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Recently developedmolecular methods allow large-scale profiling of T-cell receptor (TCR)

sequences that encode for antigen specificity and immunological memory of these cells.

However, it is well-known that the even unperturbed TCR repertoire structure is extremely

complex due to the high diversity of TCR rearrangements and multiple biases imprinted

by VDJ rearrangement process. The latter gives rise to the phenomenon of “public” TCR

clonotypes that can be shared across multiple individuals and non-trivial structure of the

TCR similarity network. Here, we outline a framework for TCR sequencing data analysis

that can control for these biases in order to infer TCRs that are involved in response to

antigens of interest. We apply two previously published methods, ALICE and TCRNET,

to detect groups of homologous TCRs that are enriched in samples of interest. Using an

example dataset of donors with known HLA haplotype and CMV status, we demonstrate

that by applying HLA restriction rules and matching against a database of TCRs with

known antigen specificity, it is possible to robustly detect motifs of epitope-specific

responses in individual repertoires. We also highlight potential shortcomings of TCR

clustering methods and demonstrate that highly expanded TCRs should be individually

assessed to get the full picture of antigen-specific response.

Keywords: T-cell receptor, antigen, motif inference, immune repertoire, high-throughput sequencing

INTRODUCTION

Immune repertoire profiling technology [AIRR-Seq (1)] is an efficient technique that can be
employed to study the structure and dynamics of the adaptive immune system. AIRR-Seq makes it
possible to characterize the structure of both naive and antigen-experienced T-cell receptor (TCR)
repertoires (2–4), tumor infiltrating T-cells (5), and TCRs related to autoimmunity (6), leading
to numerous downstream applications in both basic and applied immunological research (7).
While novel single-cell RNA sequencing methods allow coupling individual T-cell clones to their
phenotype and function using their gene expression profiles (8), the actual antigen specificity (i.e.,
the set of antigens that can be potentially recognized by a given TCR) remains a mystery for most of
the T-cells observed by high-throughput profiling. Even with deep repertoire profiling, the number
of unique TCR variants obtained fromMHC-multimer positive T-cell fraction is usually below 104

(9), dwarfed by the highly conservative estimate of 108 for the diversity of TCR beta chain (10).
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Recent developments in the field of bioinformatic analysis of
AIRR-Seq data are aimed at providing a mean for annotation of
TCR repertoires with predicted antigen specificities. For example,
the McPAS-TCR database (11) lists pathogen- and disease-
associated TCRs and the VDJdb database (12) features a large
set of TCRs with experimentally verified epitope specificities and
theirMHC restrictions. Existing computational methods for TCR
repertoire annotation allow both matching against a database
of known antigen specificities (12, 13) and clustering of TCR
sequences for de novo motif detection (4, 14). Annotation of
a large number of TCR repertoires from healthy donors (15,
16) demonstrates both high variance of frequencies of epitope-
specific T-cells and the imprint of past and ongoing pathogen
encounters. Thus, de novo discovery of T-cells associated with
antigens of interest or certain disease appears to be a hard
problem, complicated by the biases in the structure of the naive
(unperturbed) TCR repertoire (17), the presence of existing
clonal expansions specific to unrelated pathogens, and the high
number of false positives that result from the extremely high
diversity of the TCR repertoire.

In the present paper, we describe a general framework that
can be used to infer sets of T-cells specific to antigens of
interest using AIRR-Seq data and TCR neighborhood enrichment
algorithms (ALICE and TCRNET). Throughout the study, we
apply the TCRNET algorithm for most of the analysis relying
on controls generated from healthy donors and switch to the
ALICE method that uses a built-in control (VDJ rearrangement
model) for the analysis of hematopoietic stem cell transplant time
course as there is no feasible control for this dataset. The notable
difference between ALICE and TCRNET methods is that while
the former utilizes a common VDJ rearrangement model and
controls for intrinsic biases of the VDJ rearrangement process,
the latter relies on a user-provided set of samples additionally
controlling for thymic selection and common pathogen-specific
T-cell expansions.

We discuss how various biases of AIRR-Seq datasets can be
handled using proper experimental design and give a theoretical
basis for the proper application of methods that are based on
the probabilistic model of VDJ rearrangement. Using an example
dataset of individual human TCR repertoires, we demonstrate
the capability of the framework to infer HLA-restricted antigen-
specific responses, discuss possible modifications of the proposed
method, and expose potential shortcomings of the existing
methodology that should be taken into account when running
antigen-specific TCR inference.

