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During the last decade, the dynamics of the cellular crosstalk have highlighted the

significance of the host vs. tumor interaction. This resulted in the development of novel

immunotherapeutic strategies in order to modulate/inhibit the mechanisms leading to

escape of tumor cells from immune surveillance. Different monoclonal antibodies directed

against immune checkpoints, e.g., the T lymphocyte antigen 4 and the programmed cell

death protein 1/ programmed cell death ligand 1 have been successfully implemented for

the treatment of cancer. Despite their broad activity in many solid and hematologic tumor

types, only 20–40% of patients demonstrated a durable treatment response. This might

be due to an impaired T cell tumor interaction mediated by immune escape mechanisms

of tumor and immune cells as well as alterations in the composition of the tumor

microenvironment, peripheral blood, andmicrobiome. These different factors dynamically

regulate different steps of the cancer immune process thereby negatively interfering

with the T cell –mediated anti-tumoral immune responses. Therefore, this review will

summarize the current knowledge of the different players involved in inhibiting tumor

immunogenicity and mounting resistance to checkpoint inhibitors with focus on the role

of tumor T cell interaction. A better insight of this process might lead to the development

of strategies to revert these inhibitory processes and represent the rational for the design

of novel immunotherapies and combinations in order to improve their efficacy.

Keywords: T cells, tumor growth, tumor microenvironment, microbiome, inflammation, checkpoint inhibitors

INTRODUCTION

It has been generally accepted that the development and progression of tumors is a result of an
altered crosstalk between the tumor and the host immune system (1–3). The immune system
not only suppresses tumor growth by destroying tumor cells or inhibiting their outgrowth,
but also promotes tumor progression by either selecting for tumor escape variants or by
establishing conditions within the tumor microenvironment (TME) and periphery that facilitate
tumor outgrowth, which has been classified as a hallmark of cancer (4). These include an
increased frequency of immune suppressive cells, metabolites, cytokines and soluble factors,
hypoxia and acidic pH (5, 6). Further changes of the TME during neoplastic transformation
are a selective ablation of immune effector cells and deletion or neutralization of cytokines, like
interferon (IFN)-γ (7). Despite interferon (IFN)-γ exert pro-tumorigenic effects under certain
circumstances dependent on the cellular and molecular context (8, 9), it represents a key mediator
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of immunosurveillance produced by natural killer (NK) cells and
T cells known to promote cytotoxic activity of macrophages and
enhance the expression of immune modulatory molecules on
tumor cells (7). This results in the release of tumor associated
antigens (TAA) for cross presentation by dendritic cells (DCs),
which uptake and process these antigens into peptides then
presented via the major histocompatibility complex (MHC)
class I and class II molecules to CD8+ and CD4+ T cells,
respectively. However, elimination of transformed cells can be
incomplete due to a decreased tumor immunogenicity (10). This
results first in an equilibrium state characterized by a balance
between proliferation and killing of tumor cells by CD8+ T cells
thereby maintaining the tumor at a subclinical stage, followed
by the generation of tumor cells, which are resistant to immune
rejection due to constant selective pressure of the immune system
(2). These immune escape mechanisms are associated with the
loss or downregulation of TAA and/or HLA class I surface
molecules or aberrantly expression of the non-classical HLA-G
and HLA-E antigens as well as co-inhibitory molecules (Table 1).
This might be at least partially mediated by the induction of
oncogenic pathways (11, 12) and changes in the tumor cell
metabolism (13, 14).

However, interventions, such as chemotherapy, radiotherapy
(RT), physico-chemical, and thermal ablation can promote the
release of TAA and might overcome the dominant immune
suppressive pathways leading to an increased immunogenicity
(15–18). Therefore, the combination of immunotherapies with
other strategies offers novel opportunities to recover immune
activity and increase their efficacy, which result in a better
patients’ outcome. Indeed, this approach is currently investigated
in a number of experimental models and clinical trials (19).

