culture plates
(Greiner) at 150,000 cells/well in monocyte differentiation
medium, at 37◦C and 5% CO2 for 6 days. Monocyte
differentiation medium was refreshed after 3 days. NK cells
were isolated from the frozen PBMC fraction using the NK Cell
Isolation Kit human (Miltenyi Biotec). The purity of the NK
cells was determined by flow cytometry. NK cells were stained
with anti-CD56-PE/Cy7 (BioLegend) and anti-CD3-BUV395
(BDBiosciences) followed by data acquisition on the LSRFortessa
X-20 (BD Biosciences). Data analysis was performed using the
FlowJo software (Tree Star). NK cell (CD56+CD3−) purity was
more than 90% for every donor.

THP-1 Cell Stimulation
THP-1 cells were seeded into flat-bottom 96-well plates at 50,000
cells/well in RPMI culture medium containing 50 ng/ml Phorbol
12-myristate 13-acetate (InvivoGen) to induce differentiation
toward a macrophage (M8)-like phenotype. After a 22 h
incubation at 37◦C and 5%CO2, cells were washed and incubated
in RPMI culture medium for 3 additional days. M8-like THP-
1 cells were incubated with the indicated amounts of Tohama
I. As a positive control for NLRP3 inflammasome activation
M8-like THP-1 cells were primed for 3 h with 100 ng/ml

LPS-EK (InvivoGen) and stimulated with 5µg/ml Nigericin
(InvivoGen) for an additional 22 h. When indicated, M8-like
THP-1 cells were stimulated in the presence of 10µg/ml of the
caspase inhibitor, Z-VAD-FMK (InvivoGen). Stimulations were
performed at 37◦C and 5% CO2 for 22 h after which supernatant
was collected for further analysis.

Mo-M8 Stimulation
Mo-M8 were stimulated with Tohama I or the clinical strain
B4393 at a multiplicity of infection (MOI) of 10 in IMDM
infection medium. When indicated, mo-M8 were incubated
with 20µg/ml caspase inhibitor for 30min and subsequently
stimulated with B. pertussis in the presence of 10µg/ml caspase
inhibitor. Stimulations were performed at 37◦C and 5% CO2 for
22 h after which supernatant was collected for cytokine detection.

NK Cell Stimulation
NK cells were seeded into round-bottom 96-wells plates
(Greiner) at 150,000 cells/well in IMDM culture medium
supplemented with 5 ng/ml recombinant human IL-15 (rhIL-15;
PeproTech) (29). Next, NK cells were immediately stimulated
with B. pertussis B4393 at a MOI of 10 in the presence or
absence of 5 ng/ml recombinant human IL-18 (rhIL-18; R&D
systems), 10 ng/ml rhIL-6 (Miltenyi Biotec), 10 ng/ml rhTNFα
(PeproTech), or 10 ng/ml rhIL-1β (InvivoGen). Stimulations
were performed at 37◦C and 5% CO2 for 18 h after which
BD GolgiPlugTM containing Brefeldin A (BD Biosciences) was
added to the culture for 4 h, to inhibit cytokine secretion, before
collecting the NK cells for flow cytometry analysis.

Mo-M8/NK Co-culture
NK cells were rested for 22 h in IMDM culture medium
supplemented with 5 ng/ml rhIL-15 and incubated at 37◦C and
5% CO2 to ensure maturation of the NK cells (29). Mature
NK cells were added to autologous mo-M8 in a 1:1 ratio. Co-
cultures were stimulated with B. pertussis B4393 at a MOI of 10.
When indicated, mo-M8 were incubated with 20µg/ml caspase
inhibitor, 2µg/ml anti human IL-18 (αhIL-18; InvivoGen), or
2µg/ml of the isotype control human IgA2 (hIgA2; InvivoGen)
for 30min prior to addition of NK cells in a 1:1 ratio and
stimulation of the co-culture. Stimulations were performed at
37◦C and 5% CO2 for 22 h after which supernatants were
collected for cytokine detection and NK cells were collected by
washing the wells with PBS for FACS analysis.

