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Autoimmune diseases (AID) such as systemic lupus erythematosus (SLE), primary

Sjögren’s syndrome (pSS), and rheumatoid arthritis (RA) are chronic inflammatory

diseases in which abnormalities of B cell function play a central role. Although it is

widely accepted that autoimmune B cells are hyperactive in vivo, a full understanding

of their functional status in AID has not been delineated. Here, we present a detailed

analysis of the functional capabilities of AID B cells and dissect the mechanisms

underlying altered B cell function. Upon BCR activation, decreased spleen tyrosine

kinase (Syk) and Bruton’s tyrosine kinase (Btk) phosphorylation was noted in AID

memory B cells combined with constitutive co-localization of CD22 and protein tyrosine

phosphatase (PTP) non-receptor type 6 (SHP-1) along with hyporesponsiveness to

TLR9 signaling, a Syk-dependent response. Similar BCR hyporesponsiveness was

also noted specifically in SLE CD27− B cells together with increased PTP activities

and increased transcripts for PTPN2, PTPN11, PTPN22, PTPRC, and PTPRO in SLE

B cells. Additional studies revealed that repetitive BCR stimulation of normal B cells

can induce BCR hyporesponsiveness and that tissue-resident memory B cells from AID

patients also exhibited decreased responsiveness immediately ex vivo, suggesting that

the hyporesponsive status can be acquired by repeated exposure to autoantigen(s) in

vivo. Functional studies to overcome B cell hyporesponsiveness revealed that CD40

co-stimulation increased BCR signaling, induced proliferation, and downregulated PTP

expression (PTPN2, PTPN22, and receptor-type PTPs). The data support the conclusion

that hyporesponsiveness of AID and especially SLE B cells results from chronic in vivo

stimulation through the BCR without T cell help mediated by CD40–CD154 interaction

and is manifested by decreased phosphorylation of BCR-related proximal signaling

molecules and increased PTPs. The hyporesponsiveness of AID B cells is similar to a

form of functional anergy.
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INTRODUCTION

Breach of self-tolerance, maintenance of autoimmune memory,
and continuous autoantibody production are important
pathologic features of B cells in autoimmune diseases (AID)
(1) such as systemic lupus erythematosus (SLE), rheumatoid
arthritis (RA), and primary Sjögren’s syndrome (pSS). A
number of phenotypic abnormalities of peripheral B cell subsets
have been reported in AID (2–10), but their relationship
to the functional abnormalities of the B cell axis has not
been fully delineated. As antigen-induced B cell receptor
(BCR) signaling is crucial for B cell fate (11–13), the BCR
plays a pivotal role in the development and maintenance of
autoimmunity. Therefore, BCR signaling has been extensively
studied and there is general consensus that pathologically
increased BCR signaling contributes to B cell overactivity and
autoimmunity. This was the rationale for testing the impact
of the anti-CD22 monoclonal antibody, epratuzumab, in SLE,
since it was thought that CD22 engagement would impose
negative regulation of BCR signaling (14). Since this trial
failed to meet its primary endpoint (15), it is possible that
hyperreactive BCR signaling is not central to SLE and perhaps
other AID.

The BCR acts as a signal transducer, integrating receptor
occupancy to downstream events that regulate cellular survival
and activation. The strength of the signal determines cell fate and
is tightly balanced by the activities of stimulatory and inhibitory
molecules, including various phosphotyrosine kinases (PTKs)
and phosphotyrosine phosphatases (PTPs) (11–13). Antigen
binding induces phosphorylation of the BCR-associated Igα
(CD79a) and Igβ (CD79b) chains leading to downstream Lyn and
spleen tyrosine kinase (Syk) phosphorylation (16). This activates
1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase
gamma-2 (PLCγ2), Bruton’s tyrosine kinase (Btk), and protein
kinase B (Akt), which results in Ca2+- and Akt-dependent
transcription (17–19). As a negative feedback loop, e.g., CD22
becomes phosphorylated and recruits PTP non-receptor type 6
(SHP-1) to the BCR, which dephosphorylates BCR downstream
targets (14, 20, 21).

Genome-wide association studies (GWAS) identified
polymorphisms of BCR downstream scaffold proteins, PTKs
and PTPs, as associated with AID, supporting the idea of
intrinsically defective BCR signaling in AID (22–29). Despite
these suggestions, the major understanding of BCR signaling
in autoimmunity is mainly based on studies in mice, in which
BCR hyperreactivity can be a main driver of autoimmunity
(30). However, in humans, the data are contradictory. There
are studies reporting increased BCR signaling measured
by Ca2+ release and downstream tyrosine phosphorylation
related to a lack of negative regulation, such as by low-affinity
immunoglobulin gamma Fc receptor II-b (FcγRIIb), phosphatase
and tensin homolog (PTEN), or Lck/Yes novel tyrosine kinase
(Lyn), in B cells from SLE patients (31–37). In contrast, a
growing body of literature provides evidence that the BCR signal
in autoimmunity is impaired, at least in some B cell subsets, with
reduced tyrosine phosphorylation, Ca2+ release, and recruitment
of signaling kinases to lipid rafts upon BCR stimulation (38–41).

In addition to abnormalities in the BCR pathway of
stimulation, T cell-independent responses, such as TLR9
responses, have been reported to enhance B cell activation,
in particular when autoantigen/ribonucleoprotein-immune
complexes simultaneously engage BCR and TLR9 (42).
However, recent reports indicate that SLE B cells also
display low reactivity following TLR9 signaling (43–45). In
addition to intrinsic B cell abnormalities, alteration of the
functional status of other cells involved in regulating antibody
production may also contribute to the development of AID.
In this regard, abnormal germinal center (GC) reactions
in autoimmune tissues (46), disturbances of regulatory
T cells (1), increased TFH (47), abnormalities of CD4+

(48), and CD8+ T cells (49, 50) with diminished T cell
responses have also been reported. Therefore, the precise set of
abnormalities underlying B cell dysfunction in AID remains to
be fully delineated.

Here, we carried out a comparative analysis of peripheral
as well as tissue-resident B cells from different AID patients
and demonstrate that AID B cells share a phenotype of
hyporesponsiveness toward BCR and TLR9 stimulation. This
suggests a common signaling dysfunction between these diseases.
However, SLE B cells appear to display a more prominent
phenotype as not only antigen experienced conventional CD27+

memory but also CD27− B cells exhibit BCR dysfunction.
Of note, within this study, we compare characteristics of
CD27− and CD27+ B cells that can also include CD27−

isotype switched B cells or switched and non-switched CD27+

memory B cells (7, 8, 51, 52). The composition of CD27−

and CD27+ B cell subsets may differ among AID patients
and healthy donors (HD) (53). Therefore, analyzing CD27−

and CD27+ subsets as a whole prevented us from determining
whether there were subtle changes in different subsets. This
decreased responsiveness, likely induced by chronic BCR
engagement in vivo, can be partially overcome by CD40
engagement, which reduced the expression of PTPs, such
as PTPN22. Therefore, the functional B cell anergy detected
in vitro in AID B cells appears to reflect intensive BCR
engagement in vivo.