Players involved in mounting anti-tumor immune responses
include in particular cells of the adaptive immune system, which
protect and/or control tumor outgrowth and the interaction
of the host against viral/pathogen infections and neoplastic
transformation. The therapeutic potential of host-vs.-tumor

Abbreviations: AML, acute myeloid leukemia; APC, antigen-presenting cells;
Arg-1, arginine 1; cDC, classical dendritic cell; COX-2, cyclooxygenase−2;
CRC, colorectal carcinoma; CTL, cytotoxic lymphocytes; CTLA-4, T lymphocyte
antigen 4; DC, dendritic cell; ECM, extracellular matrix; EMT, epithelial to
mesenchymal transition; FcγR, Fc-gamma receptor; FDA, Food and Drug
Administration; FOXP3, forkhead box P3; gzmb, granzyme B; HLA, human
leukocyte antigen; HNSCC, head and neck squamous cell cancer; ICOS, inducible
T cell costimulatory; iCPI, immune check point inhibitors; iCP, immune
checkpoint; IFN, interferon; IL, interleukin; IL-2Rα, interleukin-2 receptor chain-
alpha; LAG-3, lymphocyte activation gene-3; M1, type 1 TAM; M2, type 2 TAM;
mAb,monoclonal antibody;MDSC,myeloid-derived-suppressor cell; MHC,major
histocompatibility complex; MSI, microsatellite-instable; MSS, microsatellite-
stable; NK, natural killer; NO, nitric oxide; NSCLC, non-small cell lung cancer;
OS, overall survival; PD-1, programmed cell death protein 1; pDC, plasmacytoid
dendritic cell; PD-L1, programmed cell death 1 ligand 1; RCC, renal cell cancer;
ROS, reactive oxygen species; RT, radiation therapy; SCLC, small cell lung
carcinoma; TAA, tumor associated antigen; TAF, tumor associated fibroblasts;
TAM, tumor-associated macrophage; TAN, tumor-associated neutrophil; TCR, T
cell receptor; Teff, effector T cell; Tex, exhausted CD8+ T cell; TGF-β, transforming
growth factor-beta; TIGIT, T cell immunoglobulin and immunoreceptor tyrosine-
based inhibitory motif; TIL, tumor infiltrating lymphocyte; TIM-3, T cell
immunoglobulin and mucin domain containing protein-3; TLR-4, toll-like
receptor 4; TMB, tumormutational burden; TME, tumormicroenvironment; Treg,
regulatory T cell.

activity has been analyzed by various groups and is based on
CD4+ and CD8+ T cell responses, which are part of the cancer
immune cycle and significantly influence the clinical outcome
of patients (20, 21). It is well-known that the initial antigen-
mediated activation of T cells is modulated by the engagement
co-stimulatory signals with its ligands on antigen-presenting
cells (APC). Under physiologic conditions, immune checkpoint
pathways avoid auto-immunity by inducing inhibitory pathways
important for maintaining self-tolerance thereby regulating the
type and magnitude of T cell responses required to mount a
proper anti-tumoral activity. During the last decade, a number of
different inhibitory T cell and non-T cell iCP pathways have been
well-characterized (Table 2) (31). The prototype is the cytotoxic
T lymphocyte antigen 4 (CTLA-4; CD152), which competes with
CD28 for the ligands CD80 and CD86, and antagonizes the T
cell receptor (TCR) signaling (32–34). In addition, the interaction
of the programmed cell death protein 1 (PD-1; CD279) with its
ligands the programmed cell death 1 ligand 1 (PD-L1; CD274/B7-
H1) and/or PD-L2 (CD273/B7-DC), negatively interferes with
TCR signaling (35–38). Thus, immune checkpoints (iCPs) have
either a stimulatory or inhibitory potential, the latter acting as
“breaks” on the immune response. Recently, there exists evidence
that inhibitory iCPs could be targeted by immune check point
inhibitors (iCPIs) leading to an increased anti-tumoral response
and patients’ survival (39).

