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Natural killer (NK) cell cytotoxicity toward self-cells is restrained by the inhibitory HLA class

I-binding receptors CD94/NKG2A and the killer cell immunoglobulin-like receptors (KIRs).

CD94/NKG2A and KIRs are also essential for NK cell education, which is a dynamic

functional maturation process where a constitutive binding of inhibitory receptors to

cognate HLA class I molecules is required for NK cells to maintain their full cytotoxic

capacity. Previously, we described autoantibodies to CD94/NKG2A in patients with

systemic lupus erythematosus (SLE). In this study we analyzed sera from 191 patients

with SLE, 119 patients with primary Sjögren’s syndrome (pSS), 48 patients with systemic

sclerosis (SSc), and 100 healthy donors (HD) for autoantibodies to eight different

KIRs. Anti-KIR autoantibodies were identified in sera from 23.0% of patients with SLE,

10.9% of patients with pSS, 12.5% of patients with SSc, and 3.0% of HD. IgG from

anti-KIR-positive SLE patients reduced the degranulation and cytotoxicity of NK cells

toward K562 tumor cells. The presence of anti-KIR-autoantibodies reacting with >3 KIRs

was associated with an increased disease activity (p < 0.0001), elevated serum levels of

IFN-α (p < 0.0001), nephritis (p = 0.001), and the presence of anti-Sm (p = 0.007),

and anti-RNP (p = 0.003) autoantibodies in serum. Together these findings suggest

that anti-KIR autoantibodies may contribute to the reduced function of NK cells in SLE

patients, and that a defective NK cell function may be a risk factor for the development

of lupus nephritis.

Keywords: autoantibody, killer cell immunoglobulin-like receptor, systemic lupus erythematosus, nephritis,

natural killer cells, primary Sjögren’s syndrome

INTRODUCTION

Natural killer (NK) cells are cytotoxic cells that can kill virally infected and tumor transformed
cells as well as activated immune cells. To discriminate target cells from healthy self-cells, NK cells
are equipped with a large array of inhibitory and activating receptors, which sense the expression
of HLA class I molecules and stress-induced ligands, respectively (1). The inhibitory receptors
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primarily consist of the CD94/NKG2A receptor and the killer cell
immunoglobulin-like receptor (KIR) family.

The KIR family is encoded by 17 genes, including two
pseudogenes, on chromosome 19 (2). Each receptor is named
based on the number of extracellular immunoglobulin-like
domains (KIR2D or KIR3D), the presence of a long (L) or a
short (S) cytoplasmic tail, and a digit (1–5) for discrimination
of subtypes within these groups. Generally, KIRs with two
extracellular domains bind HLA-C allotypes, whereas KIRs with
three extracellular domains bind HLA-A, or HLA-B allotypes.
The long cytoplasmic tail contains ITIM motifs and therefore
act as inhibitory receptors, whereas the short cytoplasmic tail
associates with the adaptor protein DNAX activation protein
12 (DAP12) that contain ITAM motifs (3), which deliver an
activation signal. The number and types of KIRs expressed varies
between individuals, but the KIR gene content can broadly be
defined by two haplotypes. The A haplotype mainly encode a
fixed set of inhibitory and one activating receptor, whereas the
B haplotype has a variable number of inhibitory, and several
activating receptors (4).

In addition to restraining NK cell cytotoxicity to self-
cells, inhibitory KIRs and NKG2A are also essential for NK
cell education, which is a dynamic functional maturation
process where constitutive binding of inhibitory receptors
to cognate HLA class I molecules (i.e., KIR2DL1/HLA-
C2, KIR2DL2-DL3/HLA-C1, KIR3DL1/HLA-Bw4, and CD94-
NKG2A/HLA-E) is required for maintaining the full cytotoxic
capacity of NK cells (5, 6). The potency of an NK cell
is dictated by the strength of continuous interactions via
their inhibitory receptor and HLA class I molecules in the
surrounding. This process is referred to as tuning (7). As
KIR and HLA segregate independently it is possible for an
individual’s NK cells to be educated or non-educated by
different KIRs.

