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According to the World Health Organization (WHO), trauma is responsible for 10% of

deaths and 16% of disabilities worldwide. This is considerably higher than those for

malaria, tuberculosis, and HIV/AIDS combined. While the human suffering and death

caused by injury is well-recognized, injury has a significant medical care cost. Better

prediction of the state of trauma patients in the days immediately after trauma may

reduce costs. Traumatic injuries to multiple organs can cause dysfunction in all systems

of the body especially the immune system placing patients at high risk of infections and

inflammatory complications which are often fatal. Neutrophils are the most abundant

leukocyte in the human circulation and are crucial for the prevention of microbial

disease. Significant changes in neutrophil functions such as enhanced chemotaxis,

Neutrophil extracellular trap (NET)-induced cell death (NETosis), and phagocytosis occur

early after injury followed by prolonged functional defects such as phagocytosis, killing

mechanisms, and receptor expression. Analysis of these changes may improve the

prediction of the patient’s condition over time. We provide a comprehensive and

up-to-date review of the literature investigating the effect of trauma on neutrophil

phenotype with an underlying goal of using this knowledge to examine the predictive

potential of neutrophil alterations on secondary complications in patients with traumatic

injuries. We conclude that alterations in neutrophil surface markers and functions may

be potential biomarkers that predict the outcome of trauma patients.
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INTRODUCTION

Neutrophils are the most abundant leukocyte in humans (60–70% of circulating leukocytes)
and have a major role in the innate immune response against invading pathogens and are
important mediators of inflammation-induced injury (1). In healthy adults, circulating neutrophils
are considered as dormant cells but they are activated when they encounter damage-associated
molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs) and thereby
maintain homeostasis within the immune system (2).
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Neutrophils are equipped with a range of anti-microbial
mechanisms including phagocytosis, degranulation, and release
of reactive oxygen species (ROS), neutrophil extracellular traps
(NETs), and cytokine production that deliver lethal hits against
microorganisms (3, 4). Neutrophils rapidly adapt to changes
in microenvironmental signals and show different functional
phenotypes (neutrophil heterogeneity) during inflammation (5,
6). Trauma affects the phenotype and function of neutrophils
(7) although similar changes in neutrophil phenotype have
been observed with acute coronary syndromes and in patients
with the acute phase of autoimmune disease [Figure 1; (8, 9)].
The World Health Organization (WHO) estimated that trauma
causes 5.8 million deaths annually (10, 11) although mortality
rates related to trauma have significantly reduced in recent years
due to improvements in treatment particularly in those treating
coagulopathy and blood loss. However, secondary complications,
such as sepsis, multiple organ failure (MOF), and nosocomial
infections can impact upon the condition of trauma patients
and result in death (12). The induction of altered immune
system responses particularly changes in neutrophil phenotypes
is increasingly recognized as an important factor in the response
to trauma (7).

Marked alterations in a range of neutrophil functions and
in phenotypic markers occur following trauma, which causes a
massive release of neutrophils, banded cells and sometimes even
immature cells (i.e., metamyelocytes) from the bone marrow into
the circulation (13, 14). Experimental studies strongly suggest
a direct relationship is present between trauma severity and
subsequent tissue damage and neutrophils dysfunction (15). In
addition, impaired neutrophil chemotaxis, due in part to release
of immature neutrophils into the circulation, was seen in children
following blunt force trauma (16).

Abbreviations: ALI, Acute Lung Injury; ARDS, Acute respiratory distress
syndrome; CARS, Compensatory anti-inflammatory response; Cf-DNA,
Circulating Free DNA; COX-2, Cyclooxygenase 2; DAMP, Damage-associated
molecular pattern; ESL1, E-selectin ligand 1; FasL, Fas ligand; FI, phagocytosis
index; fMLP, N-formyl-methionyl-leucyl-phenylalanine; FSAP, factor VII-
activating protease; HMGB-1, High mobility group box-1; ISS, Injury Severity
Score; LDN, Low-Density Neutrophils; Mac-1, alpha M beta 2 integrin; Mcl-1,
Myeloid cell leukemia 1; MMP, Matric MetalloProteinase; MODS, Multiple organ
dysfunction syndrome; MOF, Multiple organ failure; MPO, Myeloperoxidase;
mtDNA, mitochondrial DNA; NADPH, Nicotinamide Adenine Dinucleotide
Phosphate; NE, Neutrophil elastase; NETs, Neutrophil Extracellular Traps;
NETosis, cell death characterized by release of decondensed chromatin and
granular contents into the extracellular space; NF-κB, Nuclear Factor κB; NISS,
New Injury Severity Score; NLRP3, NLR (NOD-like receptor) Family Pyrin
Domain Containing 3; NO, Nitric Oxide; NOx, Oxidized NO products; NOS2,
Inducible nitric oxide synthase or iNOS; PAF, Platelet-activating factor; PAMP,
Pathogen-associated molecular pattern; PB, Peripheral Blood; PBMC, Peripheral
Blood Mononuclear Cells; PECAM-1, Platelet endothelial cell adhesion molecule
1; PF4, Platelet Factor 4/CXC chemokine ligand 4; PG, Prostaglandin; PMA,
phorbol-12-myristate-13-acetate; PMNE, Polymorphonuclear leukocyte elastase;
PRR, Pattern Recognition Receptor; PSGL1, P-selectin glycoprotein ligand 1;
PTX3, Pentraxin 3; ROS, Reactive oxygen species; SCI, Spinal cord injury; SIRS,
Systemic inflammatory response syndrome; sL-selectin, soluble L-selectin; SOFA,
Sequential Organ Failure Assessment; TBI, Traumatic brain injury; TGF-β,
Transforming Growth Factor beta; TLR, Toll Like Receptor; TRALI, Transfusion-
related acute lung injury; WHO, World Health Organization; VEGF-A, Vascular
endothelial growth factor A.