Cytokine and LDH Release Analysis
IL-1β and IL-6 were measured in the supernatant of THP-1
cell cultures by using a Ready-SET-Go ELISA kit (eBioscience)
according to the manufacturer’s instructions. Immulon 2 HB flat-
bottom 96-well plates (Thermo Fisher Scientific) were used for
all ELISAs. Mature biologically active IL-1β was measured in the
supernatant of THP-1 cell cultures by using the HEK-Blue IL-
1β receptor (IL1R) cell line (InvivoGen). The HEK-Blue IL1R
cell line and the parental HEK-Blue Null1 cell line contain an
NF-κB-inducible secreted embryonic alkaline phosphate (SEAP)
reporter gene. IL-1β signaling via the IL1 receptor on the HEK-
Blue IL1R leads to expression of SEAP, which activity can be
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detected in the culture supernatants after adding the substrate
Quanti-Blue (InvivoGen). To control for endogenous NF-κB
activation, the parental HEK-Blue-Null1 cells (InvivoGen) were
used. HEK-Blue IL1R and HEK-Blue-Null1 cells were seeded
into flat-bottom 96-wells plates at 50,000 cells/well in HEK-
Blue culture medium containing 10% supernatant derived from
THP-1 cell cultures or 2 ng/ml rhIL-1β (InvivoGen), serving as
a positive control. After a 22 h incubation at 37◦C, supernatants
were collected and the Quanti-Blue substrate was added. After
2 h of incubation with the substrate, the OD values, indicating
SEAP activity, were measured at 639 nm.Measurements and data
analysis were performed with a BioTek PowerWave 340, using
Gen5 software (version 1.11; BioTek). The concentrations of the
cytokines IL-1β, IL-18, IL-23, GM-CSF, IL-10, TNFα, IFNγ, and
Granzyme B in the supernatant from mo-M8 and NK single-
and co-cultures were determined using a ProcartaPlex Mix &
Match luminex kit (Invitrogen) according to the manufacturer’s
instructions. Measurements and data analysis were performed
with the Bio-Plex 200, using Bio-Plex Manager software (version
6.1; Bio-Rad Laboratories). LDH release was determined as
an indicative of pyroptosis by using the CytoTox 96 Non-
Radioactive Cytotoxicity Assay Kit (Promega) according to the
manufacturer’s instructions.

Inflammasome qPCR Array
mRNA levels of 84 genes associated with inflammasomes
were quantified using the RT2 ProfilerTM PCR Array Human

Inflammasomes (QIAGEN) according to the manufacturer’s
instructions. In short, mo-M8 were stimulated with B. pertussis
at a MOI of 100 for 6 h after which the cells were lysed
using QIAzol lysis reagents (QIAGEN) and stored at −80◦C
prior to RNA isolation using the RNeasy mini kit (QIAGEN)
following the manufacturer’s protocol. cDNA was synthesized
from 200 ng total RNA using the RT2 First Strand kit (QIAGEN)
following the manufacturer’s protocol. cDNA was used together
with the RT2 SYBR Green qPCR Mastermix (QIAGEN) in the
RT2 ProfilerTM PCR Human Inflammasomes Array (QIAGEN)
according to the manufacturer’s instructions. Data was acquired
on a StepOnePlus Real-Time PCR System (Applied Biosystems).
Relative transcription levels were analyzed using the web-based
software available on www.qiagen.com.

Flow Cytometry Analysis
NK cells were stained with anti-CD56 PE/Cy7, anti-CD16
BV510, anti-CD25 BV421, anti-HLA-DR BV650, anti-CD69
APC (all from BioLegend), Fixable Viability Stain 780 (BD
Biosciences), and anti-CD3 BUV395 (BD Biosciences) for
30min at 4◦C, followed by washing in FACS buffer [PBS
pH 7.2; 0.5% BSA (Sigma); 2mM EDTA (Merck)] and fixed
with 2% paraformaldehyde (Merck). For the detection of NK
cell-expressed cytokines, NK cells were permeabilized and
fixed using the Fixation/Permeabilization Solution kit (BD
Biosciences) following the manufacturer’s protocol and stained
with anti-IFNγ AF700 (BioLegend). NK cells were analyzed for

FIGURE 1 | B. pertussis induces NLRP3 inflammasome activation in human M8-like THP-1 cells. M8-like THP-1 cells were stimulated with B. pertussis (Tohama I,

MOI = 100, 10 or 1) or left untreated for 22 h in the presence (dashed bars) or absence (clear bars) of the caspase inhibitor, Z-VAD-FMK. (A) IL-1β (n = 5) and (C) IL-6

(n = 3) were measured in the supernatant of at least three independent experiments. (B) LDH release (n = 3) was determined with a Cytotoxicity Assay. LDH release is

shown as a percentage of the LDH released relative to the percentage of LDH released in the positive control, LPS + nigericin (100% cell death), for NLRP3 activation.