Although NK cells have been implicated in several
autoimmune diseases, their exact role have so far not been
established (8). Patients with systemic lupus erythematosus
(SLE) have a numerical deficit and a reduced cytotoxicity
of NK cells in peripheral blood (9–12). Furthermore, NK
cells from SLE patients with active disease have a reduced
surface expression of KIR2DL1/2DS1 together with an
increased expression of CD94/NKG2A and CD94/NKG2C
(12). Genetically, certain KIRs or combinations of KIRs and
HLA class I-ligands are associated with increased susceptibility
to SLE (13–18). Recently, we demonstrated that a subset
(3.4%) of SLE patients harbors functional autoantibodies
to the CD94/NKG2A and CD94/NKG2C receptors, which
interfere with HLA class I-mediated regulation of NK cell
cytotoxicity resulting in a dysregulation of the discrimination
between self and non-self-cells (19, 20). To further investigate
how common autoantibodies to receptors regulating NK cell
cytotoxicity are in systemic autoimmune diseases, we performed
a comprehensive screening for autoantibodies targeting eight
different KIRs in patients with SLE, primary Sjögren’s syndrome
(pSS), and systemic sclerosis (SSc). The function of such
antibodies was analyzed and their presence was correlated with
clinical manifestations.

TABLE 1 | Baseline characteristics of patients and healthy donors analyzed

for anti-KIR autoantibodies.

SLE pSS SSc HD

Number of individuals 191 119 48 100

Female, % 89 92 79 90

Age at serum sampling,

mean ± SD years

45 ± 16 55 ± 14 59 ± 15 45 ± 13

ANA, % 98 82 75

Anti-dsDNA, % 63 2† 2

Anti-Sm, % 30 2‡ 4

Anti-RNP, % 29 3‡ 15

Anti-SSA/Ro, % 51 78 10

Anti-SSB/La, % 25 40§ 2

Anti-Scl-70, % 1§ n.d. 17

Data are missing from §1,
†
6, and

‡
8 patients, respectively. n.d. = not determined.

PATIENTS AND METHODS

Patients and Healthy Controls
Retrospective cohorts of frozen (−80◦C) sera from 191 patients
fulfilling the 1982 American College of Rheumathology (ACR)
classification criteria for SLE (21), 119 patients fulfilling both
the 2002 American-European Consensus Group, and 2016
ACR/EULAR criteria for pSS (22, 23), and 48 patients fulfilling
the ACR criteria for SSc (24) were included in the study. Sera
from 100 healthy donors (HD; Uppsala Bioresource, Uppsala,
Sweden) (25) age and sex-matched to the SLE patients were
included as controls (Table 1). Clinical data were extracted
from medical records. Disease activity of SLE patients at serum
sampling was determined using the SLE Disease Activity Index
2000 (SLEDAI-2K) (26). Autoantibody profiles from the SSc
patients were determined as previously described (27). The
study was approved by the local ethics committee at Uppsala
University and Karolinska Institutet (Dnr 013/2009, 399/2000,
024/2007, 217/2006, and 2006/229-31/3) and informed consent
was obtained from all patients and controls.

Cells
HEK293T cell lines stably transfected with KIR2DL1 or KIR2DL4
were kindly provided by Professor Eric Long (NIH, Rockville,
USA). cDNA encoding KIR2DL2, KIR2DL3, KIR2DS2,
KIR2DS4, KIR3DL1, and KIR3DL2 were cloned into a pBABE
vector. Plasmids were transfected into HEK293T cells using
SuperFect transfection reagent (Qiagen) and surface expression
of KIRs determined using flow cytometry. Transfectants with
high KIR expression were selected by limiting dilution or FACS
sorting (BD FACSAria, BD Biosciences). Peripheral blood
mononuclear cells (PBMCs) were isolated using Ficoll density
gradient centrifugation and viability frozen in fetal calf serum
(FCS) supplemented with 10%DMSO (Sigma) in liquid nitrogen.
NK cells were isolated from PBMCs by negative depletion using
magnetic-assisted cell sorting (NK cell isolation kit, Miltenyi).

KIR transfectants were cultured in Iscove’s Modified
Dulbecco’s Medium with 1µg/ml puromycin. Primary cells and
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K562 cells were cultured in RPMI1640medium. Bothmedia were
supplemented with 10% FCS, 20mM HEPES, 2mM Glutamine,
60µg/ml penicillin, and 100µg/ml streptomycin (Invitrogen).