GENERAL STRATEGIES OF TUMORS TO
FACILITATE TUMOR SUPPRESSION BY
ANALYZING THE COMPOSITION AND
FREQUENCY OF IMMUNE CELLS IN THE
TUMOR MICROENVIRONMENT (TME) AND
PERIPHERAL BLOOD (PB)

The impaired anti-tumoral immune response represents
an important hallmark of solid tumors and hematopoietic
malignancies and involves many distinct mechanisms at the
tumor site, in the tumor microenvironment (TME) and in the
peripheral blood (21). The generation of an inflammatory and
immune suppressive milieu in the TME induces tumor escape
mechanisms, such as downregulation of classical HLA class I
antigens and an upregulation of HLA-G and -E as well as iCPs
including e.g., PD-L1 in the TME and CTLA-4 in the lymphoid
tissues leading to evasion of adaptive immune responses (40–42).
Furthermore, an upregulation of other immune inhibitory
molecules like PD-1, T cell immunoglobulin and mucin
domain-3 (TIM-3), lymphocyte-activation gene 3 (LAG-3), 2B4,
and T cell immunoglobulin and immunoreceptor tyrosine-
based inhibitory motif (TIGIT) have been reported, which is
accompanied by a reduced IFN-γ and TFN-α secretion of T
cells (43–45). An altered TME is further characterized by an
altered cellular composition and activity of tumor infiltrating
immune cells. Next to a reduced frequency and activity of
immune effector cells, such as CD8+ T cells, NK cells, an
increased frequency of immune suppressive cells, such as tumor
associated neutrophils (TANs), myeloid-derived suppressor
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TABLE 1 | Immune escape mechanisms.

Tumor Microenvironment Periphery

HLA I ↓ Suppressive cytokines ↑ CTL frequency and function ↓

HLA-G/-E ↑ Suppressive metabolites ↑ NK cells, frequency, and function ↓

IFN signaling ↓ pH ↓ DCs, frequency and function ↓

Oncogenic

signaling ↑

Hypoxia ↑ TAN, TAM ↑

iCP ↑ Microbiome Treg, frequency ↑

Metabolism ↑ MDSC, frequency ↑

↑ upregulation, ↓ downregulation.

TABLE 2 | T cell associated inhibitory immune checkpoint pathways.

Molecule Expression Ligand/

receptor

Effect

LAG-3

(CD223)

T and NK cells,

TILs

MHC II Negative regulator of T

cell function and DC

(22, 23)

TIM-3 NK cells,

macrophages

Multiple:

SCTLACAM-1,

galectin

Induction of MDSC,

negative regulator of T

cell function (24)

VISTA

(PD-L1H)

Tumor, myeloid

cells, T cells, Tregs

T cell suppression (25)

TIGIT T and NK cells CD155,

CD112

Immune suppression

IFN-γ↓, IL-10↑ (26, 27)

B7-H3

(CD276)

Tumors, APC, NK,

B and T cells

Receptor not

yet analyzed

Activation/suppression

of T cell and NK cell

function (28)

BTLA-4

(CD272)

Tumor cells HVEM Inhibition of T and B

cell activation

A2aR and

CD73

T cells, APC, NK

cells, endothelial

cells

Adenosine Attenuation of

inflammation, inhibition

of T cell activation (29)

B7-H4

(B7x)

ACP, DC,

macrophages,

tumor cells

Receptor not

yet identified

Inhibition of T cell

function and

differentiation (30)

↑ upregulation, ↓ downregulation.

cells (MDSC), tumor associated macrophages (TAM), tumor
associated fibroblasts (TAF), regulatory T cells (Treg), and stroma
cells leading to a complex interaction network of heterogeneous
immune and non-immune cell populations with overlapping and
opposite functions (46). In addition, soluble factors, like the
transcriptional growth factor (TGF)-β, interleukin (IL)-10, the
vascular endothelial growth factor (VEGF)A, chemokines as well
as metabolites, e.g., arginase, hypoxia, and low pH, have been
identified to be responsible for the establishment of an immune
suppressive TME (47, 48). Furthermore, a reduced frequency and
impaired function of effector cells and capacity of dendritic cells
to present antigen as well as an increased number of immune
suppressive cells were also found in peripheral blood. Both an
immune suppressive TME and a reduced immune function of
PB are associated with a poor patients’ outcome (49–52). There
exists evidence that functional T cell responses could be missed
by analyzing only PBL (53) and no TIL. Therefore, it is essential
to determine the composition, organization and function of the
TME and PB of individual patients as well as the tumor itself

to predict potential anti-tumoral effects of antigen specific T
cells, since this has been shown to have prognostic relevance and
therapeutic implications (47, 54).