MATERIALS AND METHODS

Donors
EDTA anticoagulated peripheral blood samples were obtained
from 85 SLE, 42 RA, and 51 pSS patients and 118 HD. Donor
details are listed in Table S1. Patients with RA fulfilling the
ACR/EULAR criteria (54), SLE meeting the SLICC criteria (55),
and pSS fulfilling the AECG criteria (56) were included in this
study. Tissue samples were obtained from surgeries: four spleen
samples from patients with immune thrombocytopenia (ITP),
seven spleen samples and four tonsil samples from patients
without autoimmune background, and one parotid sample from
a pSS patient. All patients and donors gave their consent
according to the approval of the local ethics’ committee at
the Charité University Hospital Berlin. Written consensus was
obtained from all patients and controls.
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Antibodies and Reagents
Staining antibodies, stimulation reagents, media, and other
reagents were purchased fromBDBioscience (Franklin Lakes, NJ,
USA), BioLegend (San Diego, CA, USA), eBioscience/Thermo
Fisher (Carlsbad, CA, USA), Illumina (San Diego, CA,
USA), Invitrogen/Thermo Fisher (Carlsbad, CA, USA), Life
Technologies/Thermo Fisher (Carlsbad, CA, USA), Miltenyi
Biotec (Bergisch Gladbach, Germany), Jackson ImmunoResearch
(West Grove, FL, USA), PeproTech (Rocky Hill, NJ, USA),
Promega Corporation (Madison, WI, USA), Selleck Chemicals
(Houston, TX, USA), Sigma-Aldrich (St. Louis, MO, USA),
and UCB Pharma (Slough, UK) and listed in Tables S2, S3.
Quality control of flow cytometry stainings was performed
using SPHERO Rainbow Calibration Particles (BD Bioscience,
Franklin Lakes, NJ, USA) and Cytometer Setup and Tracking
beads (BD Biosciences, Franklin Lakes, NJ, USA) for stable MFIs
over time (57).

Whole Blood Analysis for Intracellular
Phenotyping
Fresh peripheral whole blood (100µl) was lysed and fixed in 1ml
pre-warmed Lyse/Fix buffer (BD Bioscience) for 10min at 37◦C.
Permeabilization and staining were performed as previously
described (40). Cells were stained with anti-CD3, -CD14, -CD19,
-CD20, and -CD27 or combinations of anti-protein and anti-
phospho-protein antibodies: Syk/pSyk(Y352), Akt1/pAkt(S473),
Btk/pBtk(Y223), and PLCγ2/pPLCγ2(Y759), respectively. Flow
cytometry analysis was performed using a FACSCanto II flow
cytometer (BD Bioscience Franklin Lakes, NJ, USA). The gating
strategy used is shown in Figure S1. As an internal negative
control, CD3+ T cells were included for all protein and phospho-
protein antibodies assays except Akt1, where an isotype control
was conducted, as Akt1 is widely expressed among lymphocytes.

Isolation of Peripheral Blood Mononuclear
Cells (PBMCs)
PBMCs were isolated using density gradient centrifugation
method as described previously (40). Freshly isolated cells
were directly suspended in ice-cold MACS rinsing buffer (with
BSA; Miltenyi) for B and T cell purification, in pre-warmed
RPMI 1640 (with GlutaMAX, Life Technologies) for short-
term stimulation assays, or in pre-warmed phosphate buffered
saline (PBS) for carboxyfluorescein succinimidyl ester (CFSE,
Invitrogen/Thermo Fisher, Carlsbad, CA, USA) staining and
long-term in vitro culture. Cells from at least one HD and one
patient were analyzed simultaneously to enhance reliability.

Isolation of Mononuclear Cells (MNCs)
From Tissues
MNCs from tissues were isolated from spleens, tonsils, and
parotid as described previously (58). Cells were released from
minced tissue samples by shaking with ice-cold MACS buffer.
Samples were filtered (70µm cell strainer, Corning, NY, USA)
and MNCs were isolated using density gradient centrifugation.
Residual erythrocytes were removed using EL Buffer (Quiagen,

Venlo, Netherlands). Cells were stored at −20◦C within
FBS/DMSO buffer.

B and T Cell Enrichment
B and T cell enrichment from PBMCs was carried out using
human B cell Kit II or human Pan T cell kit (Miltenyi
Biotec, Bergisch-Gladbach, Germany) for magnetic cell sorting
according to the manufacturer’s protocols. B and T cell purities
were checked by flow cytometry after staining with anti-biotin
and anti-CD19 or anti-CD3 antibodies. Cell suspensions with
82% purity were used for further experiments.

Determination of PTP and Protein
Serine/Threonine Phosphatase (PSP)
Activities
Purified B or T cells were lysed for 30min on ice with Halt
Protease Inhibitor Cocktail (1% in Pierce IP Lysis Buffer;
Thermo Fisher). Then, the assay was processed according to the
manufacturer’s protocol and as described previously (59) using
a commercial PTP and protein serine/threonine phosphatase
(PSP) activity kit (Promega Corporation); 25,000 cells/well (PTP)
and 80,000 cells/well (PSP) were used. In order to ensure the
specificity of the PTPs and PSP activity, the same experiments
were performed using the inhibitors monovanadate (10mM)
and sodium fluoride (10mM) (Sigma-Aldrich), respectively.
Cell lysates were analyzed at 600 nm using a Spectramax Plus
384 micro plate reader (Molecular Devices, San Jose, CA,
USA). Phosphatase activity was quantified by the release of
free phosphate. Concentrations were assessed from standard
dilution series.

BCR-Associated Protein Kinase
Phosphorylation Kinetics Using Phosflow
(BD Bioscience)
For functional phosphorylation kinetics, PBMCs or thawed
MNCs (106 cells) were rested for 1 h at 37◦C in RPMI and
stimulated with anti-IgG/IgM F(ab′)2 (13µg/ml) for 2, 5, 8, 15,
and 30min, respectively. An additional RPMI control served as
control at baseline. BCR stimulation was stopped by adding 1ml
of pre-warmed Lys/Fix buffer (BD Bioscience). Lysis, fixation,
permeabilization, and staining were performed as described
previously (40). Cells were stained with anti-CD3, -CD14,
-CD19, -CD20, -CD27, and combinations of Syk/pSyk(Y352),
Syk/pAkt(S473), or Btk/pBtk(Y223), respectively. Flow cytometry
analysis was performed using a FACSCanto II flow cytometer.
MFIs were used to assess phosphorylation intensity of
phospho-proteins within different B cell subsets (gating
strategy see Figure S1). Previously reported CD27−Syk++

cells (60) were excluded in pSyk(Y352) and pAkt(S473) kinetics,
because they have been shown to represent a population of
memory-like B cells.