Flow Cytometry Reagents
Fluorescently labeled antibodies to CD56 (NCAM16.2,
BD Biosciences), CD3 (SK7 or UCHT1, BD
Biosciences), KIR2DL1/2DS1 (EB6B, Beckman Coulter),
KIR2DL2/2DL3/2DS2 (GL183, Beckman Coulter or DX27,
Biolegend), KIR2DS4 (FES172, Beckman Coulter), KIR2DL4
(mAb33, Biolegend), KIR3DL1 (DX9, BD Biosciences), KIR3DL2
(539304, R&D Systems), and NKG2A (Z199, Beckman Coulter)
were used. Dead cells were excluded from the analysis using
LIVE/DEAD Fixable Dead Cell Stain Kit (Invitrogen).
Binding of human IgG to transfectants was determined
using PE-labeled anti-human IgG F(ab)2 donkey fragments
(Jackson ImmunoResearch).

Flow Cytometry
Flow cytometry data were acquired on a FACSCanto II or a LSR
II Fortessa instrument (BD Biosciences). Data was compensated
and analyzed using FlowJo (TreeStar).

Detection of Anti-KIR Autoantibodies in
Serum
KIR transfectants and the parental untransfected cell line
were fluorescently barcoded (28) using CellTraceViolet (Life
Technologies) and eFluor670 (eBiosciences) proliferation dye
reagents (Supplementary Figure S1). The transfectants were
pooled and incubated with human FcBlock (1:100 dilution,
Miltenyi) for 10min on ice to reduce non-specific binding of
antibodies. A total of 225,000 cells were incubated with 3.3%
serum in 1 × PBS with 10% FCS in 96-well-plates at 4◦C for
30min. Cells were washed twice in 1× PBSwith 2mMEDTA and
0.5% human serum albumin followed by staining with secondary
antibody. Binding of human IgG to cells was determined using
flow cytometry. For each serum, the median fluorescent intensity
(MFI) signal for each transfectant was divided by the MFI signal
of the untransfected cells to yield a specific IgG-binding ratio.
The specific IgG-binding ratio was transformed to z-scores [(X–
meanhealthy)/SDhealthy] and a threshold for antibody positivity
was set to 4.

IFN-α Immunoassay
Levels of IFN-α in serum was determined with an in-
house dissociation-lanthanide fluoroimmunoassay (DELFIA) in
duplicates, as previously described (29). Briefly, the anti-IFN-α
monoclonal antibodies (mAb) LT27:273 and LT27:297 were used
as capture antibodies and europium-labeled LT27:297 anti-IFN-α
mAb as detection antibody. The detection limit of this assay was 1
U/ml, and sera with a concentration below the limit of detection
were assigned a value of 0 U/ml.

NK Cell Degranulation and Cytotoxicity
Assays
SLE IgG was purified from serum or plasma using Protein
G GraviTrap columns (GE Healthcare). Human intravenous

immunoglobulin (IVIG, Gammagard, Baxter International Inc.)
was used as control. For functional studies, PBMCs from
HD expressing KIR2DL1, KIR2DL2/DL3, KIR3DL1, and their
cognate HLA class I ligands were selected. NK cell activation,
as measured by degranulation, and/or fratricide (i.e., self-killing)
following exposure to SLE IgG was addressed by incubating
overnight IL-2-activated (1,000 IU/ml, Peprotech) PBMCs with
or without 20 mg/ml IgG for 2 h. NK cell degranulation
was determined by CD107a staining (H4A3, Biolegend), first
described by Alter et al. (30), and NK cell viability by Annexin
V staining (BD Biosciences). To study detuning, isolated NK
cells were pre-incubated with 20 mg/ml IgG for 20 h. NK cell
cytotoxicity was measured by a modified Calcein-AM assay
(31). Briefly, K562 target cells were labeled with 1µM Calcein-
AM (Sigma Aldrich) at a cell density of 1 × 106 cells/ml for
30min and then washed in PBS prior to co-culturing with NK
cells in triplicates. After 4 h, the cells were spun down and the
supernatant discarded. The remaining cells were resuspended in
PBS and the fluorescence (535 nm) was measured using a Tecan
Infinite F200Pro instrument. Cytotoxicity (target cell death)
was calculated based on a maximum fluorescent value (target
cells that had not been in contact with effector cells) and a
background value (only PBS) using the formula: Cytotoxicity
= 1–[(fluorescence of remaining cells–background)/(maximum
value–background)]. E:T ratios for the degranulation and
the Calcein-AM-based cytotoxicity assay were 1:1 and 10:1,
respectively. To study retuning, IgG were washed out and
degranulation in response to K562 cells was determined at 48 and
96 h from wash-out.