IMMUNE CHECKPOINT INHIBITORS AND
PATIENTS’ RESPONSE

Novel immunotherapeutic approaches have recently
revolutionized the treatment of solid and hematopoietic
tumors. The clinical success of monoclonal antibodies (mAb)
directed against CTLA-4 and the PD-1/PD-L1 pathway was
a breakthrough achievement (55–57). The anti-CTLA-4 mAb
Ipilimumab was the first iCPI approved by the Food and Drug
Administration (FDA) (58, 59) followed by the approval of
the anti-PD-1 mAbs Pembrolizumab and Nivolumab in 2014
or 2016, respectively. The anti-PD-L1 mAbs Durvalumab,
Atezolizumab, and Avelumab were FDA approved in 2017
after promising results in non-small cell lung cancer (NSCLC),
urothelial carcinoma and Merkel cell carcinoma (60–63).

Despite the rapid progress of approvals for iCPI, the
accumulated experience demonstrated that approximately only
one-third of patients had a durable response upon single
iCPI treatment. Thus, the majority of patients do not benefit
from iCPI alone, which might be due to primary, adaptive
and acquired resistance mechanisms (64). Therefore, a number
of clinical trials using iCPIs across all tumor types using
different combinations, e.g., chemotherapy, iCPIs, chimeric
antigen receptor, hypermethylating agents, CDK4 inhibitors, RT
and targeted therapies, are currently conducted. Some of these
combinations have achieved response rates over 50% (57, 65, 66).
Regarding the combination of RT with iCPI it is noteworthy
that RT could not only stimulate immune responses, but could
also exert immune suppressive effects (67, 68). In this context,
scheduling of iCPI therapy is important for the therapeutic
outcome in combination with RT (69, 70), which has been shown
to shape the T cell receptor repertoire of TIL (71). However, there
is still an urgent need to explore biomarkers to predict response
to these treatments and to identify combinations of agents to
improve treatment efficacy, overall survival (OS) of patients and
mitigate toxicities of these treatment options.

IMMUNE MODULATORY MOLECULES
AND THEIR RELEVANCE FOR T CELL
RESPONSES AND PATIENTS’ OUTCOME

Expression of Classical and Non-classical
HLA Class I Antigens
This topic has been reviewed and discussed by various
authors (72–75). HLA class I surface expression is frequently
downregulated or lost in solid and hematopoietic tumors. These
abnormalities have functional relevance, since they impair T cell
recognition of tumors. Furthermore, HLA class I alterations have
been associated with a worse patients’ outcome and a reduced
overall survival (OS) and play a role in the resistance to iCPI
therapy. The underlying molecular mechanisms of impaired
HLA class I surface expression are diverse and often associated
with deficiencies in the expression of components of the antigen
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processing machinery (APM) and IFN pathways as recently
summarized (72, 76). This could be due to either structural
alterations or deregulation at the transcriptional, epigenetic or
posttranscriptional level of these molecules (77). Furthermore,
HLA class I expression has been associated with an increased
density of tumor infiltrating lymphocytes (TIL) and an increased
anti-tumoral T cell response (78).

Next to the impaired expression of HLA class I antigens,
a frequent overexpression of HLA-G and/or –E was found in
tumors of distinct origin, but not in adjacent normal tissues or
in healthy controls. This was accompanied by a reduced T cell
and NK cell recognition and a bad patients’ prognosis (79–83).
Soluble HLA-G levels (sHLA-G) were also frequently detected
and inversely correlate to numbers of activated T cells suggesting
that sHLA-G promotes tumor immune escape through activation
of immune responses (84).