In this review we provide a comprehensive overview of the
most recent studies examining the role of neutrophils in severe
traumawith the goal of identifying a link between trauma severity
and neutrophil phenotype and function. This knowledge of the
correlation between neutrophil phenotype and the prediction
of patient survival may provide better early biomarkers for the
clinical outcome and treatment of trauma patients.

THE MECHANISMS OF IMMUNE SYSTEM
IN TRAUMA

Trauma activates innate immune responses to produce pro-
and anti-inflammatory cytokines primarily by cells of the
innate immune response such as neutrophils. The systemic
inflammatory response syndrome (SIRS) and the Compensatory
Anti-inflammatory Response syndrome (CARS) may be induced
with severe trauma without being accompanied by sepsis and
multiple organ failure (17). CARS is considered an imprecise
term that does not truly reflect the key role that the neutrophil
plays in immune tolerance during trauma. The multifunctional
aspects of neutrophil biology in this process is critical to
induction of immune tolerance by acting as danger- or damage-
sensing cells in multiple organs which reflects their Janus-like
effects in trauma (17).

While SIRS is a pro-inflammatory syndrome that is associated
with killing infectious organisms through activation of the
immune system, immune tolerance represents is a complex
pattern of immunologic responses characterized by deactivation
of the systemic immune system. As such, immune tolerance is
not simply the reversal of SIRS, but it can exist separately from
SIRS. Immune tolerance can be dangerous when its effects are
unchecked, leaving the host vulnerable to a secondary exposure
to pathogens because of increased immune effector cell apoptosis
leading to auto-immunity (18, 19). Studies have also shown
that immune tolerance reduces the severity of the SIRS pro-
inflammatory response, but after trauma, tolerance can lead to
increased immunosuppression (17). The uptake of apoptotic
cells by dendritic cells and macrophages promotes tolerance
by suppressing the release of pro-inflammatory cytokines, and
increasing the release of anti-inflammatory cytokines, such as
IL-10 and transforming growth factor-β (TGF-β) (20, 21).

One of the important factors that increases morbidity in
post-traumatic cases is an imbalance between the systemic
inflammatory response SIRS and tolerance (22). In the first hours
of trauma, the severity of the SIRS is associated with early MOF
and infections however, in the following days, immune tolerance
plays an important role in the increased incidence of nosocomial
infections and late organ failure and late sepsis [(23); Figure 2].

NEUTROPHIL APOPTOSIS IN TRAUMA

A number of studies propose that dysregulated apoptotic
immune cell death may have an important role in the severity
of multiple organ dysfunction and sepsis following a variety
of traumatic events (24, 25). Understanding the role of altered
apoptotic cell death in contributing to immune and organ
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FIGURE 1 | The effect of trauma on neutrophil functions. During traumatic injury, damage associated molecular patterns (DAMPs) are released into the systemic

circulation as a result of tissue damage. DAMPs interact with surface pattern recognition receptors (PRR), causing neutrophil recruitment which triggers many

functional responses that are thought to lead to the induction of the systemic inflammatory response (SIRS) phase in trauma. These neutrophil phenotype changes

include alterations in degranulation, neutrophil extracellular trap (NET) formation, cytokine production, and chemotaxis and phagocytosis.

FIGURE 2 | Systemic inflammatory response (SIRS) and compensatory immune tolerance in trauma (CARS). Schematic diagram shows that once trauma has

occurred, a primary systemic pro-inflammatory response (SIRS) is initiated which can contribute to early multi-orgn failure (MOF). The compensatory immune tolerance

or anti-inflammatory response syndrome (CARS) can begin while the pro-inflammatory SIRS is still present. At the later phase CARS can lead to immune paralysis and

following that, late multi organ failure [This figure is adapted from Hietbrink et al. (23)].

dysfunction as seen in sepsis and shock is essential. Apoptosis
is increased following various traumas such as ischemia, burn,
sepsis, and traumatic brain injury (26–28). The incidence of
programmed cell death following traumatic brain and spinal
injury has been studied and re-enforced the importance of
apoptosis in the pathogenesis of post-traumatic outcomes
although no data yet relates this to neutrophil function (26–28).