Typing and Imputation of KIR and HLA
Genotypes
KIR and HLA genotypes were determined using the SSP KIR and
KIR-ligand kit (Olerup) (SLE patients and HD in Figure 3) or
via imputation from Immunochip (Illumina) genotype data using
KIR∗IMP v1.1.0 (32) and HIBAG v1.18.1 (33), respectively (HD
in Figure 4).

Statistical Analysis
Data were analyzed using Microsoft Excel, Graph Pad Prism
v6.02 or R v3.5.1 software. Two-sided Fisher’s exact test, Mann
Whitney U test, Kruskal-Wallis test and repeated-measure
one-way ANOVA were used as specified to assess differences
between groups.

RESULTS

Autoantibodies Targeting KIRs Are Present
in Sera From Patients With SLE, pSS and
SSc
Initially we screened SLE, pSS, SSc, and HD sera (Table 1) for
the presence of IgG that bound to KIR2DL1, 2DL2, 2DL3, 3DL1,
3DL2, 2DS2, 2DS4, or 2DL4-expressing HEK293T transfectants.
Autoantibodies to at least one of the KIRs studied were identified
in 44 patients with SLE (23.0%), 13 patients with pSS (10.9%),
6 patients with SSc (12.5%), and 3 HD (3.0%) (Figures 1A,B).
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The frequency of anti-KIR-positive sera was significantly higher
in SLE and pSS patients compared to HD controls (p < 0.0001
and p = 0.03, respectively). Reactivity to each of the eight KIRs
was observed in sera from SLE and pSS patients, whereas sera
from SSc patients reacted with 4 of the KIRs (Figure 1A). The
number of KIRs that each anti-KIR-positive sera reacted with
ranged from 1 to 7 (Figures 1C,D). For SLE patients, 59% of the
anti-KIR positive sera reacted with ≥2 KIRs and 23% bound to
>3 KIRs (Figures 1C,D). In contrast, the majority of anti-KIR-
positive sera from HD and patients with pSS and SSc displayed
mono-reactivity (Figure 1C). The highest levels of anti-KIR
autoantibodies were found in sera from SLE patients (Figure 1A)
and increased levels were associated with an increased number of
KIRs recognized (Figure 1E). Of the 11 SLE patients with a KIR-
binding z-score of>10 to at least one KIR, 10 displayed reactivity
to >3 KIRs. Among SLE patients, autoantibodies to KIR3DL1
and KIR3DL2 were most frequent (70.5 and 65.9% of the anti-
KIR-positive patients, respectively; Figures 1A,D). Studies of
longitudinally sampled sera from 16 SLE patients revealed that
the presence and levels of anti-KIR autoantibodies were relatively

stable over time (Supplementary Figure S2), but some patients
acquired new anti-KIR-specificities and some patients lost KIR-
reactivity over time.

In summary, antibodies to KIRs are present in sera from
patients with SLE, pSS and SSc. The highest frequency, as well
as antibody levels, was found in SLE patients and therefore we
focused our further studies on SLE patients.

Sera From Anti-KIR-positive SLE Patients
Block the Binding of Monoclonal Anti-KIR
Antibodies to Primary Human NK Cells
In an attempt to confirm the presence of anti-KIR autoantibodies
and to address their specificity in more detail, sera from the 10
SLE patients reacting with >3 KIRs, the three anti-KIR-positive
HD, and eight anti-KIR-negative HD were analyzed for their
ability to interfere with the binding of monoclonal anti-KIR
antibodies to primary NK cells from a HD. Sera from 3 of the
10 SLE patients with KIR reactivity to >3 KIRs blocked the
binding of the anti-KIR2DL1/2DS1 mAb EB6B (SLE3, SLE138,

FIGURE 1 | Autoantibodies to KIRs are present in sera from patients with systemic lupus erythematosus, primary Sjögren’s syndrome and systemic sclerosis. (A)

IgG-binding to KIR transfectants in sera from 100 healthy donors (HD), 191 systemic lupus erythematosus (SLE), 119 primary Sjögren’s syndrome (pSS), and 48

systemic sclerosis (SSc) patients. Dotted lines denote a z-score of ±4. (B) Frequency of HD and patients displaying anti-KIR reactivity to at least 1 KIR. (C) The

number of KIRs recognized by the anti-KIR-positive sera. (D) A heatmap visualizing the KIR-specificity in individual SLE patients. Each column represent serum from

one patient and each row one KIR. The number of sera reacting with each KIR is denoted to the right. (E) The strongest KIR-reactivity in each sera in SLE patients

reacting with 1, 2, 3, or >3 KIRs. Dotted line indicates a z-score of 10. Differences between groups were assessed using the (B) Fischer’s exact test or (E)