MATERIALS AND METHODS

AIRR-Seq Data Analysis
Six samples were selected from a large TCRbeta repertoire
sequencing dataset published by Emerson et al. (18). The samples
were chosen based on HLA matching; they include CMV− and
CMV+ donors and four controls with CMV− status (see Figure 3
for sample IDs). Short nucleotide sequences covering the CDR3
region together with Variable (V) and Joining (J) gene parts were
then re-aligned with MiXCR software (19) to produce clonotype

tables compatible with VDJtools software (20) and to resolve
cases with missing V/J allele calls.

VDJ Rearrangement Simulation, Network
Analysis, and Repertoire Annotation
Random TCRbeta sequences were simulated using OLGA
software (21) with default VDJ rearrangement model parameters
and V/J allele sequences. TCR similarity networks were
constructed by allowing a single substitution (a Hamming
distance of 1) in CDR3 amino acid sequences. Neighborhood size
(degree) enrichment of TCR similarity network nodes was tested
against the VDJ rearrangement model using ALICE algorithm
(4). The minimal number of neighbors was set to 2, and Q
selection factor was set to 1 (no thymic selection) for the
analysis of sequences generated with OLGA (see Figure 2) and
to 9.41 (default) for the analysis of the HSCT dataset (see
Figure 5). Node neighborhood enrichment test against a pooled
control dataset of real TCR repertoires was performed using
the TCRNET algorithm implemented in the VDJtools software
(2, 20). TCR repertoire annotation was performed using the
VDJdb database (12) with a single substitution allowed in the
CDR3 amino acid sequence using VDJmatch software (https://
github.com/antigenomics/vdjmatch).

Customizing the Framework for Analysis of
User-Provided Datasets
Users can modify the core R markdown notebook of the
framework located at https://github.com/antigenomics/tcr-
annotation-methodology/blob/master/tutorial.Rmd to make use
of their own sets of control and test samples. For example, the
control dataset (control.txt.gz) can be replaced with a pooled
dataset of healthy controls relevant for the user’s experimental
setup, while CMV+ and B35+ datasets can be replaced with a set
of samples of interest (test samples). Datasets should be stored in
VDJtools format (https://vdjtools-doc.readthedocs.io/en/master/
input.html#vdjtools-format) and it is recommended to pool
samples using VDJtools “PoolSamples” routine with “-i strict”
parameter to ensure that separate VDJ rearrangement events
(V+J+CDR3 nucleotide sequence) are considered. After that,
users can re-run the entire notebook with minor modifications.

RESULTS

Considerations for Experimental Design
and the Analysis Pipeline
There are several factors that should be controlled for when
searching for TCR motifs associated with a certain treatment
or disease (Figure 1A). Firstly, HLA restriction is the major
factor that shapes the entire response: TCR motifs result from
a response targeting certain epitope and are very likely to be
absent in case some of the donors do not have a specific HLA
haplotype even when there are no other differences between
donor phenotypes. Thus, HLA typing is a prerequisite for any
AIRR-Seq study that aims at detecting TCR motifs, and both test
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FIGURE 1 | Overview of the proposed framework. (A) Considerations for experimental design. Controlling for HLA type is critical as the response toward epitopes

linked to the disease of interest is shaped by HLA binding restrictions: donors with distinct HLA can have a completely different response linked to the same disease.

Using a control set with matched HLAs is also critical as a response to present and past common infections will be present among all donors. (B) Outline of the

bioinformatic analysis pipeline. Network-based analysis is aimed at detecting groups of T-cell clonotypes with homologous TCRs that were expanded during

antigen-specific response. Statistical testing offered by ALICE/TCRNET methods is required to control for the intrinsic structure of TCR repertoire shaped by the

process of VDJ rearrangement and presence of common pathogens (TCRNET case). Downstream annotation with VDJdb can be used to infer actual antigen

specificities of TCR clusters and to remove common antigen-specific responses in case of a study aimed at detecting a response to novel/rare pathogens and

self-antigens. Hyperexpanded clonotype should be considered even in the case they are not included in homologous TCR clusters for the reasons described later in

the following sections of the paper.

and control cohorts should be carefully balanced according to
HLA frequency.

Another factor to account for is the imprint of past infections
that is subject to HLA restriction (15, 16). Multiple clonal
expansions related to common pathogens can be detected across
a partially HLA-matched set containing patients and healthy
controls that are unrelated to the studied case. Therefore, a large
HLA-matched cohort of healthy donors is required to filter out
TCR motifs associated with common infections such as EBV.