Expression of Immune Checkpoints:
Challenges and Pitfalls
Next to alterations of HLA class I antigens, high expression
levels of co-inhibitory checkpoints, such as e.g., PD-L1 and
B7-H4, in various tumor entities are often associated with
the clinical outcome of cancer patients (85–88). An altered
expression pattern of PD-L1 was found in primary andmetastatic
bladder tumors suggesting a dynamic nature of the TME (89).
The capacity of the PD-L1 mediated immune suppression was
inversely proportional to the antigenicity of the tumor (90). Since
PD-L1 expression on both tumor and host’s immune cells could
lead to escape from immune surveillance, PD-L1 expression has
been suggested as a biomarker for prediction of prognosis and
response to iCPI (91). Its expression correlates with the adaptive
immune resistance in several tumor types, including melanoma,
NSCLC, Merkel cell carcinoma, breast cancer, mismatch-repair
deficient tumors, and Hodgkin’s lymphoma (91–93). However,
PD-L1 expression does not reliably predict response to iCPI.
In melanoma, tumor PD-L1 expression showed a significant
correlation with response to five out of eight iCPI studies
treating patients with anti-PD-1 mAb, while it did not predict
response to anti-CTLA-4 therapy (94). Furthermore, some
patients negative for PD-L1 expression can have a response
to iCPI (92). In NSCLC, no association of PD-L1 expression
with response has been reported with Nivolumab, while PD-L1
expression on at least 50% of NSCLC lesions almost doubled
the response rate to Pembrolizumab from 19 to about 45%
(95). In contrast to pre-treatment biopsies, tumor biopsies
in early treatment phase obtained from metastatic melanoma
patients treated sequentially receiving CTLA-4 and PD-1 iCPI
showed high PD-1 and PD-L1 expression levels in responders
(96). In NSCLC cells, the PD-L1 genomic locus amplification
correlated with PD-L1 expression and anti-tumor responses
(97, 98). Despite a significant heterogeneity was observed,
higher levels of CTLA-4 and PD-L2 expression were found in
melanoma patients, who benefit from CTLA-4 antibodies (99,
100). In contrast, PD-L1, PD-L2, and CTLA-4 expression did
not correlate to anti-PD-1-responsiveness of melanoma patients
(101). In addition to the discrepant results on the role of PD-
L1 expression for prognosis and iCPI response, there exist
some limitations regarding the analysis of the PD-L1 expression,

including membranous vs. cytoplasmic expression, expression
by multiple cell types in the TME, focal expression in tumor
samples, changes in the expression during disease progression,
upon radiation, chemotherapy, and epigenetic drugs and in
particular the variability of laboratory techniques and anti-PD-L1
antibodies employed for immunohistochemistry (IHC) (102).

Somatic Mutations and Neoantigen Load
Increasing evidence demonstrated that mutations lead to the
generation of neoantigens, which are presented by HLA class
I molecules and can be recognized by CD8+ cytotoxic T
cells (CTL) (77). Thus, the tumor mutational burden (TMB)
might be correlated with the level of response to T cell
based immunotherapies. Indeed, a systemic review of melanoma
patients showed that responses to iCPIs correlated with TMB,
neoantigen load, and immune-related gene expression (103, 104).
Microsatellite instable (MSI) colorectal carcinoma (CRC) has
large mutational burdens, higher immune cell infiltration and
higher response rates to PD-1 blockade (105). However, a high
TMB does not always predict responders to iCPI therapy, which
might be due to neoantigen heterogeneity and an extremely
diverse array of somatic mutations (106, 107). It is noteworthy
that T cell epitopes have a similarity to bacterial and viral antigens
suggesting a cross reactivity of T cells to intestinal bacterial and
viral antigens, which can also modulate the iCPI therapy (108). In
addition, PD-L1 expression can be controlled by drivermutations
and oncogenic signaling (109–112).

Immune Profiling Signatures and iCPI
Genetic and immune heterogeneity was found in melanoma
responding to immunotherapy. Mutanome and individual gene-
based expression analysis demonstrated mesenchymal and T
cell suppressive inflammatory or angiogenic tumor phenotypes,
which were associated with innate anti-PD-1 resistance (113).
Genes, which were higher expressed in non-responding pre-
treatment tumors, include molecules involved in epithelial
to mesenchymal transition (EMT), immune suppression and
chemotaxis of monocytes and macrophages (114). Interestingly,
a dormant TIL phenotype characterized by an elevated TMB
and intra-tumoral CD3 signal, elevated TILs with low activation
and proliferation was associated with a favorable response to
iCPI (115). The IFN signature is correlated with an improved
prognosis and iCPI response or resistance to iCPIs (116).
Furthermore, T cell diversification reflects antigen selection in
the blood of patients on iCPI treatment (117). Recently, a 15-gene
pre-treatment classifier model was identified to predict response
to anti-CTLA-4 treatment (118).