Hypoxia can induce apoptosis in various organs, but studies
have shown no increase in apoptotic liver cells in trauma animals,
despite the presence of systemic hypoxia. Therefore, it is likely
that local mechanisms are responsible for the induction of
apoptotic cell death (29, 30). Oxidative stress, ischemia, and
some mediators such as steroids, tumor necrosis factor (TNF),
nitric oxide, complement C5a, and Fas ligand (FasL) have
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been identified as important factors that induce apoptotic cell
death (31–33). Caspase 8 is activated mainly by extracellular
signaling through the Fas/FasL system (CD95/CD95L) or
via TNF-α receptors suggesting that the reported enhanced
expression of caspase 8 indicates an extracellular stimulation
of apoptosis (34–36). Immune cells that undergo modified
apoptotic changes include neutrophils, macrophages, dendritic
cells, and lymphocytes although epithelial and endothelial cell
apoptotic changes have also been reported (37). Although
neutrophils are conventionally thought of as short-lived cells
which die following apoptosis, they may persist for several days
(38, 39), and whilst most studies focus on programmed cell death
following different traumatic insults they do not determine the
mechanisms of neutrophil accumulation at the region of interest
(38, 39).

NEUTROPHIL APOPTOSIS IN SEPSIS AND
SHOCK

The initial role of neutrophils is innate defense against infection
by eliminating pathogens. They kill pathogens using reactive
oxygen species (ROS) and lytic enzymes, so they can potentially
contribute to bystander organ injury. Therefore, neutrophil
apoptosis reduces neutrophil-mediated tissue damage (40).
Activation of neutrophils, which induced by trauma, is directly
linked to the immune response. Trauma is usually associated with
over-activation of innate immune responses followed by a further
immune-suppression, which leads to elevated susceptibility to
infection, sepsis, and multiple organ dysfunction syndrome
(MODS) and act as one of the leading causes of human death
(23, 41–43).

Inflammatory mediators may prolong the circulation half-life
of neutrophils from 6 h up to several days based on the decreased
level of pro-apoptotic proteins, including apoptosis regulator Bax
and upregulation of anti-apoptotic proteins, such as myeloid cell
leukemia 1 (Mcl-1) (44–46). Delayed apoptosis of neutrophils
induces tissue damage by the release of ROS and neutrophil
elastase (NE) (47, 48). Inhibition of neutrophil apoptosis has been
reported in SIRS (49), sepsis (46, 50), and burn injuries (51).

In shock or injury, exposure to pro-inflammatory factors
are thought to prime circulating neutrophils and induce tissue
injury (52, 53). Studies have shown that following hemorrhage
or endo-toxemia, a remarkable decrease in lung neutrophil
apoptosis has been seen for up to 24 h after the insult (54).
Jimenez et al. showed a significant decrease in apoptosis in
SIRS patients and that this resulted in amplified neutrophil-
mediated killing which, in a non-inflammatory environment,
may result in SIRS and subsequent organ failure. Therefore,
suppression of neutrophil apoptosis increases the potential for
tissue injury (55). It is unclear whether the death receptor
or mitochondrial-mediated, apoptotic pathway predominates in
controlling neutrophil apoptosis in animals exposed to septic
shock (56). Studies of neutrophil apoptosis in sepsis cases
demonstrated that delayed apoptosis seems to occur as a result
of the activation of anti-apoptotic factors and NF-κB and then
suppression of caspases 9 and 3 (57–62).

The development of sepsis after major trauma is associated
with changes in the expression of apoptosis-related factors (63).
After trauma, in the early phase, neutrophil apoptosis is mainly
regulated by anti-apoptotic B-cell lymphoma 2 (Bcl-2) members
that inhibit the intrinsic mitochondrial-dependent pathway (63).
However, neutrophil apoptosis is not always associated with the
expression of the anti-apoptotic factor Mcl-1. Neutrophils in
patients with sepsis 10-days after the initial trauma displayed
reduced neutrophil apoptosis despite decreased levels of Mcl-
1 and the Bcl-2-associated A1 protein. The association between
reduced neutrophil apoptosis and the severity of illness supports
the importance of neutrophils activity in the pathophysiology of
sepsis (63).

The soluble form of Fas (sFas) is derived by alternative
splicing from the membrane form or by proteolytic cleavage
of membrane-bound receptors. Serum sFas has been shown to
inhibit neutrophils apoptosis in vitro (64) and plays an important
role in the inhibition of neutrophil extrinsic apoptosis associated
with increased levels of polymorphonuclear leukocyte elastase
(PMNE), a marker for systemic inflammation. The results show
a high relationship between sFas and patients’ Sequential Organ
Failure Assessment (SODA) and Multiple Organ Dysfunction
(MOD) stage in sepsis and provide evidence for the clinical
significance of the risk for the development of sepsis and
MOF. Trauma patients with and without sepsis development
demonstrated a significant reduction in the apoptosis of
circulating neutrophils at least until 10-days after trauma. So, sFas
may be a feasible target for new therapeutic strategies to limit
neutrophil life span and hyperactivity (65).

NETS AND ORGAN INJURY

NETs may have an important role in the regulation of
inflammatory responses to injury. Accumulation of activated
neutrophils occurs in the damaged tissue following injury and
these may form NETs (66). Recent studies have shown the
potential role of NETs in the pathogenesis of an extensive range
of non-infectious inflammations including post-injury sterile
inflammation (67). Margraf and co-workers in 2008 showed
that NETs levels in plasma may predict sepsis and MOF on the
intensive care unit in patients after multiple trauma (68, 69).