Finally, the features of the unperturbed TCR repertoire
structure itself should be considered, as the repertoire is heavily
shaped by the process of VDJ rearrangement. The fact that the
VDJ rearrangement process can be described by a relatively
simple probabilistic model makes it possible to accurately predict
population frequencies of specific TCRs (15). However, huge
differences in epitope-specific TCR frequencies can lead to the
detection of potentially irrelevant high-frequency (public) TCRs
in case the cohort size is relatively small as illustrated in Bagaev
et al. (22). Moreover, those public TCRs are the basis for large
hubs of a TCR similarity network (17); therefore, they can be
mistaken for real homologous clonal expansions. The means
to handle this factor are described in the next section and
form the basis of the proposed TCR motif inference framework
(Figure 1B).

Theoretical Basis for TCR Sequence Motif
Inference
There are three assumptions that make it possible to detect a set
of homologous TCRs that are involved in an ongoing antigen-
specific response from AIRR-Seq data:

1a. TCR rearrangement process follows the probabilistic model
of Murugan et al. (23). This assumption allows one to
compute the expected incidence rate of a given TCR, which is

in good agreement with observed results (15) in case a single
amino acid substitution is allowed in the CDR3 sequence.

1b. As it follows fromMurugan et al. (23), average TCR sequence
is extremely rare: median rearrangement probability across
all TCRs is ∼10−12. Thus, given one sample’s ∼106 T-cells
from a total of ∼1011 T-cells in human peripheral blood, the
expected count for a TCR clonotype is ≪1. This allows us
to model TCR sampling using Poisson distribution and is
required for point 3.

2. There are multiple T-cells with homologous TCRs that
recognize the same epitope in an individual. As can be
observed in MHC-multimer sequencing studies [see, e.g.,
Neller et al. (24)], it is typical for the set of multimer+
cells to contain groups of homologous TCRs, although it is
still possible that the response to a given epitope is either
monoclonal or utilizes a set of distinct TCR sequences, in
which case it is not possible to infer any motif.

3. Antigen-specific T-cells expand upon antigen exposure and

rare variants go above the detection boundary 1b. This effect
allows us to run a neighborhood enrichment test to detect
the antigen-driven response without relying on clonotype
frequency statistics and pre-exposure control samples.

Assumption 1 can be utilized to build a control TCR similarity
network that recaptures biases of the VDJ rearrangement process.
An example of a network of 10,000 randomly generated TCRs
constructed by connecting CDR3aa regions that differ by a
single substitution is given in Figure 2A. This network reveals a
complex structure with multiple hubs that, as previously shown
in Madi et al. (17), are enriched in “public” TCR variants. It
is necessary to note that disconnected hubs may arise, in part,
due to the fact that TCRs with different CDR3 lengths are not
connected when using Hamming distances. Allowing for indels
or more substitutions, on the other hand, leads to larger hubs at
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FIGURE 2 | Rep-Seq sample simulated according to the VDJ rearrangement model. (A) The similarity network of 10,000 randomly generated TRBV7-6/TRBJ1-4

TCRs. Each vertex shows an individual clonotype, and edges indicate a Hamming distance of 1 or less between CDR3 amino acid sequences. (B) A TCR similarity

network of 1,000 clonotypes randomly sampled from (A) modeling uniform selection from the repertoire. ALICE algorithm identifies no hits (clusters) in this network.

(C) Modeling an antigen-driven selection by a 100-fold increase in the sampling probability of 50 randomly selected clonotypes and all their observed neighbors from

(A). ALICE hits are shown in red. Vertex size shows antigen-driven expansion fold in the initial repertoire. ALICE algorithm identified as significant hits 60 clonotypes

(true positives, large red circles) out of 126 expanded in this simulation and four unexpanded clonotypes belonging to enriched clusters (false positives, small red

circles); the rest of the 870 clonotypes are thus true negatives. While there are some clusters of cooperatively expanded similar clonotypes, there are also a lot of

expanded singletons, which have no neighbors (large black circles, false negatives).

FIGURE 3 | The design of a benchmark experiment. (A) A case study of responses restricted to HLA-B*35 allele. B*35-positive donor is highlighted with orange, and

control samples are selected in a way that there is no B*35 allele and are highlighted with blue. Note that the B*35-positive donor is CMV-negative. (B) A case of

CMV-specific response linked to HLA-A*02 and HLA-B*07 allele. A CMV+ donor (orange) is compared to CMV− controls (blue), with A*02 and B*07 alleles matched

across all donors. In this case, one expects to find specific TCRs recognizing CMV epitopes presented by A*02 and B*07. Selected samples from the Emerson et al.