Mann-Whitney U-test.
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and SLE206; Figures 2A,B). Notably, these three sera had the
highest anti-KIR2DL1 levels (Figure 1D). Serum from patient
SLE3 was the only serum that bound KIR2DL2, KIR2DL3, and
KIR2DS2 (Figure 1D). Accordingly, this was the only serum
that blocked anti-KIR2DL2/DL3/DS2-binding (clone GL183). In
contrast, serum taken from patient SLE3 at an earlier time-point,
where no or low levels of antibodies to KIR2DL1/DL2/DL3/DS2
were present, did not block the binding of these two antibodies
(data not shown). None of the anti-KIR-positive sera from SLE
patients blocked the binding of anti-KIR3DL1 (clone DX9) or
anti-KIR2DS4 (clone FES172). In terms of anti-KIR-positive HD,
the serum that reacted with KIR2DS4 interfered slightly with
anti-KIR2DS4-binding, whereas none of the other anti-KIR-
positive or anti-KIR-negative HD sera affected anti-KIR-binding
(Figure 2B).

Flow cytometric stainings of PBMCs from SLE3 and SLE138
revealed that NK cells from SLE3 lacked detectable expression
of cell surface KIR2DL1, KIR2DL2/DL3/DS2, and KIR3DL1, but
had detectable surface expression of NKG2A (Figures 2C,D). NK
cells from SLE138 lacked surface expression of KIR2DL1 but had
low cell surface expression of KIR2DL2/DL3/DS2 and NKG2A
(Figures 2C,D).

Together, these data confirm the presence and specificity
of anti-KIR autoantibodies and demonstrate that NK cells
from patients with anti-KIR autoantibodies have an altered
KIR phenotype.

Anti-KIR Autoantibodies Detune NK Cells
To study the functional effects of anti-KIR autoantibodies
we isolated IgG from two of the SLE patients whose sera
blocked binding of the monoclonal anti-KIR antibodies. First,
we addressed whether IgG containing anti-KIR autoantibodies
triggered NK cell activation and/or apoptosis of KIR-expressing
NK cells. Exposure of PBMCs from HDs to IgG rapidly triggered
strong NK cell activation as determined by NK cell degranulation
(Figure 3A). However, this was not accompanied by an increased
NK cell death (Figure 3B).

KIR and KIR-ligand genotyping of DNA from patient
SLE3 and SLE138 revealed the presence of KIR2DL1,
KIR2DL2, KIR2DL3, and KIR3DL1, as well as genes for
KIR-ligands containing the HLA-C1, HLA-C2, and Bw4
epitopes, indicating that they were educated on these KIRs
(Supplementary Table S1). To study whether anti-KIR
autoantibodies interfered with NK cell education, we exposed

FIGURE 2 | Anti-KIR autoantibodies from SLE patients block the binding of monoclonal anti-KIR antibodies. (A,B) Flow-cytometric KIR stainings of healthy donor (HD)

cells following 30min incubation with 50% serum from patients harboring >3 anti-KIRs (n = 10), KIR-positive HD (n = 3), and KIR-negative (n = 8) HD (A) Flow

cytometry plots from one representative HD and the three SLE patients that blocked the binding of anti-KIR2DL1/DS1. (B) The frequency of KIR-positive cells in

serum-treated cells relative to the mean frequency of KIR-positive cells in eight non-treated cells. (C,D) Flow-cytometric KIR stainings of CD3−CD56dim NK cells in

PBMCs from anti-KIR-negative (n = 34), and anti-KIR-positive SLE patients (n = 2). Data are from two separate experiments. (C) Flow cytometry plots from SLE3,

SLE138 and one representative HD from each experiment. (D) Data for all patients presented as boxplots, with the median, interquartile range, and range denoted.
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FIGURE 3 | Anti-KIR autoantibodies induce hyporesponsiveness in NK cells. (A) NK cell degranulation and (B) viability of IL-2-activated PBMCs from 3 HDs following

incubation with K562 cells, rituximab (RTX, anti-CD20), or IgG as indicated. (C) K562-induced degranulation in NK cells from 6 HDs exposed to IgG from patient

SLE3, SLE138, or HDs (IVIG) relative to no IgG. P-values from a repeated measures one-way ANOVA comparing the relative degranulation in IgG-treated cells to

untreated cells are shown. (D) Correlation between the difference in degranulation and the difference in cytotoxicity of IgG-treated NK cells compared to non-treated

NK cells. (E) Comparison of the education level and the inhibitory effect of SLE138-IgG on degranulation compared to no IgG. Education level was defined as the

difference in degranulation in indicated NK cell subsets relative to KIR-negative NK cells (KIR2DL1/DS1−KIR2DL2/DL3/DS2−KIR3DL1/DS1−) in the absence of IgG.