The severity of tissue damage in cases of transfusion-related
acute lung injury (TRALI) is associated with the degree of
NETs formation with NETs detectable in the plasma and
lung of TRALI patients (70). Mitochondrial DNA can trigger
NETosis via activation of Toll Like Receptor (TLR)9 after severe
trauma, independent of the NADPH oxidase system (71) and
mitochondrial (mt)DNA is found in NETs formed after trauma
(66). The detailed molecular mechanism of mtDNA-NETs release
is unknown (67).

As NETs are rapidly degraded by DNase in the circulation, it is
possible that NETs are actively produced throughout the 5-days
after trauma and surgery (72).

However, surgery alone can stimulate NETs formation
independent of prior trauma as evidenced by NETs formation
after elective total hip replacement. This suggests that sepsis may
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not have been an initiating factor for the NETs formation. NETs
formation in these patients can be viewed as part of the sterile
inflammatory response of the innate immune system (72).

The importance of neutrophil-neutrophil cross-talk and
connection with other cells related to NETs formation has been
shown. Platelets are the most well-defined players in NETosis.
Many platelet-derived soluble factors and ligand/receptor pairs
maintain neutrophil activation (73). Among these soluble factors,
alarmins such as platelet-derived high-mobility group protein
box 1 (HMGB1) and chemokines including platelet factor 4
(PF4)/CXCL4) produced by platelets activate neutrophil NETs
formation in vitro and in animal models (74).

In human neutrophils, P-selectin may drive sterile NETs
formation (74). Other platelet-localized cell adhesion molecules
such as β2 integrin (CD18) may also play a critical role in
this process (74, 75). Indeed, platelet biology impacts upon
many aspects of inflammation which makes the identification
of their direct or indirect contribution to NETosis not readily
predictable (67).

Improved methodologies are needed for the better
understanding of detailed mechanisms of NETs. The current
techniques combine fluorescent microscopy or fluorescent
intensity measurements and generally use DNA-intercalating
dyes, while taking the risk of visualizing necrotic cells with
dye permeable cell membrane. Antibody-based techniques are
required to detect activated, non-necrotic cells with intact cell
membrane, such as flow cytometry-cell-sorting, supported by
microscopic imaging. Additionally, a consensus on the structural
and behavioral definition of NETs formation is essential for
future NETs research, due to their fragility, their highly dynamic
nature and their morphological heterogeneity (67).

TRAUMA AND MODULATION OF
NEUTROPHIL PHENOTYPE

Within hours and days after trauma, the expression of neutrophil
markers become noticeably distinct compared to those from
healthy individuals. The various markers show distinct dynamics
over time. In this regard, the severity of changes in function and
phenotype of neutrophils in trauma depends upon the severity
of injury as measured by indices such as the injury severity score
(ISS) and the new injury severity score (NISS) (76, 77).

Some studies report a significantly higher percentage of
neutrophils positive for CD11a in trauma patients than in
controls at 3 and 96 h after injury (78). However, another study
showed that there is a significant decrease in CD11a expression
24 h after trauma (79). Integrins (e.g., Mac-1 also known as alpha
M beta 2 integrin which is composed of CD11b and CD18) are
involved in leukocyte adhesion to the endothelium. Functional
integrins are only expressed upon neutrophils activation (80) and
neutrophil Mac-1 expression has been proposed as a marker of
injury severity in several studies (81–83). Circulating neutrophils
show upregulation of CD11b, after injury with a second peak
of CD11b expression at day 5 (79). Contrarily, Scannell and
colleagues have reported attenuation in expression of ICAM-1,
CD11b, and CD18 on circulating leukocytes 2 h after injury (84).

The level of metabolic acidosis after trauma correlates directly
with CD11b expression on circulating neutrophils which may
provide a mechanism whereby post-traumatic shock results in
neutrophil-mediated organ failure (82).

Increased Mac-1 expression is found on neutrophils from
patients who were admitted with an ISS >16 as compared
to trauma patients with an ISS <16 which could be a useful
marker for prediction of survival of trauma patients but need
more investigation (78). In addition, neutrophils sampled at
various time points pre- and post-operative days had increased
expression of CD11b when treated with Platelet-activating factor
(PAF) and/or fMLP (N-formyl-methionyl-leucyl-phenylalanine
(fMLP) although the expression of CD11b in unstimulated
conditions did not change with surgery, suggesting minimal
activation in vivo and a failure of PAF to act as an agonist on
human neutrophils (85).

CD18 expression follows the same expression pattern
following trauma as CD11b although this did not reach
significance (78). However, similar to the in vitro findings,
the numbers of CD11a surface receptors do not increase
synchronously with CD11b/CD18 receptors although their
affinity may increase (78).

The expression level of CD62L (L-selectin), a receptor that
mediates the initial step of the adhesion cascade, the capture and
rolling of leukocytes on endothelial cells, was decreased up to 24 h
after injury (85, 86). No correlation was demonstrated between
immune cell CD62L expression and trauma severity scores
although a meta-analysis by Stengel and colleagues indicated
that soluble L-selectin levels were correlated with ISS (87).
Some studies have reported an association between decreased L-
selectin expression on leukocytes and the occurrence of SIRS or
early MOF. These studies also show a correlation between the
degree of neutrophils activation and the severity of complications
occurring during the pro-inflammatory phase (88, 89). These
molecules can be found as soluble factors in serum (sL-selectin).
The level of sL-selectin in the blood is correlated with the
activation level of the neutrophil population (23).