(18) study were used.
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the cost of greatly increasing the number of false positives [see
Shugay et al. (12)].

These theoretic assumptions provide a basis for usage of
TCR neighborhood enrichment tests implemented in ALICE and
TCRNET algorithms (2, 4). The difference between the latter
two is that ALICE uses the VDJ rearrangement model described
by Murugan et al. as a control, while TCRNET utilizes pools
of healthy control samples as a background (negative) set of
clonotypes. Thus, the former tests against VDJ rearrangement
biases and thymic selection biases defined by the Q-factor (4),
while the latter implicitly tests against thymic and peripheral
selection biases and common pathogen-specific responses based
on the structure of the control TCR set.

In a random sample of 1,000 TCRs, one can still observe
some of those hubs; however, those are smaller and lack
any TCRs enriched with neighbors according to the ALICE

algorithm (Figure 2B). We next simulate antigen-specific clonal
expansion by sampling 50 random TCRs and their observed one

mismatch neighbors at 100× higher rate. This simulation leads

to Figure 2C in which ALICE detects several enriched clusters,
though there are multiple expanded TCRs having no neighbors

(monoclonal expansions). Note that the latter are naturally

occurring and were previously observed in multiple studies that

involve tetramer-based enrichment of antigen-specific T-cells
(13); a detailed description of such cases is provided in the
following sections.

Inferring CMV-Specific and B35-Restricted
Responses
Straightforward annotation of selected samples (CMV+, B35+,
and four pooled controls, see Figure 3) by querying the VDJdb
database with one substitution allowed (see Materials and
Methods) results in a huge variety of antigen specificities
(Supplementary Figure 1). The latter include HIV- and HCV-
specific clonotypes that are not expected for systematically
healthy individuals, and it is hard to tell the overall difference
observed in CMV and B35 samples with respect to control.
Applying HLA (restricting to HLA-B∗35 for B35 sample
and HLA-A∗02/HLA-B∗07 for CMV sample) and pathogen
restriction rules (CMV for CMV+ sample) that follow from
our experimental design greatly reduces the complexity of
observed results (Supplementary Figure 2). However, while the
presence of EBV-related B∗35:EPL clonal expansions is evident
for the B∗35 donor, it is hard to tell whether the CMV-specific

FIGURE 4 | Results of proposed framework when applied to the benchmark experiment. (A) A TCR similarity network built for top 3,000 TCRs present in B35+ and

CMV+ samples. (B) Selected network hubs for the TCR similarity network built on top of TCRs enriched in neighbor sequences. Each connected component is

colored with a distinct color. (C) VDJdb annotations of network hubs based on donor status and HLA restriction. Color shows TCR epitope specificity. (D) TCR motifs

inferred for selected TCRNET clusters. Graph shows the structure of the connected component of a given cluster, and red nodes represent TCRs annotated with a

given epitope specificity according to VDJdb (1 amino acid substitution allowed for CDR3aa). Sequence logos of CDR3aa sequences are given at the bottom of each

cluster. TCR similarity networks are created using a Hamming distance threshold of 1 for CDR3aa sequences. Multidimensional scaling (MDS)-based graph layout is

used for graph visualization in two dimensions.
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clonal expansions are significantly different from control for the
CMV sample.

We therefore ran the de novo motif discovery procedure
for B35 and CMV samples using the TCRNET algorithm
and specifying the background dataset to be the pool of four
control samples (see Materials and Methods). Notably, there is
a correlation of TCR neighbor enrichment rate with the overall
expansion of those TCRs (Supplementary Figure 3). As one can
see from Figures 4A,B, the TCR similarity network selected
by TCRNET is substantially different from the one built using
the top (by frequency) 1,000 clonotypes from those samples.
Namely, while the latter resembles the unperturbed network
of random VDJ rearrangements with power law distribution
of hub sizes, the network observed in Figure 4B has a more
uniform hub size distribution. By annotating the resulting
network against VDJdb (Figure 4C), one can see the presence of
network hubs that have a huge fraction of associated clonotypes
annotated with the same antigen specificity (Table 1). We can,
therefore, derive position weight matrices for specific responses
(Figure 4D) and build corresponding TCR motifs. Notably, this
way, we do re-assign many clonotypes of unknown specificity
to the predicted specificity of their hubs and can further
extend our knowledgebase of TCRs of known specificity with
these predictions.