ROLE OF IMMUNE CELL
SUBPOPULATIONS FOR TUMOR
IMMUNITY AND THE EFFECT OF iCPI

Tumor-Infiltrating Cytotoxic Lymphocytes
(CTL) and iCPI
The success of checkpoint blockade depends on the presence
of TIL, particularly of CD8+ CTL, in the TME. These CTL are
located at the invasive tumor margin and intratumorally, and
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are negatively regulated by the PD-1/PD-L1-mediated adaptive
immune resistance (119, 120). In metastatic melanoma, the
presence of CTL at the tumor margin predicted better response
to iCPI. Colon cancers with MSI are highly infiltrated with
T cells, particularly with CTL, relative to microsatellite-stable
(MSS) colon cancers (121–123). Members of the CCL and CXCL
chemokine families have been associated with T cell recruitment
to melanoma metastases (124, 125). Higher levels of CCL2,
CXCL4, and CXCL12 have been noted in tumors responding to
iCPI therapy (126).

So far, it is not clear whether CD8+ effector memory
cells might explain the durable response observed in many
patients. Interestingly, brisk CTL infiltrates at time of progression
in patients on iCPI treatment were observed suggesting an
impaired activity of effector immune cells in the TME leading
to therapeutic resistance. Despite CD8+ T cell responses against
tumor cells are well-understood, information about the role of
CD4+ T cell immunity in cancer is limited. Tumor specific CD4+

T cells have a broad activity beyond the provision of helper
signals to CD8+ T cells (127, 128). CD4+ T cells exhibit anti-
tumor effects and Th1T cells are involved in the killing of tumor
cells by secretion of cytokines that activate death receptors on
tumor cells and induce epitopes spreading. Furthermore, CD4+

Th1T cells can activate DC functions. The secretion of IL-4
from CD4+ T cells could establish long-term memory immune
responses and further recruit eosinophils and macrophages.

Tumor-Infiltrating Regulatory T Cells
(Tregs)
Tumor-infiltrating CD4+ Tregs were frequently detected in the
TME and suppress CTL activity leading to reduced anti-tumor
T cell responses (129). They promote tumor growth by iCP
expression (CTLA-4, PD-1 and others) as well as production of
IL-10 and TGF-β. An increased frequency of Tregs correlates
with disease progression and metastasis in both experimental
models and humans (130). CTLA-4 blockade expands the Treg
frequency and high levels of soluble CD25 interleukin-2 receptor
chair-alpha (IL2Rα) has been correlated with resistance to anti-
CTLA-4 therapy (131). This was confirmed by Treg depletion
potentiating the iCPI therapy (132). It has been suggested that
early recruitment of Tregs to the TME inhibits an effective
tumor response and lack of response to iCPI. PD-1 blockade
with Nivolumab attenuated the activated T cell phenotypes
during the course of therapy, promoted CTL proliferation and
resistance to Treg-mediated suppression by down-regulating the
intracellular expression of FoxP3, while Tregs increased during
disease progression (133). An increased ratio of CTL to Treg in
tumor tissues has been associated with response to CTLA-4 and
PD-1 blockade.

Natural Killer Cells as Players for Innate
Immune Responses
Natural killer (NK) cells are effector cells of the innate immune
system and important players in mounting innate anti-tumoral
immune responses by their ability to directly target and eliminate
viral infections as well as neoplastic transformed cells (134).