(D–F) M8-like NLRP3 deficient THP-1 cells (horizontal lines) were incubated with B. pertussis (Tohama I, MOI = 10) for 22 h. (D) IL-1β (n = 3) and (F) IL-6 (n = 3)

levels were measured in the supernatant using ELISAs. (E) The LDH released by M8-like NLRP3 deficient THP-1 cells (n = 4) was shown as relative to the LDH

release from fully lysed cultures. Results are expressed as medians with interquartile range from at least three independent experiments. Black dots represent the

average values from each experiments.
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marker expression on the LSRFortessa X-20 (BD Biosciences)
and analyzed using FlowJo software (Tree Star).

Flow Imaging
Mo-M8 stimulated with the clinical B. pertussis strain (B4393)
at MOI 100 for 22 h were washed with PBS and incubated
with StemProTM AccutaseTM Cell Dissociation Reagent (Thermo
Fisher Scientific) to detach the cells. Detached mo-M8 were
washed with FACS buffer and permeabilized and fixed using
the Fixation/Permeabilization Solution kit (BD Biosciences)
following the manufacturer’s protocol. Permeabilized mo-M8

were stained with the ASC-specific antibody anti-TMS1 (Abcam)
for 40min at 4◦C. After extensive washing with PermWash (BD
Biosciences) mo-M8 were stained with the secondary antibody
Goat anti-Rabbit IgGH&L (Alexa Fluor 488) (Abcam) for 40min
at 4◦C. ASC-speck formation was imaged using the ImageStream
MARK II (Merck). Data was analyzed using the Image Data
Exploration and Analysis software (Merck).

Statistical Analysis
Statistical significance was calculated using GraphPad Prism
software (version 7). A Wilcoxon matched-pairs signed rank test
followed by a bonferroni correction was used. A p-value of<0.05
was considered statistically significant.

RESULTS

B. pertussis Induces NLRP3
Inflammasome Activation in Human
Macrophage-Like THP-1 Cells
In order to determine whether B. pertussis can induce
inflammasome activation in human macrophages, we first used
the human cell line THP-1, which was differentiated toward
a M8-like phenotype. Stimulation of these M8-like THP-1
cells with B. pertussis (Tohama I) for 22 h resulted in a robust
dose-dependent IL-1β secretion (Figure 1A). This response was
inhibited in the presence of a caspase inhibitor (Z-VAD-FMK)

FIGURE 2 | B. pertussis induces inflammasome activation in primary human mo-M8. (A) Mo-M8 were stimulated with B. pertussis (Tohama I, MOI = 100) for 6 h

after which the transcription levels of inflammasome associated genes were determined using reverse transcriptase qPCR. Data is expressed as mean fold change of

three donors calculated as the transcription levels relative to the transcription levels in untreated mo-M8. (B) The levels of IL-1β (n = 7) and (C) IL-18 (n = 6) released

into the supernatant by mo-M8 stimulated with B. pertussis for 22 h in the presence (red squares) or absence (black dots) of a caspase inhibitor (Tohama I, MOI =

10). (D) IL-1β secretion of mo-M8 stimulated with a clinical B. pertussis strain (B4393, MOI = 10) in de presence (red squares) or absence (black dots) of a caspase

inhibitor. Black dots and red squares represent values of individual donors. (E) Representative images of the cellular ASC (green) distribution as determined by flow

imaging of untreated mo-M8 or mo-M8 stimulated with a clinical B. pertussis strain (B4393, MOI = 100). *p < 0.05, **p < 0.01.
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(Figure 1A). Complete inhibition of IL-1β secretion by the
caspase inhibitor was observed when the M8-like THP-1 cells
were stimulated with the lowest bacterial concentration (MOI
1). These findings indicate that IL-1β secretion induced by B.
pertussis was mediated by inflammasome activation. Using an
IL-1β bioassay we confirmed that the mature form of IL-1β
was secreted by B. pertussis-stimulated M8-like THP-1 cells
(Figure S1). Another hallmark of inflammasome activation is
the induction of a form of programmed cell death, named
pyroptosis. When the M8-like THP-1 cells were stimulated
with B. pertussis, a caspase-mediated increase in the release of
LDH, a measure for pyroptosis, by these cells was observed