(A–E) Data from patient SLE3 and SLE138 are colored in red and blue, respectively.

isolated HD NK cells over night with IgG and measured the
degranulation toward HLA class I-negative K562 cells, used as
the gold standard NK cell target cell line. Exposure of NK cells
to IgG from patient SLE3 and SLE138 resulted in a reduced
degranulation capacity (p = 0.002 and p = 0.04, respectively;
Figure 3C) and the decreased degranulation correlated with
a reduced killing of K562 cells (Figure 3D). Since anti-KIR-
containing IgG blocked the detection of KIR molecules it was
not possible to study the effect on degranulation in single-
positive KIR subsets of NK cells. However, NK cells from one
HD were educated on KIR3DL1 (i.e., increased degranulation
compared to KIR-negative NK cells in the absence of IgG),
but tolerized in the KIR3DL1-negative NK cell subset (i.e.,
decreased degranulation compared to KIR-negative NK cells in
the absence of IgG) (34). Consistent with an abrogated NK cell
education, IgG from SLE138 reduced the degranulation level by
the educated KIR3DL1-positive NK cell subset while increasing
the degranulation levels within the tolerized KIR3DL1-negative
NK cell subset (Figure 3E). IgG from patient SLE3 partially
blocked KIR3DL1 detection in this donor, which precluded the
same analysis for this patient. In line with the dynamic process

of NK cell education, the effects of SLE-IgG on degranulation
was reversible. Prolonged incubation of NK cells after wash-out
of anti-KIR autoantibodies resulted in the re-appearance of
detectable KIR molecules on the NK cell surface (Figure 4A),
concomitant with an increased degranulation toward K562
cells (Figures 4B,C). Both patient SLE3 and SLE138 carried the
A/B KIR-haplotype (Supplementary Table S1), which contain
activating KIRs. Importantly, IgG from patient SLE3 detuned
NK cells to the same extent in HDs carrying the A/A as those
carrying the A/B KIR haplotype (p= 0.32; data not shown).

Together, these data show that anti-KIR autoantibodies found
in patients with SLE induce hyporesponsiveness of NK cells and
that NK cell function returns when KIR expression reappears.

The Presence of Multiple Anti-KIR
Autoantibodies Is Associated With an
Increased Disease Activity and Elevated
Serum Levels of IFN-α
To address whether the presence of anti-KIR autoantibodies
is associated with any clinical or laboratory parameters, we
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FIGURE 4 | NK cells retune following wash-out of IgG. (A) Surface stainings of indicated NK cell receptors, and (B) degranulation of NK cells from 10 HDs was

determined before (0 h), and after wash-out of IgG (48 and 96 h). Degranulation of NK cells treated with IgG from SLE3 relative to IVIG-treated cells. Data are shown as

(A) mean values with error bars representing the standard error of the mean, and (B) boxplots with median, interquartile range, and range. (B) The one-sample t-test

was used to assess whether the relative degranulation differed from 100%. (C) Correlation between data in (A,B). The p-values and Pearson’s correlation coefficients

(r) from linear regressions are denoted.

reviewed the medical records, analyzed serum IFN-α levels
and compared them between SLE patients harboring 0, 1,
2, 3, or >3 anti-KIR autoantibodies. The four groups had
a similar age and disease duration at the time-point when
anti-KIR autoantibodies were analyzed (Table 2). Patients with
anti-KIR autoantibodies targeting >3 KIRs had a significantly
higher number of ACR criteria fulfilled (median 7 vs. 6, p =