Compared to control individuals, traumatic patients
were characterized by a statistically significant decreased
responsiveness of active FcγRII (a marker of neutrophil priming)
on neutrophils toward the fMLP (90, 91). High levels of active-
FcγRII expression was indicative of increased responsiveness
to bacterial products (92). The decreased responsiveness of
active FcγRII toward the fMLP on the circulating neutrophils
after trauma may impact on downstream inflammatory events.
Indeed, the degree of this reduced responsiveness correlated
with trauma severity as measured by ISS (91). Furthermore, the
degree of decrease in fMLP-induced active FcγRII on neutrophils
is related to severity of the clinical response and to SIRS (91).

In contrast, the expression of FcγRIII (CD16) on neutrophils
was suppressed during severe trauma. Furthermore, soluble
CD16 increased significantly at day 1 in multi-trauma patients
who later developed infection (93). Similar results were also seen
during the first 24 h after chest trauma (92). FcγRIII is normally
expressed on banded neutrophils at lower levels compared with
mature neutrophils. Therefore, this decline in FcγRIII may reflect
an influx of young neutrophils (90).
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CD43 (Leukosialin) is expressed on early hematopoietic
progenitors and is one of the most abundant transmembrane
sialoglycoproteins on neutrophils (86). CD43 prevents
interactions of surface molecules and acts as a negative regulator
of cell function (94). CD43 membrane expression was decreased
by up to 80% upon exposure to phorbol-12-myristate-13-acetate
(PMA) or fMLP in the presence of cytochalasin B (95). PMA
activation significantly reduced neutrophils CD43 expression.
Downregulation of CD43 has been seen in hemodialysis,
neutrophil activation, and during neutrophil migration whereas,
fMLP normally causes CD43 shedding from neutrophils (96).

IMPACT OF TRAUMA ON NEUTROPHIL
MIGRATION

The key regulatory step in neutrophils tissue migration occurs
at the level of bone marrow release and association with the
endothelial layer (23). There is a large storage pool of mature
neutrophils in the bone marrow which is rapidly mobilized
during inflammation causing a dramatic rise in circulating
neutrophil numbers (97). CXCR4 and its ligand, CXCL12 (or
stromal cell derived factor-1), trigger neutrophils release from
the bone marrow under normal conditions (98). In addition,
CXCL12 acts as a chemokine by attracting neutrophils to
the site of inflammation (99) and not surprisingly, therefore,
activated CXCR4 has been described as having multiple
biological functions including chemotaxis, differentiation and
survival (100).

During trauma, the release of DAMPs enhances neutrophils
migration through the 600µm sinusoids and they then elongate
and squeeze themselves through the tissue to reach the site
of injury (101, 102). High mobility group box-1 (HMGB-1), a
recently identified inflammatory cytokine, is implicated in the
pathogenesis of several inflammatory diseases where it acts as an
important DAMP (103). The interaction of HMGB1 with specific
receptors on numerous cell types results in increased production
and release of proinflammatory cytokines and chemokines (104).
In some studies, HMGB-1 expression correlates with ISS (105)
but this is not replicated elsewhere (106). In light of these
contradictory data, it is important to examine the potential of
HMGB-1 as a biomarker of trauma in much larger homogenous
cohorts and after therapeutic intervention.

Generally, the leukocyte recruitment cascade contains the
following steps: (a) selectin-mediated rolling, (b) chemokine-
triggered activation, and (c) integrin-dependent arrest (107).
Rolling is mediated by L-selectin (CD62L), P-selectin (CD62P),
and E-selectin (CD62E), which interact with glycosylated ligands
such as P-selectin glycoprotein ligand 1 (PSGL1), ESL1 (E-
selectin ligand 1), and CD44 (108). The interaction of selectins
with their ligands enables leukocytes to adhere to the inflamed
endothelium (109). Consequently, down regulation of L-selectin
expression on leukocytes and induction of SIRS or MOF, may
suggest cross talk between the development of complications
occurring during SIRS and the degree of neutrophils activation
(91, 92). Importantly, the serum levels of sL-selectin are higher

6 h after trauma during which time neutrophils migrate to the
tissue (78).

High concentrations of the neutrophil chemotactic factor
IL-8 have been reported in trauma patients (110, 111). IL-8
activates and recruits neutrophils to the site of inflammation
by interacting with its receptors CXC receptor 1 (CXCR1) and
CXCR2 on the neutrophils cell membrane [Figure 3; (112)].
CXCR1 responses are lower in trauma patients than in control
subjects but the activity of CXCR2 is higher and may be
implicated in the later clinical complications seen with neutrophil
activation. Indeed, CXCR2 activity correlates with neutrophils
hyperactivity and with outcomes such as acute respiratory
distress syndrome (ARDS) whereas reduced CXCR2 function
seen in inflammatory environments may impair neutrophil
functions (46, 113, 114). Activation of circulating endogenous
factor VII-activating protease (FSAP) inmultiple trauma patients
led to increased complement (C)5a anaphylatoxin generation
and modulation of the posttraumatic SIRS in vivo (115). C5a
is a potent chemoattractant involved in the activation and
recruitment of neutrophils at the site of trauma (116). Robust
C5a generation during trauma may cause defects in neutrophil
defense systems and C5amight be considered as a potential target
for therapeutic intervention to prevent immune dysfunctions
that occur in the days following trauma (117).