FIGURE 3 | IL-18 primes NK cells to produce IFNγ in response to B.

pertussis. CD56+CD3− NK cells were incubated with medium (clear bars) or

B. pertussis (B4393, MOI = 10, dashed bars) in the presence or absence of

5 ng/ml rhIL-18 for 18 h after which Brefeldin A was added for 4 h to inhibit

cytokine secretion. (A) Stimulated NK cells were intracellularly stained for IFNγ

and the percentage of IFNγ+CD56+CD3− NK cells was analyzed using flow

cytometry (n = 10). Results are expressed as medians with interquartile range.

Black dots represent values of individual donors. (B) Results are expressed as

a histogram of IFNγ+CD56+CD3− NK cells from one representative donor. *p

< 0.05, **p < 0.01.

(Figure 1B). The caspase inhibitor did not have an effect on
caspase-independent activation of M8-like THP-1 cells by B.
pertussis, as indicated by the unaffected secretion of IL-6 by these
cells (Figure 1C).

To determine whether B. pertussis activates the NLRP3
inflammasome, NLRP3 deficient THP-1 cells were stimulated
with B. pertussis (Tohama I) at a MOI 10. This yielded very
low levels of IL-1β (<10 pg/ml) compared to the NLRP3
expressing THP-1 cell line (Figure 1D). Additionally, B. pertussis
induced 76.8% cell death of the NLRP3 expressing M8-like
THP-1 cells, indicated by LDH release, whereas only 12.8%
cell death of the NLRP3 deficient M8-like THP-1 cells was
observed (Figure 1E). Although the B. pertussis-stimulated
NLRP3 deficient THP-1 cells showed a strong reduction in
LDH release and abrogation of IL-1β secretion, these cells
were still capable of secreting the inflammasome-independent
pro-inflammatory cytokine IL-6 in response to this pathogen
(Figure 1F). These findings show that the B. pertussis-induced IL-
1β secretion and cell death of M8-like THP-1 cells is dependent
on the NLRP3 inflammasome.

B. pertussis Induces Inflammasome
Activation in Primary Human
Monocyte-Derived Macrophages
To determine whether B. pertussis could also induce
inflammasome activation in primary human mo-M8, fully
differentiated mo-M8 were stimulated with B. pertussis
(Tohama I) at a MOI of 100. We first measured the transcription
levels of 84 inflammasome-associated genes in mo-M8 from
three different donors after 6 h stimulation with B. pertussis
relative to untreated cells, using reverse transcriptase qPCR
(Figure S2). In the B. pertussis-stimulated mo-M8 a significant
increase in the mRNA levels of, among others, transcription
factor NFKB1, IL1B, and IL6 was observed (Figure 2A). We
then determined whether B. pertussis could induce IL-1β
and IL-18 release by human primary cells by stimulating the
mo-M8 with B. pertussis (Tohama I) at a MOI 10. In the
supernatant of B. pertussis-stimulated mo-M8, significantly
increased levels of IL-1β (Figure 2B) and IL-18 (Figure 2C) were
detected as compared to untreated mo-M8. In the presence
of the caspase inhibitor, the secretion of both cytokines was
reduced (Figures 2B,C).

To determine whether a recently circulating strain of B.
pertussis was also able to induce inflammasome activation,
human mo-M8 were stimulated with the clinical B.
pertussis isolate B4393. Figure 2D shows that this clinical
B. pertussis isolate induces high levels of IL-1β which
were inhibited in the presence of the caspase inhibitor,
indicating inflammasome-dependent IL-1β secretion.
Additionally, inflammasome assembly in mo-M8 upon
B. pertussis (B4393) stimulation was visualized by the
formation of the ASC-speck as shown by flow cytometry
imaging (Figure 2E). In the medium control, ASC is evenly
distributed throughout the mo-M8 as indicated by the
completely green fluorescent cells, whereas, in the B. pertussis-
stimulated mo-M8 a compact ASC-speck is observed.
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FIGURE 4 | Increased proinflammatory cytokine secretion in B. pertussis-stimulated mo-M8/NK co-culture. Mo-M8 and NK cell single cultures and mo-M8/NK

co-cultures were stimulated with B. pertussis (B4393, MOI = 10, dashed bars) or left untreated (clear bars) for 22 h. Secreted levels of (A) IL-1β, (B) IL-18, (C)

GM-CSF, (D) IL-23, (E) TNFα, and (F) IL-10 were measured in the supernatant (n = 7). Results are expressed as medians with interquartile range. Black dots

represent values of individual donors. *p < 0.05.