As there is a huge variance in CMV responder phenotypes
and there is no predominant CMV-specific TCR motif compared
to response to EBV B∗35:EPL, we have additionally assayed all
A∗02+B∗07+ donors from the Emerson et al. dataset (18). Our
results (Supplementary Figures 4, 5) show that the proposed
methodology can indeed enhance the detection of CMV-specific
clonotypes on an extended set of 28 donors. As can be seen in
Supplementary Figure 4, mean TCR frequency is significantly

TABLE 1 | VDJdb annotation results for TCRNET clusters.

Sample Cluster

ID

Cluster

size

Epitope Percent

matched (%)

P-valueadj

B35+ 1 32 EBV B*35 EPL 71.9 1.9 × 10−26

CMV+ 11 19 CMV B*07 TPR 42.1 6.9 × 10−10

CMV+ 13 15 CMV A*02 NLV 60.0 1.4 × 10−06

CMV+ 8 56 CMV A*02 NLV 26.8 1.2 × 10−04

CMV+ 1 80 CMV A*02 NLV 15.0 0.08

CMV+ 3 7 CMV A*02 NLV 28.6 0.13

CMV+ 4 101 CMV A*02 MLN 1.0 0.17

CMV+ 4 101 CMV A*02 NLV 5.9 0.39

CMV+ 15 33 CMV B*07 TPR 3.0 0.45

CMV+ 6 28 CMV A*02 NLV 10.7 0.74

CMV+ 17 13 CMV A*02 NLV 7.7 1.00

CMV+ 7 39 CMV A*02 NLV 7.7 1.00

CMV+ 8 56 CMV B*07 TPR 1.8 1.00

The table shows the percentage of matches to a given epitope in a given cluster according

to the VDJdb database (1 amino acid substitution allowed for CDR3aa).

P-values for the frequency of matches were computed based on binomial distribution

using overall annotation rate across the sample, the number of specific TCR matches,

and the size of a given cluster; P-values were adjusted for multiple testing. Clusters that

have no VDJdb matched are not shown.

higher in VDJdb-annotated datasets than in raw datasets for
both A∗02:NLV and B∗07:TRP epitopes. Moreover, applying
TCRNET algorithm and selecting TCRs with an adjusted P-value
for neighbor enrichment of <0.05 lead to enrichment of unique
CMV-specific TCRs as can be seen in Supplementary Figure 5.

Exploring the Case of Dominant Clonal
Expansions
While we were able to obtain a set of high-confidence TCR
motifs in the previous section, a deeper exploration of the dataset,
however, reveals that there is a huge fraction of T-cells that
were missed by our analysis. Namely, when exploring VDJdb
hits that are associated with large clonal expansions, one can see
that there are certain large clonal expansions that exactly match
CMV-specific clonotypes, yet do not fall into any of the listed
motifs (Supplementary Table 1).

To further highlight this issue, we ran the pipeline for
hematopoietic stem cell transplant (HSCT) time course data
(25) that are known to result in large CMV-specific clonal
expansions (Figure 5). We followed the fate of the A∗02 NLV-
specific TCRbeta CDR3aa sequence CASSLAPGATNEKLFF to
trace the corresponding response. The corresponding TCR
clonotype is detected in all time points, both prior to and after
HSCT, where it reaches top three of expanded clonotypes. This
clonotype is one of those that occupy homeostatic space following
repertoire reset during HSCT and one would expect that
homologous TCRs involved in CMV-specific response will follow
it. However, while corresponding clonal expansion is evident
both prior to HSCT and throughout the whole time course,
homologous variants start to emerge and become detectable by
the ALICE only after 10 months post-HSCT. This suggests that
tracking of hyperexpanded clonotypes can be more sensitive
than TCR neighborhood enrichment methods at early stages of
response where the latter fail to detect a sufficient number of
homologous TCRs.