Chronic BCR Stimulation and CD40
Co-stimulation
For chronic BCR stimulation experiments, cells were pre-
incubated with anti-IgG/IgM (2µg/ml), CpG (0.5µg/ml) or
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RPMI for 24, 48, or 72 h (37◦C, 5% CO2) and subsequently
stimulated with anti-IgG/IgM or RPMI as a control for 5min.
For co-stimulation experiments, cells were pre-incubated with
recombinant human IL-4 (20 ng/ml) or IL-21 (20 ng/ml) or
CD40L (500 ng/ml, human CD40L Multimer kit, Miltenyi
Biotec) or combinations thereof for 48 h (37◦C, 5% CO2) and
subsequently stimulated with anti-IgG/IgM or RPMI as a control
for 5min. Cells were lysed, fixed, permeabilized, stained for
Syk/pSyk(Y352), and analyzed as described above. Flow cytometry
analysis was performed using a FACSCanto II or LSRFortessa
flow cytometer.

CD22/SHP-1 Co-localization Analysis
Purified B cells were suspended in 100 µl of RPMI (0.2
× 106 cells) equilibrated for 1 h at 37◦C, stimulated with
anti-CD22 F(ab′)2 epratuzumab-A488 (10µg/ml) (UCB)
or left unstimulated, fixed, and permeabilized as described
above. Cells were stained with mouse-anti-human-SHP-1 (BD
Bioscience) and, for unstimulated control, with anti-CD22
F(ab′)2 epratuzumab-A488. Washed cells were stained with
the secondary antibodies donkey-anti-mouse-RRX. Finally,
cells were centrifuged onto slides and covered with Vectashield
HardSet mounting medium containing 4′,6-diamidino-2-
phenylindole (DAPI) (Vector Laboratories, USA) to stain the
nucleus. Co-localization/fluorescence overlap of SHP-1/CD22
was evaluated (0= no co-localization, 1= all pixels co-localized)
using a Nikon A1-Rsi confocal microscope and NIS Elements C
imaging software (Nikon, Tokyo, Japan).

Proliferation Studies Using CFSE
For cell proliferation analysis upon B cell stimulation, PBMCs
(2 × 106 cells/ml in PBS) were stained with CFSE (5µM;
Invitrogen) for 4min at 37◦C prior stimulation. After staining,
cells were washed and incubated with 10ml of RPMI for 30min
at 37◦C. Before proceeding to the stimulation protocol, cells were
washed with RPMI (10% FBS, 1% P/S).

In vitro B Cell Differentiation
PBMCs (106 cells per well) were rested for 1 h at 37◦C
and subsequently stimulated with CpG (0.5µg/ml), anti-
IgG/IgM (2µg/ml), or CD40L (500 ng/ml) and the combinations
CpG/CD40L, CpG/anti-IgG/IgM, or CpG/anti-IgG/IgM/CD40L
for 5 days (37◦C, 5% CO2) in RPMI (10% FBS, 1% P/S). For
B cell proliferation, recombinant human IL-2 (20 ng/ml) and IL-
10 (20 ng/ml) (Miltenyi Biotec) were added to the culture. After
stimulation, cells were washed with MACS buffer and stained
for 15min at 4◦C. Cells were stained with CD3, CD14, CD19,
CD20, CD27, and CD38. Before flow cytometry analysis, DAPI
was added to exclude dead cells. Cells were analyzed using a
FACSCanto II flow cytometer (BD Bioscience; see gating strategy
on Figure S5).

Analysis of Differentially Methylated CpGs
Idat files of the Illumina Infinium HumanMethylation450
BeadChip data (61–63) were processed with RnBeads (v1.6.1).
Data were aligned to hg 19 reference genome, and SNPs and
sex chromosomes were excluded from further processing. A bead

count cutoff of ≥10 and a greedy cut p-value cutoff of ≤0.01 was
set to filter the data for high quality. The data were normalized by
using the swan method. DMCs were defined as CpGs with ≥5%
DNAmethylation difference and p ≤ 0.01.

RNA Sequencing Analysis of
CD40/IL-4R-Stimulated B Cells
Isolated PBMCs were cultured overnight with CD40L
(500 ng/ml) and IL-4 (20 ng/ml) or medium as a control.
FcR blocking reagent was added to cell suspension before cells
were stained with anti-CD14, -CD27, -CD20, -CD19, -CD3,
-CD16, and DAPI, and CD19+ B cells were sorted directly into
Arcturus PicoPure Extraction Buffer (Thermo Fisher) using a

FACSAria
TM

II Sorter (BD Bioscience). Stranded sequencing
library preparation of total mRNA was done using TruSeq RNA
library prep kit (Illumina). Around 60 million passed filter reads
per library were collected in a paired end read mode with 50-bp
sequences each by the HiSeq2500 Illumina system.

Differential Gene Expression Analysis of
RNA-Seq Data
RNA-Seq from stimulated and control CD19+ B cells was
performed on two SLE and one HD and deposited under
PRJNA564980 at NCBI sequence read archive. Three technical
replicates were included for each cohort and time point; files
were obtained from FASTQC. FASTQC, Trimmomatic, STAR,
Sambamba, and featureCounts were done separately. After
careful examination of the PCA plots, three technical replicates
of each cohort and condition were averaged into one and
then used to perform relative gene expression. After FASTQC
quality control analysis, Trimmomatic was used to cut adapter
sequences, low-quality reads, and the first 14 reads of each
sequence due to non-random primer bias. Reads were aligned
to the human reference genome hg38 in STAR, and the.sam files
were converted to sorted.bam files using Sambamba. Relative DE
counts were generated in featureCounts. FastQC, Trimmomatic,
STAR, Sambamba, and the featureCounts programs are all free,
open source programs available at the following web addresses:

FastQC—https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/
Trimmomatic—http://www.usadellab.org/cms/?page$=$~
trimmomatic
STAR—https://github.com/alexdobin/STAR
http://labshare.cshl.edu/shares/gingeraslab/www-data/dobin/
STAR/STAR.posix/doc/STARmanual.pdf
Sambamba—http://lomereiter.github.io/sambamba/
FeatureCounts—http://subread.sourceforge.net/

Differential Gene Expression of Publicly
Available SLE and MS Data Sets
Data were derived from publicly available data sets: GSE4588
CD20+ B cells from SLE and HD (6 SLE, 7 HD), GSE117935
CD19+ B cells from multiple sclerosis (MS) patients and
HD (10MS, 10 HD), E-MTAB-2713 CD4+ T cells from
SLE and HD (53 SLE, 41 HD), and E-MTAB-2713 CD8+

T cells from SLE and HD (22 SLE, 31 HD). DE was
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done for each data set of SLE patients and HD. GCRMA
normalized expression values were variance corrected using
local empirical Bayesian shrinkage before calculation of DE
using the ebayes function in the open source package
BioConductor LIMMA package (https://www.bioconductor.
org/packages/release/bioc/html/limma.html). Resulting p-values
were adjusted formultiple hypothesis testing and filtered to retain
DE probes with an FDR < 0.2 (64).