Integrins are important components of the transmigration
process and are only expressed on activated neutrophils (80).
Thus, the expression of Mac-1 is increased on neutrophils from
multi trauma patients as compared to mild trauma patients
suggesting neutrophil activation (78). In contrast, during late
organ failure the expression of Mac-1 is down-regulated (118)
and is associated with the development of MOF (119).

IMPACT OF TRAUMA ON NEUTROPHIL
ACTIVITY

The formation of free radicals and ROS is an important
component of activated neutrophils following trauma and is
involved in phagocytosis.

Oxidative Stress
Neutrophils are the major cellular producers of ROS and
alterations in the levels of ROS production reflect neutrophils
activation status. The production and role of the oxidative
burst in neutrophils during brain trauma has been extensively
reviewed (120–122). Increased oxidative burst correlates with the
incidence of SIRS and MOF (123). On the other hand, ROS
have been identified as a necessary component of the NLRP3
inflammasome activator in various diseases including hepatic
ischemia/reperfusion injury (124). The NLRP3 inflammasome is
essential for the onset of acute sterile inflammation such as that
seen in trauma injury (125).

Increased ROS production by neutrophils may lead to an
uncontrolled inflammatory response which results in tissue
damage. The highest levels of ROS production were found
between 3 and 24 h after trauma after in vitro stimulation
of the cells (126). Furthermore, the expression of inducible
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FIGURE 3 | Role of neutrophils in tissue damage. Schematic illustration shows that during trauma, damage associated molecular patterns (DAMPs) are generated

and these along with released mediators (ROS; NE; ARG1; hydrogen peroxide, H2O2, and antimicrobial proteins) recruit neutrophils to the site of injury where they

release factors such as additional ROS and NE involved in the development of organ failure in a feedforward manner. Interleukin (IL)-6 and TNF-α can affect the brain

causing fever in traumatic patients. Trauma-generated DAMPs also affect the liver and cause the release of inflammatory cytokines into the circulation which, in turn,

further modulate neutrophil numbers and activation. DAMP, Damage-associated molecular pattern; ROS, Reactive oxygen species; PRR, pattern recognition receptor;

ICAM-1, Intercellular Adhesion Molecule 1; ARG1, Arginase 1; NE, Neutrophil elastase; TNF-α, Tumor necrosis factor alpha.

nitric oxide (NO) synthase (iNOS or NOS2) and of NADPH
oxidase (gp91phox) in leukocytes is reduced following traumatic
brain injury (TBI), whereas, after 24 h the expression of
iNOS, cyclooxygenase (COX)-2 and of gp91phox is significantly
increased in monocytes and neutrophils (127). This leads
to increased prostaglandin (PG) induction either directly
or indirectly. Spinal cord injury (SCI) causes a systemic
inflammatory response resulting in increased oxidative burst
within neutrophils and monocytes from 12 to 48 h and
1 week post-injury and the maximal increase was at 24 h
in neutrophils. In addition, the expression of gp91phox,
COX-2 and iNOS were significantly increased 24 h after
trauma in neutrophils and monocytes of these patients (128).
Furthermore, the newly formed ROS in injured tissue leads
to the migration and subsequent activation of neutrophils
resulting in the accumulation of activated neutrophils in the
spine (129). Table 1 indicates the markers that reflect changes in
neutrophil functions/phenotype of neutrophil biology that occur
during trauma.

PHAGOCYTOSIS AND KILLING

A fundamental step in the host defense response against
infection is phagocytosis (134). Given that perturbation in
immune responses followed by multi trauma may lead to
sepsis, investigation of neutrophils phagocytosis seems necessary.
Changes in neutrophils phagocytic activity following trauma vary
depending on the microbial species which explain the conflicting
results observed with phagocytic kinetics (135–137).

Some reports have demonstrated decreased neutrophil
phagocytosis following trauma and injury, for example, the
lowest rates of neutrophil phagocytosis were observed at 48 and
72 h after TBI (127). In contrast, the neutrophil phagocytosis
index (FI) was higher 1–3 days after severe tissue injury (138).

Generally, after trauma, ingestion of E coliwas enhanced, whereas
phagocytosis of K pneumoniae was depressed. Ingestion of S
aureus, however, was unaffected (134). This effect may also
involve platelets which also express TLR2 ns TLR4 enabling the
generation of NETs and the killing of gram positive and negative
bacteria (139).

NEUTROPHIL LIFE SPAN DURING
TRAUMA

The lifespan of circulating neutrophils is classically considered
to be short (<1 day) however, recent observations reported that
the median peripheral blood (PB) human neutrophils lifespan is
up to 10 times longer (5.4 days) (140–142). Neutrophils lifespan
is further increased at sites of inflammation due to inhibition of
cell apoptosis by inflammatory factors such as cytokines. Lifespan
extension of neutrophils during inflammatory conditions may
also alter neutrophils function and phenotype (143).