DISCUSSION

As demonstrated using the example dataset, the proposed
framework can successfully detect both TCR motifs associated
with specific pathogens and TCRs associated with a response
toward epitopes restricted by a given HLA. Noting that EBV-
specific response detection is well-expected due to the fact
that most individuals are EBV-positive, it is necessary to
mention that a multitude of unknown responses are detected
for B35+ sample and most CMV-specific TCR annotations
are restricted to individual clusters in the CMV donor,
suggesting that the proposed method has both high precision
in detecting known antigen-specific responses and high recall
for detecting novel ones. As demonstrated above, the knowledge
of donor HLAs can greatly simplify the analysis by narrowing
down the list of potential specific TCR candidates. Currently,
this seems the only way to combat the huge number of
false positives that arise during VDJdb matching due to the
immense diversity of TCR repertoires. On the other hand,
the framework that we propose has the benefit of eliminating
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FIGURE 5 | TCR motifs inferred by ALICE and tracking of CMV-specific TCR expansion for the hematopoietic stem cell transplant (HSCT) experiment. Beeswarm

plots show the distribution of the number of reads associated with TCR clonotypes prior and after HSCT. The A*02-NLV-specific TCR variant with

“CASSLAPGATNEKLFF” CDR3aa sequence is highlighted for both the sample prior to HSCT (−38 months) and later samples (4, 10, and 37 months). Red dots show

the clonotypes that have unexpectedly high number of neighbors as inferred by ALICE (P < 0.001 after Benjamini–Hochberg multiple testing correction), and point

size reflects the number of neighbor sequences. Only TCRs supported by at least three sequencing reads are shown.

spurious matches that arise due to the presence of “public”
clonotypes that can be shared across a wide range of samples
by chance.

The main message of the present paper is that one
should account for HLA restriction rules that govern epitope
presentation and guide the response, while VDJdb-based
annotation can highlight TCRs that were expanded in response
to a certain antigen and thus facilitate TCR data analysis.
Moreover, both ALICE and TCRNET can be used to select
a fraction of repertoire enriched in responder T-cells and
thus enhance the specificity of VDJdb-based annotation. We
would also like to explicitly stress the fact that HLA restriction
rules should be accounted for in an experimental design
as T-cells cannot mount a response against epitopes that
are not presented, and the presence of T-cells specific to
a certain pathogen in an individual is uninformative unless
these T-cells are targeted to epitopes that can be presented by
donor HLAs.

The proposed approach can be further extended to a
wide range of applications beyond previously reported
detection of antigen-specific response in yellow fever virus
vaccination studies (26). A successful application of a simpler
VDJ rearrangement model-based approach that does not
utilize TCR similarity networks to autoimmunity studies
with strong HLA linkage such as ankylosing spondylitis
(6) suggests that our approach can be utilized for detecting
autoimmunity-related TCR motifs. One can also apply

the proposed approach to cancer studies, in case an
overexpression of certain oncogenes or oncogenic isoforms
is expected. For the latter, one should expect the presence of
an immunogenic neoantigen that is both restricted to a certain
HLA allele and is characterized by overall low expression in
healthy tissue.

We also suggest that the proposed framework can be used
to expand the set of known antigen-specific TCRs that is
currently negligibly small [∼104 variants (12)] compared to the
overall repertoire diversity. Indeed, one can assign neighbors
of enriched specific TCR clonotypes to the set of epitope-
specific T-cells once corresponding homologous TCR clusters
are detected in multiple donors. As some of the clusters have
a statistically significant number of annotated TCRs even in
the presence of a huge fraction of unannotated ones, one
can expect to greatly increase the number of clonotypes in a
database of TCRs with known specificity using those putative
TCR variants.

One of the drawbacks of the proposed methodology
follows from the fact that in case when the HLA disease
association is relatively vague with no predominant HLA
disease susceptibility [e.g., multiple sclerosis (27) or type 1
diabetes (28)], a huge cohort of donors featuring various
HLAs should be used to detect potential TCR motifs for self-
antigens. Another potential issue results from the presence of
monoclonal expansions that are hard to cluster into inferred
TCR motifs. The solution here is to treat all hyperexpanded

Frontiers in Immunology | www.frontiersin.org 7 September 2019 | Volume 10 | Article 2159

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Pogorelyy and Shugay A Framework for T-Cell Repertoire Annotation

clonotypes separately and rely on a database of TCRs with
known antigen specificities to annotate those clonotypes. The
proposed framework is designed for single-chain data; however,
it is rather straightforward to extend it to paired alpha-beta
TCR analysis: in case certain pairing information is available
via, say, scRNA-seq, one can try to pair individual alpha
and beta TCR motifs based on their co-occurrence in single-
cell data.

Both the methodology and the interactive analysis notebook
provided as a supplement to this manuscript are easy to extend
and adapt for post-analysis of various AIRR-Seq datasets; we
hope that the described framework will be of high utility for
future exploratory AIRR-Seq studies that aim at discovering
novel antigen- and disease-specific TCR variants.
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