0.04), a higher disease activity (median 13 vs. 2, p < 0.0001)
and increased levels of IFN-α in serum (median 11.6 U/ml
vs. 0 U/ml, p < 0.0001) compared with anti-KIR-negative
patients. Whereas, no significant differences in organ damage or
treatment were observed (Table 2). When analyzing each ACR
criterion separately we found that patients with >3 anti-KIR
autoantibodies had an increased risk of fulfilling the criteria for
nephritis (80.0 vs. 27.2%, p = 0.001) and immunologic disorder
(100 vs. 63.3%, p = 0.02) compared to patients with no anti-KIR
autoantibodies (Figure 5A). The association to nephritis was not
specific to any subtype of nephritis (Supplementary Table S2).
Subdivision of the immunologic ACR criteria revealed that the
presence of antibodies to >3 KIRs was associated with anti-
Sm (50.0 vs. 13.6%, p = 0.007), but not with anti-dsDNA
antibodies (70.0 vs. 60.5%, p = 0.74) (Figure 5B). In terms of
other autoantibodies, the presence of>3 anti-KIR autoantibodies
was associated with anti-RNP antibodies (70.0 vs. 23.1%, p

= 0.003), but not anti-SSA/Ro (p = 0.52), or anti-SSB/La
(p = 0.28). Consistent with the positive correlation between
anti-KIR levels and number of KIRs recognized (Figure 1E),
the levels of anti-KIR autoantibodies were higher in patients
with nephritis compared to those without nephritis (p = 0.01;
Figure 5C). Importantly, despite the association of >3 anti-
KIR-autoantibodies with anti-Sm and anti-RNP, the increased
presence of nephritis in these patients was not driven by an
association of anti-Sm or anti-RNP (p = 0.32 and p = 0.30,
respectively; Figure 5D).

Thus, autoantibodies to multiple KIRs are mainly found in
SLE patients presenting with high disease activity, increased
serum levels of IFN-α and nephritis.

DISCUSSION

In this study we performed a screening for autoantibodies
to eight different KIRs in sera of patients with SLE, pSS,
and SSc. Twenty-three percent of the SLE patients displayed
IgG-reactivity to at least one KIR. These data are line with
a previous study, which described antibodies reacting with
KIR2DL1 or KIR2DL3-receptors in 7 of 30 (23.3%) SLE patients
by probing SLE sera for reactivity to E. coli-derived recombinant
KIR2DL1 and KIR2DL3 in Western blot (35). A recent study
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TABLE 2 | Clinical characteristics of SLE patients stratified by their number of anti-KIR autoantibodies.

Number of anti-KIRs 0 1 2-3 >3 p†

Number of individuals 147 18 16 10

Age at disease-onset, Years 30 (20–40) 30 (19–42) 27 (19–40) 21 (16–40) 0.74

Age at serum sampling, Years 45 (30–58) 43 (30–50) 47 (34–61) 32 (22–52) 0.42

Disease duration*, Years 16 (11–29) 20 (11–39) 18 (9–28) 11 (3–25) 0.54

Number of ACR criteria 6 (5–7) 6 (4–6) 7 (5–7) 7 (7–8) ‡ 0.02

SLEDAI-2K 2 (0–4) 2 (1–7) 2 (1–7) 13 (7–15)§ <0.0001

SDI 1 (0–3) 0 (0–2) 1.5 (0–3) 1.5 (0–4) 0.31

Serum IFN-α, U/ml 0 (0–0) 0 (0–1.1) 0 (0–3.7) 11.6 (5.2–35.0)§ <0.0001

Treatment

Glucocorticoids, % 57.9 55.6 73.3 90.0 0.15

Hydroxychloroquine/ Chloroquine, % 51.0 50.0 46.7 40.0 0.93

Azathioprine, % 23.4 27.8 26.7 0 0.31

Mycophenolate mofetil, % 7.6 5.6 26.7‡ 20.0 0.05

Methotrexate, % 6.2 0 0 10.0 0.51

Data are presented as median (interquartile range) or as frequencies (%). SLEDAI-2K = SLE Disease Activity Index 2000, SDI = Systemic Lupus International Collaborating

Clinics/American College of Rheumatology Damage Index.
*At medical record review.
†
The Kruskal-Wallis test (numerical values) or the Fischer’s exact test (categorical values) was used to compare all 4 groups. For p <0.05 each of the three anti-KIR positive groups

were compared to the anti-KIR-negative group using the Dunn’s multiple comparisons test or the Fischer’s exact test and p < 0.05 are indicated.
‡
p = 0.04; §p < 0.0001.