Data Analysis and Statistics
All flow cytometry data were analyzed with FlowJo (version 10.3,
TreeStar, Ashland, OR. USA). Statistical analysis was performed
with GraphPad Prism (version 5.04, GraphPad Software, La
Jolla, CA. USA). For all data sets, Gaussian distribution was
assumed. For the comparison of two groups, unpaired t-test
was applied, and for paired analysis, paired t-test was applied.
When multiple groups were compared, one-way ANOVA with
Dunnett’s test for multiple comparisons (DMCT) was applied.
For the comparison of time-dependent kinetics and multiple
groups, two-way ANOVA with Bonferroni test for multiple
comparisons (BMCT) was used.

RESULTS

Enhanced PTP Activity by SLE CD19+ B
Cells
BCR signaling is regulated by a finely tuned balance of PTKs
and PTPs (16, 65). In a previous study, we found that B cells
from SLE patients have enhanced PTP activities and reduced
Syk phosphorylation compared to HDs (40). Most SLE patients
exhibited this abnormality, independent of disease activity. To
determine whether these abnormalities are unique to SLE, we
assessed PTP and PSP activities in SLE, RA, pSS, and HD
CD19+ B cells (Figure 1A). SLE B cells exhibited significantly
increased PTP activities for both PTP-specific substrates (TyrPP1
and TyrPP2), whereas no significantly increased PTP activities
were found in RA and pSS B cells (Figure 1A). Similarly, we
found that PSP activity was uniquely increased in SLE, but
not in RA or pSS patients compared to HD. We employed
specific PTP and PSP inhibitors to ensure specificity of the
PTPs/PSPs analyzed. PTP activity could be blocked and PSP
inhibition was dose dependent (Figures 1A,B). PTP and PSP
activities in CD3+ T cells from AID patients were similar to
HD (Figure S1), suggesting that enhanced PTP/PSP activity is a
unique characteristic of SLE B cells.

The location of a PTP, such as SHP-1, is important for
BCR signaling regulation. Here, we analyzed the co-localization
of SHP-1 (PTPN6) with CD22 with and without anti-CD22
engagement, which recruits and activates SHP-1. Cap formation
was not confined to one or the other AID, with increased
baseline co-localization of SHP-1 and CD22 in SLE, pSS, and
RA patients. Notably, the degree of co-localization constitutively
present in SLE B cells appeared at a maximum and could not
be further increased upon CD22 engagement. In contrast, CD22
engagement increased co-localization of SHP-1 in RA, pSS, and
HDB cells (Figure S1). The data suggest that a functionally active

PTP complex of SHP-1 was substantially increased in SLE B cells
at baseline.

Similar Baseline Expression and
Phosphorylation Levels of BCR-Associated
Protein Kinases and PLCγ2 in HD and AID
Patients
Next, we studied the status of BCR downstream kinases and
phospholipase PLCγ2 in CD27− and CD27+ memory B cells of
AID patients. We analyzed the baseline phosphorylation of Syk,
Btk, and PLCγ2, which are regulated by PTPs. Furthermore, we
analyzed Akt1 regulated by PSPs. We found similar basal Syk
expression and phosphorylation at the activation site Syk(Y352)
within CD27− and CD27+ memory B cells in patients and HD
(Figure 1C). Syk expression and baseline phosphorylation were
generally higher in CD27+ memory than in CD27− B cells
across all groups. For the downstream signaling molecules
Btk and PLCγ2 and their phosphorylation sites Btk(Y223) and
PLCγ2(Y759), we found similar expression and phosphorylation
levels among all patients and HD (Figures 1D,E). Akt1
expression and phosphorylation at Akt(S473) were comparable
among CD27− and CD27+ B cells from all donor groups
(Figure 1F). Constitutive expression and phosphorylation levels
of BCR-associated kinases (Figure 1) were overall similar to
HD in all AID tested in both B cell subsets, despite increased
constitutive phosphatase activity in SLE B cells.

Reduced Syk and Btk Tyrosine
Phosphorylation Upon BCR Stimulation Is
Characteristic of CD27+ Memory B Cells
From Patients With AID and CD27− SLE B
Cells
Subsequently, we assessed phosphorylation of Syk(Y352),
Btk(Y223), and Akt(S473) following BCR engagement in AID and
HD CD27− and CD27+ memory B cells (Figure 2, Figure S2).
Even though the composition of switched and non-switched
cells among CD27− and CD27+ B cells may differ among
patients and HD, we did not observe substantial heterogeneity
on the functional level, except within the recently reported
CD27−Syk++ cells, which were excluded from this analysis.

BCR-induced phospho-(p)Syk(Y352) in AID CD27+ memory
B cells and SLE CD27− B cells was significantly lower
compared to HDs (Figures 2A,B). Btk(Y223) phosphokinetics
were qualitatively similar to that of pSyk(Y352), with a maximum
phosphorylation after 5min (Figure 2C). AID CD27+ memory
B cells revealed significantly reduced pBtk(Y223) in comparison
to HDs, whereas Btk(Y223) phosphorylation was reduced in SLE
and RA CD27− B cells. SLE B cells do not differ in surface IgG
and IgM expression compared to HD (40), indicating that this
phenotype is not related to reduced Ig expression. Furthermore,
we observed reduced phosphorylation in pSS patients who had
not received any treatment, suggesting that these effects were not
treatment dependent.

Akt(S473) phosphokinetics displayed a maximum after 8min
(Figure 2D). Phospho-Akt(S473) in both B cell compartments
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FIGURE 1 | Enhanced PTP activity in SLE B cells and similar kinase expression and phosphorylation in AID among CD27− and CD27+ memory B cells. (A) PTP

[n(HD/SLE/RA/pSS) = 22/8/4/13] and (B) PSP [n(HD/SLE/RA/pSS) = 19/8/5/10] activities of CD19+ B cells in HD (gray), SLE (red), RA (blue), and pSS (green).