Under pathological conditions and during inflammation, the
NK cell activation depend on the balance between inhibitory
as well as activating signals, which determine the NK cell
mediated cytotoxicity. In addition, NK cells are involved in
other immune regulatory processes and could modulate adaptive
immune responses, since they share characteristics with adaptive
lymphocytes (134). They could also interact with mast cells and
effect tumorgenesis due to the production of pro-angiogenic
factors and thus play an important role alone or in combination
with mast cells in the regulation of angiogenesis (135). There
is increasing evidence that NK cells are involved in regulating
metastatic dissemination. NK cells are often shown to reduce
metastatic efficacy of tumor cell lines in vivo, while low NK
cell activity is correlated with advanced disease and metastasis
formation (136, 137). Furthermore, the presence of tumor-
infiltrating NK cells is a positive prognostic marker for multiple
tumors (138–140).

Tumor-Infiltrating Regulatory Myeloid Cells
Tumor-infiltrating myeloid cells comprise MDSCs, tumor-
associated granulocytes, TAMs and DCs, generate and promote
both immunogenic and tolerogenic responses (141–143).MDSCs
are heterogeneous immune-suppressive immature myeloid cells
that can be divided into a polymorphonuclear subset and a
monocytic subset. They support tumor growth, epithelial to
mesemchymal transition (EMT) and predict poor prognosis of
patients, but their role in tumorgenesis has still to be defined
(144, 145). MDSCs exert their effects by producing immune
suppressive factors, like arginine 1 (Arg-1) expression, nitric
oxide (NO), cyclooxygenase-2 (COX-2), reactive oxygen species
(ROS), and activate Treg via CD40–CD40L interactions (146–
148). In melanoma, elevated levels of CXCL17 were found, which
recruits MDSCs and predicts non-responders to iCPI (149).

Tumor-associated neutrophils (TANs) and TAMs have been
classified as an anti-tumor (type 1) or pro-tumor (type 2)
phenotype. Pro-tumor effects of TANs include dampening of
CTL response, increased angiogenesis, andmodulation of cellular
trafficking. Type 1 TAMs (M1) produce immune stimulatory
cytokines, like IL-6, IL-12 and CXCL9, that promote recruitment
of CTLs, while type 2 TAMs (M2) exhibit an immune suppressive
signature and support tumor growth by release of angiogenic
factors, like IL-10 and CCL22, matrix remodeling mediated by
proteases, and by inhibition of CTL and DC activity (150–153).
In addition, TAMs promote Tregs by inducing the skewing
of blood-derived CD4+ T cells toward an immunosuppressive
phenotype due to their decreased production of effector
cytokines, increased IL-10 production and enhanced expression
of the co-inhibitory molecules PD-1 and TIM-3 (154, 155).
However, the interaction between TA-specific CD4+ Th1 cells
and TAMs might shift the intra-tumoral M1/M2 ratio toward
an M1 phenotype (155). PD-L1 expression of monocytes and
TAMs promote immune evasion and correlate with disease
progression in hepatocellular carcinoma. This might be mediated
by a hypoxia inducible factor 1α induced increased expression of
the receptor TREM1 in TMAs resulting in immune suppression
mediated by Treg recruitment, which was associated with
disease progression as well as resistance to anti-PD-L1 treatment
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(156). Fc-gamma receptors (FcγRs) expressed by M2 TAMs
facilitate anti-tumor response to CTLA-4 inhibition through Treg
depletion (157, 158). Tumor-infiltrating eosinophils promote
infiltration of CTLs by polarization of TAMs and normalization
of the tumor vasculature, and predict a better prognosis in colon
cancer (159).

The heterogenic family of DCs, including classical (cDCs)
and plasmacytoid DCs (pDCs), are antigen-presenting cells
(APC) that prime and regulate CTL responses. Anti-viral
immune responses rely heavily on pDC-derived type I IFNs,
while pDCs in tumors exert immunosuppressive activities. In
contrast, tumor-infiltrating cDC increase T cell activation in
lung cancer and melanoma patients forming tertiary lymphoid
clusters, which are associated with better outcomes (160,
161). Tertiary lymphoid clusters also correlated with improved
survival in pancreatic cancer (162). The rare subgroup of
CD103(+) (integrin αE)+ DCs are strong stimulators of CTL
and dependent on different transcription factors, like IRF8,
Zbtb46, and Batf3. These CD103 cDCs (Batf3-cDC, cDC1)
are also associated with CTL and increased OS for patients
with breast, head and neck or lung cancer (163). In lung
adenocarcinoma murine models, immunogenic chemotherapy
(oxaliplatin-cyclophosphamide) has been reported to up-regulate
toll-like receptor 4 (TLR-4) on tumor-infiltrating Batf3-cDCs,
which leads to the recruitment of CTLs and sensitization to
iCPIs (164).