TRAUMA AND NEUTROPHIL
PHENOTYPES

Trauma and subsequent complications affect the phenotype and
function of circulating neutrophils, and, particularly, in case of
severe trauma, the development of dysfunctional neutrophils
might play a detrimental role. Indeed, severe posttraumatic
inflammation induces a boost in the release of banded and
immature neutrophils into the circulation, leading to bone
marrow exhaustion, and a compromised immune response, both
associated with a poor outcome. Additionally, morphological
changes were observed after trauma, including increased cell
size and membrane plasticity and a modified shape, wherein
neutrophils become more elongated (144). In trauma, there are
immunosuppressive low-density neutrophils (LDNs), a subtype
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TABLE 1 | Functions and markers that reflect changes in neutrophil functions/phenotype in trauma.

Function Description Increased level Decreased level

Priming Result of exposure to priming agents

such as GM-CSF and TNF-α

Result to enhanced functions of neutrophils (chemotaxis,

adhesion, rolling, and oxidative burst) (130)

Rolling Mediated by selectins Level of sL-selectin indicates number of neutrophils

which migrate to the tissue (78)

Decreased L-selectin on neutrophils show incidence

of SIRS or early MOF (88)

Adhesion Integrins are involved in the adhesion

of leukocytes to the endothelium

High expression of Mac-1 related with the development

of SIRS and organ failure (119)

Neutrophil Mac-1expression was decreased during

late organ failure from patients who died from the

consequences of sepsis as compared to patients

who survived (118)

Oxidative burst Necessary for pathogen killing by

neutrophils

Increased oxidative burst correlates with the incidence of

SIRS and MOF (123)

Low oxidative burst is related with sepsis.

Apoptosis Delayed neutrophil apoptosis is seen

after trauma

Delayed apoptosis results in accumulation of

neutrophils and promote tissue damage (47, 48)

Other HMGB-1 Increased levels of HMGB-1 disrupts endothelial barrier

function and recruitment of neutrophils (131)

CD64 CD64 expression level on day 1 is a fair predictor of

outcome in critically ill patients with severe trauma and/or

severe sepsis (132)

cf-DNA/NETs The levels of cf-DNA/NETs in serum is increased in

trauma patients who subsequently develop sepsis (133)

CXCR2 CXCR2 activity correlates with neutrophil hyperactivity

and with outcomes in ARDS (113)

Reduced CXCR2 function in inflammatory

environments impair neutrophil function (113)

C5a Robust C5a generation during trauma may cause

defects in neutrophil defense systems (117)

Responsiveness to fMLP Decreased ability of fMLP to induce active FcγRII on

neutrophils in patients with secondary complications

of trauma (91)

of neutrophil named after their discovery in the PB mononuclear
cell (PBMC) (145, 146). These granulocytes are not only activated
but express a high level of arginase activity, which in turn might
be linked to T-cell function, providing a possible explanation
for the impairment of the adaptive immunity mediated by
neutrophils during trauma (146).

In sepsis, it has been demonstrated that this granulocyte
subset inhibits T-cells, possibly via arginase release and/or ROS
production (145, 147, 148). In contrast, there might be subsets
of neutrophils, which are beneficial to repair the initial trauma
impact. For example, a population of CD11b+/Gr-1+/CXCR4hi
neutrophils likely recruited by vascular endothelial growth factor
A (VEGF-A) induce revascularization via MMP-9 (149). While
neutrophil heterogeneity is often described in the context of
chronic inflammation, this is also seen in other scenarios such
as cancer (145, 150).

NEUTROPHIL PHENOTYPE AND
FUNCTION AS A BIOMARKER FOR
PATIENT SURVIVAL AFTER TRAUMA

A quick and reliable prediction of prognosis is important
particularly in the emergency room. Posttraumatic organ failure,
is thought to be triggered by the initial inflammatory response
(151). The time between the life span of peripheral neutrophils
(5 days) and the time to produce new neutrophils from
myelocytes (7 days) is critical in determining the risk of infectious
complications such as septic shock (152). Early identification
and prediction of septic shock may be greatly helpful in the

identification of patients for the adaptation of the treatment
regime (153, 154). Patients with subsequent MOF showed
significantly higher mean circulating concentrations of C3a and
thromboxane B2 at the first day post injury compared to the
patients without MOF. Neopterin/creatinine ratios were also
significantly higher in patients with multiple organ failure when
MOF had already become established (155). So, seems to these
mediators are useful for prediction of occurrence of secondary
complications in traumatic patients but for realization more
studies are needed.

Interestingly, in patients with major trauma, there was
no significant difference in systemic C-reactive peptide
and IL-6 levels between survivor and non-survivor groups.
Furthermore, no differences between these groups were found
for terminal complement complex, thromboxane B2, and
neopterin/creatinine ratios (156). In contrast, some studies have
shown plasma concentrations of neutrophil elastase, lactate,
antithrombin III, IL-6, and IL-8 were significantly higher in
non-survivors compared with survivors 24 h after trauma (151).
Authors suggested that early alterations in serum levels of IL-6
constitute a useful predictive marker for identifying traumatic
patients (156). Nevertheless, the role of IL-6 in critically ill
patients has been discussed controversially in recent studies
(157, 158). These data suggest that the overall level of the initial
inflammatory response correlates with the development of
post-traumatic organ failure.