CD27− (dots) and CD27+ memory (open circles) B cells from HD (black), SLE (red), RA (blue), and pSS (green) patients were analyzed for the expression of (C)

Syk/pSyk(Y352 ) [n(HD/SLE/RA/pSS) = 32/19/14/13]; (D) Btk/pBtk(Y223 ) [n(HD/SLE/RA/pSS) = 30/16/11/15]; (E) PLCγ2/pPLCγ2(Y759) [n(HD/SLE/RA/pSS) =

25/15/6/11] and (F) Akt1/pAkt(S473 ) [n(HD/SLE/RA/pSS) 30/14/14/13]. Representative histograms of CD27− (solid line); CD27+ (dashed line), and negative control

(gray) are shown. Box whisker plots represent median (line), mean (plus), and the range from minimum to maximum; lines in scatter dot plots represent means ± SD

(ANOVA with DMCT; t-test; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001).
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FIGURE 2 | Reduced PTK phosphorylation upon BCR signaling in peripheral and tissue-resident CD27+ B cells from patients with AID. PBMCs or MNCs from HD

(black), SLE (red), RA (blue), pSS (green), and ITP (pink) vs. non-ITP (black) spleens and pSS parotid gland (green) vs. tonsils (black) were stimulated with anti-IgG/IgM

F(ab)2. (A) Representative pSyk(Y352 ) histograms from CD27+ memory B cells are shown. CD3+ T cells served as control (gray). Phospho-kinetics of (B) Syk(Y352 )

[n(HD/SLE/RA/pSS) = 19/11/11/10], (C) Btk(Y223 ) [n(HD/SLE/RA/pSS) = 21/10/6/14], and (D) Akt(S473 ) [n(HD/SLE/RA/pSS) = 29/15/11/10] in CD27+ memory

(dashed lines) and CD27− (solid lines) B cells are shown. Phospho-Syk(Y352) kinetics in B cells from (E) spleen and (F) tonsil/parotid with representative histograms

[nspleens(non-ITP/ITP) = 7/4; n(tonsils/parotid) = 4/1]. Histograms show unstimulated (filled areas) vs. stimulated (solid lines) cells. Data show mean ±95% CI

(two-way ANOVA with BMCT for the comparison of AID vs. HD CD27− or CD27+ memory B cells, respectively; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001).
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from RA and pSS patients was comparable to those from HDs,
whereas SLE patients showed increased pAkt(S473) compared
to HD, at all-time points. Of particular note, memory B cells
from HD expressed higher levels of tested phospho-PTKs and
pAkt(S473) than CD27− B cells upon BCR engagement as a
general characteristic.

Taken together, diminished pSyk(Y352) and pBtk(Y223),
but not pAkt(S473), upon BCR stimulation is a common
characteristic of AIDmemory B cells, whereas it is also present in
SLE CD27− B cells, suggesting that the SLE B cell compartment
is more globally abnormal.

Reduced Syk(Y352) Phosphorylation in
CD27+ B Cells From AID Lymphoid Tissues
To determine whether these findings are restricted to circulating
B cells, we analyzed tissue-resident CD27− and CD27+

B cells from autoimmune and non-autoimmune patients
(Figures 2E,F). ITP patients’ spleens were compared to control
spleens from non-autoimmune patients. Control tonsils were
obtained from patients undergoing tonsillectomy. Parotid tissue
was received from one pSS patient undergoing parotidectomy to
exclude lymphoma.

We found reduced pSyk(Y352) kinetics in ITP
CD27+ memory B cells compared to control spleens,
whereas pSyk(Y352) kinetics in CD27− B cells
were comparable to controls (Figure 2E). Phospho-
Syk(Y352) was also diminished in tonsillar and parotid
B cells (Figure 2F). These data indicate that B cells
with diminished BCR-induced PTK phosphorylation
particularly in the CD27+ memory B cell compartment
are present in tissues of AID patients and in
the tonsil.

FIGURE 3 | Reduced Syk(Y352 ) phosphorylation upon re-stimulation of the BCR. PBMCs from HD were incubated with anti-IgG/IgM, CpG, or RPMI as a control for

24, 48, or 72 h and re-stimulated with anti-IgG/IgM for 5min. (A) Representative histograms of Syk(Y352 ) phosphorylation at day 0 and without (black line) or with

anti-IgG/IgM (red) or CpG (blue) pre-incubation for 24, 48, or 72 h. The unstimulated control is shown as a gray peak. Anti-IgG/IgM induced pSyk(Y352) MFIs in (B)

CD27− B cells (solid dots) and (C) CD27+ B cells (open circles) at day 0 or after pre-incubation with RPMI as a control (black), anti-IgG/IgM (red), or CpG (blue) for 24,

48, and 72 h. Unstimulated controls are displayed as gray dots. Horizontal lines represent means ± SD [n(HD) = 3].
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Reduced Syk(Y352) Phosphorylation Is
Acquired as a Result of Previous
Stimulation of the BCR
Subsequently, we tested whether reduced BCR signaling observed
in SLE B cells and RA and pSS memory B cells can be induced in
HD B cells by continuous stimulation with anti-BCR or TLR9
antagonists (Figure 3). Previously, we showed that ex vivo IgG
and IgM expression does not differ between SLE and HD B cells
(40). Here, continuous stimulation of HD B cells with anti-BCR,
but not with CpG, resulted in reduced Syk(Y352) phosphorylation
upon subsequent anti-BCR stimulation. This was observed for
CD27− and CD27+ memory HD B cells (Figures 3A–C).

FIGURE 4 | Increased Syk(Y352 ) phosphorylation reflecting BCR

responsiveness of CD27+ memory B cells from HD, SLE, RA, and pSS upon

co-stimulation with CD40L. PBMCs from HD (black), SLE (red), RA (blue), and

pSS (green) patients were treated with CD40L and subsequently stimulated

with anti-IgG/IgM F(ab)2. (A) Representative histograms of pSyk(Y352) in

CD27− (top row) and CD27+ memory (bottom row) B cells in the presence

(colored areas) or absence (gray areas) of prior CD40L co-stimulation. (B)

pSyk(Y352) in CD27− (filled boxes) and CD27+ memory (clear boxes) B cells

with [n(HD/SLE/RA/pSS) = 11/7/5/5] and without [n(HD/SLE/RA/pSS) =

30/18/16/15] CD40 co-stimulation. Box whisker plots represent median (line),

mean (plus), and the range from minimum to maximum (ANOVA with DMCT, *p

≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001; paired t-test, #p ≤ 0.05, ##p ≤ 0.01,
###p ≤ 0.001).