Gut Microbiome, Immune Cell
Interaction—iCPI Therapy
T cells as members of the adaptive immune system are involved
in gut homeostasis, inflammation, and carcinogenesis (165).
Recently, association between microbiota profiles, cancer
susceptibility, and responsiveness to cancer therapy has been
suggested (166–168). Indeed, microbiota could modify the
immune response and influence the response to chemotherapy
and immunotherapy (169, 170). Emerging evidence has
suggested that the cross-talk between the gut microbiome and
immune cells plays a role in determining responses to iCPI
therapy. Indeed, the composition of the gut microbiome has
been associated with response to iCPI in pre-clinical models
as well as in patients. For example, in murine melanoma,
commensal Bifidobacterium has been reported to promote the
efficacy of anti-PD-L1 therapy by augmenting the function of
DCs leading to CTL priming and infiltration (171). Recent
studies in melanoma, lung, and kidney cancer patients have
demonstrated an association of commensal gut microbiome
with response to iCPI (172). Baseline gut microbiota enriched
with Faecalibacterium and other Firmicutes is associated with
a better response (173). In melanoma patients responding
to iCPI more abundant species included Bifidobacterium,
Collinsella, Enterococcus, Clostridiales, Rominococcus and
Faecalibacterium, while low levels of Akkermansia muciniphila
were observed in epithelial cancers not responding to iCPI
(174). Patients with a favorable gut microbiome had increased
expression of cytolytic T cell markers and APM components,

and an increased ratio of CD8+ CTLs to FoxP3+CD4+

Tregs. Furthermore, metagenomic studies revealed functional
differences in gut bacteria in responders. These are characterized
by an enrichment of anabolic pathways and an enhanced
systemic and antitumor immunity in responding patients
with a favorable gut microbiome as well as in germ-free mice
receiving fecal transplants from responding patients (172).
Thus, the modulation of the components in the gut microbiome
can augment anti-tumor immunotherapy. However, there
exist several challenges including optimal composition of
the gut microbiome and the therapeutic strategy to achieve
that composition.

Resistance to Checkpoint Inhibitors
Abnormalities of the HLA class I antigen and IFN signaling
pathways often correlate with the development of resistances
to various kinds of immunotherapies including iCPI treatment
and adoptive cell therapy (ACT) (64, 175–178). These could
be categorized into intrinsic and acquired immune resistance
(177, 179, 180) and are associated with an altered tumor T cell
interaction. An increased knowledge of these processes might
lead to the reprogramming of the immunologically “cold” TME
characterized by a low immune cell infiltration and low TCR
diversity (181, 182) and an increased T cell function (183–185).
Combining the modulation of the immune cell repertoire and
the reduction of immune suppressive metabolites and cytokines
of the TME and enhancement of T cell tumor interaction with
iCPI and/or vaccinations or even targeted therapies are currently
tested in diverse clinical trials (186, 187).

CONCLUSIONS

There is strong evidence of an emerging role of T cell tumor
interactions for the outcome of patients in general and regarding
the efficacy of immunotherapies including iCPIs. The pathways
involved in the regulation of the interaction between tumor and T
cells are broad and highly dynamic. Tumors developed a plethora
of adaptions leading to escape from counter-regulations of the
immune system. This is mediated by ineffective T cell responses
due to low tumor immunogenicity and the suppressive influence
of the TME. The use of iCPI showed that the manipulation
of inhibitory signaling pathways creates anti-tumoral immune
responses. However, the efficacy of iCPIs is still limited. Thus,
a better understanding of these processes might lead to the
development of innovative therapies in order to reactivate T
cell responses.
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