Further experiments were performed using this clinical B.
pertussis isolate.

All together, these data indicate that B. pertussis is able to
induce inflammasome activation in primary human mo-M8.

IL-18 Primes Human NK Cells to Produce
IFNγ in Response to B. pertussis
Since NK cells have been shown to play a critical role in the
clearance of B. pertussis from themurine respiratory tract, we aim
to unravel mechanisms by which humanNK cells are activated by
the pathogen. Primary humanNK cells, isolated from 10 different
donors, stimulated with B. pertussis (B4393) showed some IFNγ

production (Figure 3). Stimulation of NK cells with the known
activator IL-18 (24–27), resulted in an average of 10.2% IFNγ+

NK cells (p= 0.004). Interestingly, stimulation of NK cells with B.
pertussis in the presence of rhIL-18 yielded a synergistic increase
from 8.87 to 34.35% IFNγ+ NK cells compared to stimulation in
the absence of rhIL-18 (p = 0.004) (Figure 3). When stimulating
NK cells in the presence of other inflammatory cytokines namely,
IL-6, TNFα or IL-1β with or without B. pertussis, no significant
increase in IFNγ production was observed (Figure S3). These
data show that B. pertussis enhances IFNγ secretion by IL-18-
activated NK cells.

Increased Proinflammatory Cytokine
Secretion in B. pertussis-Stimulated
mo-M8/NK Co-cultures
To determine the potential effects of crosstalk between
mo-M8 and NK cells during B. pertussis stimulation, we

characterized the cytokine profile of B. pertussis-stimulated mo-
M8 and NK cells cultured either separately or in co-culture.
Stimulation of mo-M8 with B. pertussis (B4393) resulted in
a significant increase in the secretion of a wide range of
cytokines, namely, IL-1β, IL-18, GM-CSF, IL-23, and IL-10
(Figures 4A–D,F). No significant increase in TNFα secretion
was observed (Figure 4E). Interestingly, when mo-M8 were
stimulated with B. pertussis in the presence of equal amounts
of autologous NK cells the secretion of all pro-inflammatory
cytokines, IL-23, IL-1β, IL-18, GM-CSF, and TNFα increased
(Figures 4A–E). The secretion of the anti-inflammatory cytokine
IL-10 was not affected by the presence of NK cells (Figure 4F).
These data indicate that, co-culture of NK cells and mo-
M8 induced a stronger pro-inflammatory cytokine response
to B. pertussis compared to mo-M8 stimulated alone. NK
cells alone stimulated with B. pertussis did not result in the
increased secretion of any of these cytokines compared to
unstimulated NK cells (Figures 4A–F). However, in the B.
pertussis-stimulated mo-M8/NK co-culture, secretion of the
NK cell associated cytokine, IFNγ, was significantly increased
compared to the B. pertussis-stimulated NK single culture
(Figure 5A). Comparable findings on IFNγ secretion were
observed when NK cells alone were stimulated with B. pertussis
in the presence of rhIL-18 (Figure 3). Additionally, co-culture
of mo-M8 and NK cells resulted in an increased release of
granzyme B (Figure 5B) as well as in the frequency of NK cells
expressing IL-2Rα (Figures 5C,D) and HLA-DR (Figures 5E,F),
indicating NK cell activation. These results show that there
is crosstalk between mo-M8 and NK cells in response to
B. pertussis.
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FIGURE 5 | B. pertussis-stimulated mo-M8 activate human NK cells. Mo-M8 and NK cell single cultures and mo-M8/NK co-cultures were stimulated with B.

pertussis (B4393, MOI = 10, dashed bars) or left untreated (clear bars) for 22 h. Secreted levels of (A) IFNγ and (B) Granzyme B were measured in the supernatant (n

= 7). NK cells were stained for (C,D) IL-2Rα (n = 4) and (E,F) HLA-DR (n = 6) and the expression of these markers was analyzed on CD56+CD3− NK cells. (A–C,E)

Results are expressed as medians with interquartile range. Black dots represent values of individual donors. (D,F) Results are expressed as dot plots of one

representative donor. *p < 0.05.