Co-stimulation With CD40L Normalizes
BCR Responsiveness of B Cells From HD
and AID Patients
Next, we tested the impact of CD40 co-stimulation on BCR-
mediated signaling of AID B cells (66). We measured pSyk(Y352)
upon CD40 co-stimulation followed by BCR engagement in
CD27− and CD27+ memory B cells from patients and HD
(Figure 4).

Increased pSyk(Y352) was observed in CD27− and CD27+

memory B cells from AID patients and HDs after treatment
with CD40L compared to BCR stimulation alone (Figure 4A).
After CD40L co-stimulation, Syk(Y352) phosphorylation in RA
and pSS CD27+ memory B cells and in SLE CD27− B cells was
comparable to HD (Figure 4B), whereas BCR engagement alone
gave rise to diminished pSyk(Y352) (Figures 2B, 4B). pSyk(Y352)
expression by SLECD27+ memory B cells increased uponCD40L
co-stimulation compared to BCR stimulation alone, even though
the phosphorylation amplitude remained lower than those in HD
(Figure 4B). These data suggest improved BCR responsiveness
by CD40L co-stimulation in memory B cells and in CD27−

SLE cells.
It has been reported that Th2 signals restore BCR signaling

in a small population of anergic IgM−IgD+CD27− B cells
present in blood of HD and SLE patients (67). Therefore, we
tested whether additional stimulation with IL-4 could further
modulate pSyk(Y352) responses. IL-21, a key cytokine driving GC
reactions (68), served as control. The presence of IL-4 or IL-21
alone led to modest effects on the pSyk(Y352) response to BCR
engagement. IL-4 in combination with CD40L, however, led to
higher responses than with CD40L alone in all groups, whereas
the addition of IL-21 in combination with CD40L increased
pSyk(Y352) only in CD27− B cells in all donors (Figure S3).

We also tested whether co-stimulation affects basal expression
and phosphorylation of Syk. We found that CD40L co-
stimulation (with and without IL-4 or IL-21) caused a minor
upregulation of Syk, whereas pSyk(Y352) was increased. SLE
CD27− B cells showed somewhat increased basal Syk and
pSyk(Y352) upon CD40L co-stimulation with and without IL-
4 or IL-21 (Figure S3). However, the amplitude of pSyk(Y352)
changes upon CD40L stimulation was very modest.

Diminished B Cell Proliferation and
Antibody Secreting Cell (ASC)
Differentiation Upon TLR9 Stimulation in
Autoimmune Patients
TLR9-mediated activation has been described to be impaired
in SLE, including reduced production of cytokines upon TLR9
stimulation (43, 44). Thus, we tested whether reduced TLR9
responsiveness is a shared abnormality among AID B cells
(Figure 5).

TLR9-induced B cell proliferation was decreased in AID
B cells and diminished responsiveness was most pronounced
in SLE B cells (Figures 5A,B). Moreover, TLR9-induced
differentiation into ASCs was impaired in all AID B cells
compared to HD (Figure 5C, Figure S4). Further, AID B cells
gave rise to a twofold lower frequency of CD27+CD38+ cells
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FIGURE 5 | Proliferation of AID B cells upon CD40 stimulation or combined stimulation of BCR and TLR9 is comparable to HD. B cells from HD (black), SLE (red), RA

(blue), and pSS (green) patients were stimulated with anti-IgG/IgM, CD40L, or CpG and the combinations CD40L/CpG, CpG/anti-IgG/IgM, or

CD40L/CpG/anti-IgG/IgM. (A) Representative CFSE histograms of HD, SLE, RA, and pSS B cells after 5 days of culture for the indicated stimulus (lines) compared to

background control (gray). (B) Percentages of CFSElow B cells [n(HD/SLE/RA/pSS) = 17/19/9/10 (IL-2/IL-10 control); 11/10/6/5 (IgG/IgM); 10/7/4/5 (CD40);

16/18/7/9 (TLR9); 10/7/4/5 (TLR9/CD40); 16/19/7/9 (IgG/IgM/TLR9); 10/7/4/5 (IgG/IgM/TLR9/CD40)]. (C) Resulting frequency of CD27+CD38+ B cells upon

activation in culture [n(HD/SLE/RA/pSS) = 18/18/11/10 (IL-2/IL-10 control); 12/8/6/5 (IgG/IgM); 12/8/7/7 (CD40); 17/18/9/10 (TLR9); 12/8/5/6 (TLR9/CD40);

17/18/8/10 (IgG/IgM/TLR9); 12/8/5/6 (IgG/IgM/TLR9/CD40)]. Bars shown represent mean ± SD (ANOVA with DMCT, *p ≤ 0.05, **p ≤ 0.01; #p ≤ 0.05, ##p ≤

0.01, ###p ≤ 0.001).
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compared to HDs when stimulated with CpG (Figure 5C,
Figure S4).

It has been reported that Syk is necessary for TLR9 signaling
(69, 70). To test whether Syk has a critical role in B cell
activation following TLR9 stimulation, we stimulated HD B cells
with CpG in the presence or absence of the Syk inhibitor
entospletenib. Syk inhibition resulted in reduced frequencies of
HD CD27+CD38+ B cells upon TLR9 stimulation, mimicking
the B cell hyporesponsiveness of AID memory B cells, and SLE
B cells (Figure S4).

Next, we investigated the effect of combined TLR9 and BCR
stimulation because of the crucial role of TLR9 engagement in
breaking tolerance against nuclear antigens and driving B cell
activation (71–73). As both BCR and TLR9 appear to depend
on Syk activity, combined stimulation increased differentiation
of CD27+CD38+ ASC only modestly, but the response remained
generally lower than HD B cell responses (Figure 5C). However,
co-stimulation increased proliferation of all AID B cells to the
level observed with HD B cells (Figure 5B).

Co-stimulation With CD40L Results in
Increased Proliferation of AID B Cells
Notably, CD40L activation induced B cell proliferation in
all groups (Figure 5B). In line with previous reports (74),
differentiation into CD27+CD38+ B cells was not observed upon
stimulation with CD40L alone (Figure 5C, Figure S4).

In order to further investigate the effect of CD40 engagement
on AID B cells and whether their hyporesponsiveness to TLR9
agonists can be overcome through CD40/CD40L interaction, we
cultured AID andHDB cells in the presence or absence of CD40L
together with CpG or the combination of CpGwith anti-IgG/IgM
(Figure 5).