Elevated serum NO and of its oxidation products (NOx)
and of blood lactate in polytrauma patients are markers of a
serious clinical course. However, a normal NOx combined with
a very high lactate level may indicate a fatal prognosis in these
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patients (159). This suggests that elevated lactate levels may be
an important prognostic factor rather than NOx itself. Decreased
neutrophil responsiveness appears to be a prerequisite for septic
shock after trauma. Indeed, the initial decreased responsiveness
of circulating neutrophils to fMLP-induced FcγRII activation was
related to the development of late onset septic complications after
>5 days (14).

CD11b and active FcγRII/CD32 levels on unstimulated
neutrophils, however, did not correlate with the severity of injury.
Rather, there was a significant inverse correlation between the
neutrophils ability to activate FcγRII in response to fMLP and
the severity of injury. In addition, a decreased ability of fMLP to
induce active FcγRII on neutrophils was found in patients who
developed secondary complications of trauma such as SIRS or
acute lung injury (ALI) and it seems to be a useful marker which
could show occurrence of secondary complications (91).

For 9 of 10 septic shock patients, initial shock symptoms
became evident between days 8 and 10 after admission.
Measuring the kinetics of the neutrophil response demonstrated
that the lowest neutrophil responsiveness to fMLP was found
within the first 7 days after injury. Therefore, the impaired
responsiveness to fMLP and other changes in receptor expression
clearly preceded clinical symptoms of sepsis (160). On the other
hand, CD64 expression level on day 1 is a fairly good predictor
of outcome in critically ill patients with severe trauma and/or
severe sepsis (132). Also, one study showed that CD64 expression
level for neutrophils on postoperative day 1 is the best early
predictor of intra-abdominal infection after colorectal cancer
surgery (161).

Finally, the pre-operative surface expression of adhesion
molecules involved in the migration of neutrophils such as CD99
and CD47 correlates with post-operative creatinine levels, a
measurement of renal injury (162).

NETS-ASSOCIATED PREDICTIVE
MARKERS IN TRAUMA

Recent clinical studies have shown that the levels of circulating
free-DNA (cf-DNA)/NETs can be potentially used for predicting
injury severity following trauma with sepsis. It is important to
note, however, that cf-DNA is not synonymous with NETs. The
levels of cf-DNA/NETs in serum is increased in trauma patients
who subsequently develop sepsis (133) whilst the levels of cf-
DNA/NETs in synovial fluid are also increased in patients with
septic arthritis (163). It is more recently used in the prediction of
mortality in patients with severe burn injury (69).

DNase is naturally present in human blood and produced
as a defense mechanism associated with NETs. The expression
of DNase is increased in the early stages of sepsis after major
trauma (69). DNase degrades NETs in a concentration dependent
manner and DNase levels may be a potential biomarker of NETs
formation (164).

Pentraxin 3 (PTX3) is a member of pentraxin family and
acts as a soluble pattern recognition receptor (PRR) in the
innate immune response (165). PTX3 is an extrahepatic acute-
phase protein that has been implicated in the pathophysiology

of trauma due to its extrahepatic formation and induction by
different trauma-associated cytokines such as IL-1, IL-6 and
TNF-α however this needs to be confirmed. Studies have shown
that circulating PTX3 levels are associated with the injury severity
and may reflect the immunological changes arising during soft
tissue injury. Further studies are needed to prove PTX3 is a
surrogate factor for soft tissue damage. PTX3 concentrations
were higher in poly-traumatized compared to mono-traumatized
and healthy individuals (166). PTX3 and some of the other
components of NETs form a complex to enhance the actions
of other NETs component proteins (164). Thus, new roles of
PTX3 in the innate immune response, together with a pattern of
binding to the NETs component proteins suggest an important
role in NETosis (167).

CONCLUSION

Neutrophils are main players in the context of inflammatory
complications during and after traumatic injuries. Marked
alterations in a range of neutrophils functions and in phenotypic
markers occur following trauma, which causes a massive release
of neutrophils, banded cells, and sometimes even immature cells
from the bone marrow into the circulation. In trauma injury,
neutrophils are able to modify the phenotype and function based
on the body’s requirements. In particular, CD11b is considered
as important marker of poor prognosis (82) whilst the increased
expression and activity of CXCR2 on neutrophils also correlates
with neutrophil function and poor outcomes in ARDS (113).
In this respect, the specific neutrophil phenotype and function
could be considered as a biomarker of patient survival. Altered
neutrophils phenotypes include increased expression of key cell
surface molecules or enhanced life span and the expression of
NETs and NETS-associated factors.

We conclude that neutrophils not only play a pivotal role in
the regulation and modulation of trauma but that delineation
of their particular phenotype, the expression of specific cell
surface markers and the release of NETS-related factors could
be used as a predictive tool for the management of trauma
patients. Future studies should aim to identify key proteomic
or transcriptomic markers that define each phenotype so
that more rapid assessment of these can be made. Finally,
randomized controlled studies using drugs directed against
specific neutrophil subtypes will be essential to confirm this tenet.
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