IL-18 Contributes to NK Cell Activation and
IFNγ Secretion in a B. pertussis-Stimulated
mo-M8/NK Co-culture
To investigate the contribution of inflammasome activation in
the B. pertussis-induced IFNγ secretion and NK cell activation,
mo-M8/NK co-cultures were stimulated with B. pertussis
(B4393) in the presence of a caspase inhibitor. This resulted in
a reduction of 72.2% in IFNγ secretion relative to the cultures
stimulated in the absence of a caspase inhibitor (Figure 6A).
Additionally, the frequency of IL-2Rα+ NK cells was reduced
by 27.8% (Figure 6B). To determine the role of IL-18 in the
activation of NK cells and secretion of IFNγ, mo-M8/NK co-
cultures were stimulated with B. pertussis in the presence of an
IL-18 blocking antibody. This resulted in a reduction of 69.8%
of the secreted IFNγ (Figure 6C) and a 34.2% reduction in the
frequency of IL-2Rα+ NK cells (Figure 6D) whereas blocking
IL-1β had no effect (Figure S4).

Taken together, these data show that B. pertussis induces
inflammasome activation in human macrophages resulting in
IL-18 secretion, which is required for the activation of human
NK cells and secretion of IFNγ upon encounter with this
pathogen (Figure 7).

DISCUSSION

In this study, we show for the first time that B. pertussis induces
activation of the NLRP3 inflammasome in human macrophages
and that secreted IL-18 is required for NK cell activation by
the pathogen. Furthermore, we show that the crosstalk between
these innate cells in response to B. pertussis leads to an enhanced
proinflammatory response.

Activation of the inflammasome complex is an early immune
response involved in the induction of protective immunity
against many different pathogens (30, 31). Here, we show
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FIGURE 6 | IL-18 contributes to NK cell activation and IFNγ secretion in a B.

pertussis-stimulated mo-M8/NK co-culture. (A,B) Mo-M8/NK co-cultures

were stimulated with B. pertussis (B4393, MOI = 10, dashed bars) for 22 h in

the presence of a caspase inhibitor (squares). (A) IFNγ was measured in the

supernatant and (B) IL-2Rα expression was determined on CD56+CD3− NK

cells using flow cytometry. Data is shown as relative to the cultures stimulated

with B. pertussis in the absence of the caspase inhibitor (dots). (C,D)

Mo-M8/NK co-cultures were stimulated with B. pertussis (B4393, MOI = 10,

dashed bars) for 22 h in the presence of IL-18 blocking antibodies (triangles) or

isotype control hIgA2 (dots). (C) IFNγ was measured in the supernatant and

(D) IL-2Rα expression was determined on CD56+CD3− NK cells using flow

cytometry. Data is shown as relative to the cultures stimulated with B.

pertussis in the presence of hIgA2 (n = 4). Results are expressed as medians

with interquartile range. Black dots, squares and triangles represent values of

individual donors.

using different approaches, that B. pertussis induces NLRP3
inflammasome formation in human macrophages resulting in
caspase-mediated secretion of IL-1β and IL-18, as well as the
induction of pyroptosis. In a study usingmurine DCs, B. pertussis
was shown to induce activation of the NLRP3 inflammasome (9).
The authors used modified variants of the adenylate cyclase toxin
to show that this inflammasome activation was dependent on the
pore forming ability of the adenylate cyclase toxin (9). Whether
this virulence factor is also required for inflammasome activation
in human innate cells remains to be determined. In another
study in mice, Place et al. showed that IL-1β signaling is required
for the clearance of B. pertussis and that the IL-1β is produced
independent of caspase-1/caspase-11 (12). The authors suggest
that an inflammasome-independent mechanism is involved in
the in vivo secretion of IL-1β during a B. pertussis infection.
In contrast to these findings, the same authors showed that in
vitro the production of IL-1β by bone marrow-derived murine
macrophages did require caspase-1. We show that in a human in
vitro model, IL-1β production in response to B. pertussis involve
both NLRP3 and caspase activity.