Co-stimulation of CD40 increased TLR9-induced
proliferation of AID B cells. Stimulation of AID B cells
with CD40L and CpG compared to CpG alone resulted in

FIGURE 6 | Common reduction of receptor-type PTP expression upon

co-stimulation with CD40L/IL-4. Differential expression of selected genes

related to receptor-type and non receptor-type PTPs in SLE vs. HD CD20+

B cells (6 SLE, 7 HD), MS vs. HD CD19+ B cells (10MS, 10 HD), SLE vs. HD

CD4+ (53 SLE, 41 HD), and CD8+ T cells (22 SLE, 31 HD) (lines 1–4 are from

publicly available data). Differential gene expression from un-stimulated SLE

vs. HD and CD40L/IL-4 stimulated for SLE vs. un-stimulated SLE or HD

CD19+ B cells, respectively [n(HD/SLE) = 1/2], (lines 4–7).

increased frequencies of CFSElow cells, similar to that induced
in HD B cells (Figures 5A,B). However, the frequencies of
CD27+CD38+ ASCs in CD40L co-stimulation cultures were
lower compared to TLR9 or TLR9/BCR stimulation (Figure 5C)
consistent with previous reports that CD40L stimulation blocks
CpG induced in vitro B cell differentiation (74). Therefore,
CD40 engagement provided the co-stimulation signal that
allowed AID B cells, especially SLE B cells, to proliferate when
co-stimulated through TLR9, but did not promote differentiation
into CD27+CD38+ ASC.

Common Methylation Pattern of B Cells
From HD and AID Patients
Subsequently, we addressed whether reduced responsiveness of
AID B cells is epigenetically controlled. Individual epigenome-
wide association studies (EWAS) identified differentially
methylated regions (DMR) in B cells from SLE (61), RA (63),
and pSS patients (62) based on a meta-analysis of Infinium
HumanMethylation450K BeadChip data of CD19+ cells.

The global methylation values of AID patients correlated
strikingly with methylation values of HD samples (r = 0.99;
Figure S5). We were interested in the methylation state of
certain genes that are related to CD40 and BCR signaling, B cell
activation, and, in addition, the methylation status of kinases
and phosphatases (Figure S5). Except for the hypomethylation
of multiple CpGs at the IFITM1 locus, we could not detect
substantial differences among selected CpGs. However, we found
kinase EIF2AK2 (cg14126601) and kinase modulator TRIP6
(cg19279257) to be hypomethylated in AID.

On the global level, genes encoding interferon-induced
proteins, such as IFITM1, IFI44L, andMX1, were found to be the
most differentially methylated CpGs, with hypomethylation in all
AID groups (Table S4). These genes are hypomethylated mainly
in SLE and pSS and to a lesser extent in RA compared to HD
(Figure S5).

Decreased PTP Expression Upon
CD40L/IL-4 Co-stimulation
Increased PTP/PSP activity was uniquely found in SLE CD19+

B cells (Figures 1A,B). Furthermore, we found that CD40/IL-4R
co-signaling substantially improved BCR signaling (Figure S3).
Based on this, we suggested that CD40/IL-4R signaling may
be involved in the modulation of PTP and PSP expression. To
test this hypothesis, we analyzed the expression of non-receptor
(NR)- and receptor (R)-type PTPs and PSPs in SLE and the
impact of CD40/IL-4R co-stimulation on their expression.

First, we analyzed the expression of selected PTPs within
publicly available gene expression data sets from SLE and HD
CD20+ B cells, CD4+, and CD8+ T cells, andMS andHDCD19+

B cells as controls (Figure 6). Expression of PTPN2, PTPN11,
PTPN22, PTPRC, and PTPRO was found to be specifically
increased in SLE CD20+ B cells, as we found no differentially
expressed PTP in MS B cells compared to HD. Further, the
data point to a B cell-specific abnormality, as we found no
differentially expressed RPTP and only marginal differential
expressed NRPTP among CD4+ and CD8+ T cells from SLE
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compared to HD (Figure 6). These data correspond to the
comparable PTP activity measured in SLE and HD CD3+ T cells
(Figure S1).

Next, increased expression of PTPN6 and PTPRN2 in
unstimulated SLE CD19+ B cells was detected. However,
expression of PTPRB was decreased. Of note, PTPN2 and
PTPN22 and all RPTP (except PTPRB) were downregulated
upon CD40L/IL-4 stimulation compared to their overexpression
before stimulation.

We tested the possibility that PSPs may be involved in
abnormal SLE B cell signaling as we found increased PSP activity
in SLE (Figure 1B). We analyzed genes related to the PP2 and
PP2C family. Unstimulated B cells displayed small differences
in PSP expression between SLE and HD. CD40L/IL-4 co-
stimulation led to heterogeneous changes (increased expression
of PP2 family genes except PPP2R3B (unaffected) and decreased
PPP2R5D, whereas PP2C family members were unaffected
(Figure S6).

These data show that T cell help by CD40/IL-4R engagement
alters the expression of NRPTPs such as PTPN22 and different
RPTPs and further underlines the crucial role of T cell co-
stimulation in defining B cell dysfunction in SLE.

DISCUSSION

Despite information in the literature suggesting increased BCR
signaling in AID (31, 37, 75), here we provide extensive evidence
that BCR signaling and responses to TLR9 stimulation are
reduced in AID memory B cells but more broadly in SLE
B cells. Furthermore, it was demonstrated that this BCR signaling
abnormality is not only characteristic of peripheral B cells, but is
also present in tissue-resident B cells from ITP spleens and pSS
parotid gland. In contrast to RA and pSS, in which BCR signaling
defects are present only in antigen-experienced memory B cells,
in SLE, this abnormality is also manifested in CD27− B cells.
Moreover, the SLE B cell abnormality extended to increased
expression of PTPs, globally enhanced PTP and PSP activities,
and maximal constitutive recruitment of the PTP SHP-1 to
CD22. As a proof of concept, we compared PTP expression
under stimulated and unstimulated conditions in two SLE and
one healthy control subject. Although considered preliminary,
results of this analysis were consistent with that obtained from
larger publicly available data sets. Notably, CD40 co-stimulation
resulted in normalization of BCR signaling, increased B cell
proliferation, together with reduced expression of PTPs such
as PTPN22 in SLE. The B cell abnormalities are likely to
reflect continuous stimulation through the BCR in vivo without
appropriate co-stimulation. These results indicate that there is a
spectrum of abnormalities in BCR signaling in AID, with SLE
manifesting the most extensive B cell dysfunction and that the
B cell dysfunction detected ex vivo and in vitro reflects varying
degrees of BCR stimulation in vivo, without appropriate T cell-
derived co-stimulation.

Reduced BCR signaling together with increased co-
localization of the inhibitory co-receptor CD22 and SHP-1
in RA, pSS, and most pronounced in SLE B cells and
increased PTP activities in SLE B cells may reflect a phenotype
related to anergy (76–80). This conclusion is favored by the

observation that repeated BCR engagement in vitro induces BCR
hyporesponsiveness together with studies demonstrating that
continuous signaling via SHP-1 is required to maintain anergy
(80, 81). Moreover, the anergy phenotype extends to TLR9
signaling but does not involve the CD40 pathway. Finally, the
anergy phenotype appears to be overcome by CD40 engagement,
suggesting that it derives from incomplete signaling through the
BCR in vivo without appropriate T cell-derived co-stimulation.
Notably, the data suggest that when the proper series of signals
are provided, AID B cells function in a largely normal manner,
indicating that intrinsic B cell defects in these conditions may
be minimal.

It has been reported that reduced signaling
of phosphoinositide 3-kinase (PI3K) suppresses
phosphatidylinositol (3,4,5)-trisphosphate (PIP3) generation
by PI3K and is key for B cell anergy (82). In our studies, Akt
signaling, which is downstream of PI3K, was not abnormal in
RA and pSS, but was found to be increased in SLE. Another
study demonstrated that proliferating GC B cells lack active
BCR signaling which is induced and maintained by increased
phosphatase activity and persistent co-localization of SHP-1 with
the BCR after ligation (59). Therefore, reduced BCR signaling
in peripheral blood and tissue-resident AID CD27+ B cells is
a characteristic of what might be considered a post-activated
functionally anergic phenotype. This status could be induced in
HD B cells by chronic BCR stimulation, indicating that repetitive
stimulation by self-antigens or immune complexes in the absence
of appropriate co-stimulation can induce this functional status.
Importantly, induction of this state of anergy appears to be
specific for signaling through the BCR, as stimulation with CpG
did not cause B cells to become anergic, even though anergic
B cells exhibited decreased activation through TLR9.

Interestingly, reduced BCR-induced Syk phosphorylation in
both CD27− B cells and CD27+ memory B cells was uniquely
found in SLE. Iwata et al. have previously reported increased
phosphorylation of Syk in total SLE CD19+ compared to healthy
controls (83). One difference to our data could be that Iwata
et al. included in their analysis CD27−Syk++ memory-like
B cells that are increased in SLE patients compared to HD
(60). This population has been excluded in the current analysis.
However, the more extensive abnormality appeared to be related
to increased PTP activity and expression. This may reflect the
more persistent stimulation of B cells in SLE, perhaps reflecting
the enhanced expression of T follicular helper cells in SLE
(47, 84) and recent findings that IL-21 promotes CD11chiT-bet+

B cell development enriched of autoreactive cells in SLE (85).
Even though increased TFH and increased expression of CD40L
have been reported in SLE, there may be compartmentalization
of these cells away from sites of B cell activation, permitting
persistent engagement of the BCR with appropriation T cell-
derived T cell help.

Lymphocyte hyporesponsiveness in AID is not restricted to
B cells. Impaired cytotoxic function and exhaustion of CD8+

T cells, a characteristic of viral infections, has been reported in
SLE (49, 50, 86). SLE T cells display abnormal T cell signaling
(48, 87) and reduced Th1/Th2 Ca2+ responses were reported
in pSS (88). Although hyporesponsiveness is not restricted to
B cells, in the current study, T cells from AID patients did not
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show enhanced PTP/PSP activities, indicating a dysfunctional
regulatory process restricted to B cells.

TLR9 activation facilitates the development of autoantibodies
against dsDNA and ribonucleoproteins, indicating a critical role
of this receptor in the activation of B cells in autoimmunity (89,
90). It activates memory B cells and drive in vitro proliferation
and differentiation of B cells into ASCs (71, 72) and is considered
to be involved in type I interferon production in autoimmunity
(91). However, we found that AID B cells responded weakly
to TLR9 activation in vitro. This is consistent with other
studies describing reduced responses of SLE B cells against
pokeweedmitogen (92); reduced IL-6, IL-10, vascular endothelial
growth factor (VEGF), and IL-1ra production and reduced Ki-67
expression (43, 44); and reduced frequencies of CD69+CD86+

and TACI+CD25+ B cells after TLR9 in vitro stimulation (44).
We and others (69, 70) found a functional connection between
TLR9 and BCR signaling since Syk inhibition had an impact
on TLR9 responses of normal B cells. This finding suggests that
the abnormality in TLR9 signaling may be part of the anergic
phenotype in SLE and reflect the reduced Syk signaling induced
by repetitive BCR engagement in vivo in this disease.

Some reports indicate a role of reduced BCR signaling in
the development and progression of autoimmunity (93, 94).
Interestingly, inhibition of PTPN22 could reset central B cell
tolerance in NOD scid gamma chain knock out (NSG) mice,
which were engrafted with human hematopoietic stem cells
carrying the gain of function mutation of PTPN22 (94). Whereas,
this study indicates that a normalized BCR signal could restore
immune tolerance, the strong role of CD40 activation in PTPN22
risk gene carriers is also consistent with the idea that this
pathway is critical for censoring the overly active immune system
in autoimmunity (95). Whether PTPN22 variant increases or
decreases BCR signaling is a matter of debate. Mice expressing
this mutation displayed enhanced BCR and CD40 responses (96).
CD40 seems to be a critical context-dependent co-stimulatory
molecule regulating both the full activation of BCR-stimulated
B cells as well as their subsequent censoring. In this context,
the current result that CD40 co-stimulation can render AID
dysfunctional B cells susceptible to BCR stimulation and that
CD40 treatment of SLE B cells diminished the expression of, e.g.,
PTPN22 further support that modulation of the CD40 pathway is
of critical importance in regulating B cell function at many levels.

The effectiveness of B cell-directed therapies, such as
rituximab (anti-CD20+) in RA, or belimumab (anti-BAFF/BLyS)
in SLE, underscores the role of B cells in these diseases (97, 98).
Our study suggests that blocking CD40/CD40L interaction by
fostering B cell anergy holds promise to interfere with the cycle
of B cell activation, tissue damage, and inflammation in AID. In
fact, a study using an anti-CD154 antibody could prevent ASC
generation in SLE patients (99). A second-generation PEGylated
monoclonal antibody is currently in clinical development for SLE
(100). Our data support that this treatment would be beneficial in
RA and pSS as well.

In conclusion, we found that SLE B cells and RA and
pSS memory B cells exhibit diminished responsiveness to
BCR and TLR9 signaling, which may reflect a status of post-
activation functional anergy owing to in vivo engagement of

the BCR without appropriate T cell-derived co-stimulation.
CD40 activation of B cells is critical to overcome this state
of diminished responsiveness and restore BCR responses.
Our findings support the investigation of new therapeutic
options that interfere with the interaction between CD40/CD154
and, thereby, foster functional B cell anergy and decreased
disease activity.
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