FIGURE 7 | Interplay between human mo-M8 and NK cells in the presence of

B. pertussis (graphics). B. pertussis activates the NLRP3 inflammasome in

human macrophages resulting in the secretion of, amongst others, IL-18 and

IL-1β. IL-18 primes the NK cells to produce IFNγ and express IL-2Rα and

HLA-DR in response to B. pertussis. Inflammasome activation and the

crosstalk between human macrophages and NK cells results in an enhanced

proinflammatory response to this pathogen (Made with illustrations from:

https://smart.servier.com/).

In addition to its role in innate immunity, inflammasome
activation has been associated with the induction of a Th1/Th17
adaptive immune response (32–34), which are the protective
type of T cell responses against B. pertussis (35–39). Using a
murine infection model, IL-1β signaling was shown to be a
critical step in promoting a protective Th17 response during B.
pertussis infection (9) and to be essential in the clearance of
B. pertussis (12). Whether inflammasome activation in human
innate cells by B. pertussis contributes to polarization of the
human adaptive response toward a Th1/Th17 phenotype remains
to be investigated. In addition to IL-1β, we show that B. pertussis-
stimulated humanmacrophages secrete IL-6 and IL-23, which are
both associated with the induction of a Th17 response (40). These
findings suggest that B. pertussis-stimulated humanmacrophages
contribute to polarization toward a Th17 immune response.

A striking finding from our work is that the presence of IL-
18 is required for activation of human NK cells and secretion of
IFNγ in response to B. pertussis. IL-18 stimulation of human NK
cells has been shown to stabilize IFNγ mRNA via the activation
of mitogen-activated protein kinase p38 (27). This stabilization
of IFNγ mRNA is a maturation step to prime NK cells for the
production of IFNγ upon a secondary activation signal through
stimulation of pattern recognition receptors (PRR) expressed on
NK cells (41, 42). In accordance with this, Lauzon et al. showed
that IL-2 treated humanNK cells secreted IFNγ upon stimulation
with TLR2, TLR3, TLR4, or TLR5 ligands (41). B. pertussis
has been shown to activate different PRRs (43, 44), suggesting
that PRRs stimulation provides the secondary activation signal
required for IL-18-primed NK cells to produce IFNγ in response
to B. pertussis.

Our results show that crosstalk between human macrophages
and NK cells results in enhanced secretion of proinflammatory
cytokines upon B. pertussis encounter. We highlight the
critical role for inflammasome activity and IL-18 secretion
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in the induction of IFNγ secretion and NK cell activation
in response to B. pertussis. Mahon et al. showed that IFNγ

treatment of B. pertussis-infected murine macrophages resulted
in reduced intracellular bacterial counts (23). Similarly, IFNγ

has been shown to enhance the antimicrobial activity of human
macrophages (45, 46) also against intracellular B. pertussis
(47). Furthermore, studies in mice have shown the essential
role for NK cells (20) and IFNγ (21, 23) in confining B.
pertussis to the respiratory tract. Byrne et al. showed that
B. pertussis infection of NK cell-depleted mice resulted in a
lethal disseminating disease. Furthermore, the absence of NK
cells resulted in reduced B. pertussis-specific IFNγ secretion
and an increase in IL-5 secretion by spleen cells isolated 14
days after infection. This indicates a role for NK cells in
skewing T cells toward a Th1 phenotype (20). Future studies
should focus on the contribution of the cellular interplay
between human macrophages and NK cells, or between other
innate immune cells, in skewing T cell responses during B.
pertussis infection. In addition to the increased secretion of
pro-inflammatory cytokines in the B. pertussis-stimulated mo-
M8/NK co-culture, we observed enhanced levels of the serine
protease Granzyme B. This protease is released by cytotoxic
cells, such as NK cells, and has been shown to kill bacteria such
as Escherichia coli, Listeria monocytogenes, and Mycobacteria
tuberculosis by cleaving electron transporters, oxidative stress
defense proteins (48) and multiple proteins involved in protein
synthesis as well as folding and degradation (49). Whether
the Granzyme B in the B. pertussis-stimulated mo-M8/NK
co-culture has a bactericidal effect on B. pertussis remains to
be elucidated.

Taken together, our data provides a better understanding
of the underlying mechanisms involved in the induction of
innate immune responses against B. pertussis. Highlighted is
the importance of the crosstalk between human macrophages
and NK cells in enhancing proinflammatory responses against
this pathogen and the role for inflammasome activation in this
process. Knowledge on themechanisms involved in the induction
of protective immunity against B. pertussis is required for the
development of improved intervention strategies to control this
highly contagious disease.
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