Data for serum IFN-α are from 123 (0 anti-KIR), 15 (1 anti-KIR), 12 (2-3 anti-KIR), and 8 patients (>3 anti-KIR). Data for SLEDAI-2K are from 138 (0 anti-KIR), 17 (1 anti-KIR), 13 (2-3

anti-KIR), and 10 patients (>3 anti-KIR).

demonstrated autoantibodies to KIR3DL1 in 22 of 28 SLE sera
analyzed with ELISA using recombinant KIR3DL1 (36). In
addition to confirming the presence of anti-KIR autoantibodies
in SLE patients, our data demonstrate that these autoantibodies
react with natively folded membrane-bound KIRs expressed
on human cells, and that reactivity to KIR2DL2, KIR3DL2,
KIR2DS2, KIR2DS4, and KIR2DL4 is also present in SLE
patients. Furthermore, we describe anti-KIR autoantibodies in
pSS and SSc patients, albeit at lower frequencies than in SLE
patients (10.9 and 12.5%, respectively). In this paper we also link
SLE IgG-mediated blockade of KIR on HDNK cells to a decrease
in cytotoxicity, which may explain the poor NK cell function in
patients with SLE (9–11).

The highest levels of anti-KIR autoantibodies were found
in SLE patients, and increased levels were associated with a
broader KIR reactivity. Autoantibodies reacting with KIR3D
receptors were more prevalent, and their levels generally higher,
than autoantibodies reacting with KIR2D receptors. The reason
for this is unclear, but it may relate to the increased size
of the molecules and thereby increased number of possible
autoantigens on KIR3D receptors, or to the mechanisms whereby
anti-KIR autoantibodies are produced. Among the pSS and SSc
patients, reactivity to >3 KIRs was only observed in 1 pSS serum.
The three anti-KIR-positive HD only reacted with 1 KIR each and
their levels were low. The presence of anti-KIR autoantibodies at
a low frequency inHD are in line with a previous study describing
memory B cells reacting with KIRs in HD (37).

Molecular mimicry is one mechanism implicated in the break
of tolerance. A recent study identified a penta-peptide (SKVVS)
in the human papillomavirus (HPV) protein L1 that is shared

with KIR2DL1, 2DL2, 3DL1, 3DL2, and 2DL4 and suggested
that HPV infection in genetically predisposed individuals may
contribute to lupus via molecular mimicry (38, 39). In this light,
it would be interesting to study whether the presence of anti-
KIR autoantibodies correlates with HPV infection, but the lack
of these data in our cohort preclude such analyses.

Sera from 3 of the 10 patients reacting to >3 KIRs
(SLE3, SLE138, and SLE206) blocked the binding of the anti-
KIR2DL1/DS1 mAb EB6B, and one of these sera (SLE3) also
blocked the binding of the anti-KIR2DL2/DL3/DS2 mAb GL183.
Both EB6B and GL183 have previously been shown to interfere
with KIR-mediated NK cell inhibition (40). Despite the fact
that KIR-genotyping demonstrated the presence of KIR2DL1,
KIR2DL2, and KIR2DL3 in these patients, NK cells from
SLE3 and SLE138 did not stain, or had a very low level
of KIR2DL1/DS1, and KIR2DL2/DL3/DS2 staining was absent
from SLE3. A possible explanation for these findings is that
anti-KIR autoantibodies bound KIRs in vivo and masked the
detection of the flow antibody, however it cannot be ruled out
that KIR2DL1/DS1 and/or KIR2DL2/DL3/DS2-expressing NK
cells in these patients had been depleted or by other means
removed from the circulation.

Lirilumab is a pan-KIR2D mAb that have been evaluated
in clinical trials with the rationale of augmenting NK cell
cytotoxicity toward cancer cells by blocking inhibitory KIRs
(41). However, clinical trials have not met their end-points (42).
Mechanistic studies suggest that the lack of efficacy may be
due to a decreased NK cell cytotoxicity because of anti-KIR2D-
antibody-mediated detuning of KIR2D-educated NK cells (43).
Consistent with an effect on NK cell education, treatment of
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FIGURE 5 | The presence of anti-KIR autoantibodies to >3 KIRs is associated with an increased risk for nephritis and the presence of anti-Sm antibodies. (A,B,D)

Forest plots depicting the relative risk and 95% confidence intervals of fulfilling clinical characteristics as specified. (A,B) The relative risk of SLE patients presenting

with 1, 2, 3, or >3 anti-KIR autoantibodies compared to anti-KIR-negative patients. (C) The strongest levels of anti-KIR autoantibodies in anti-KIR-positive SLE

patients stratified by the presence (n = 21) or absence (n = 23) of nephritis. The median values are denoted with vertical bars. (D) The relative risk of fulfilling the ACR

criteria for nephritis in patients positive relative to negative for the indicated autoantibodies. (A,B,D) Fischer’s exact test with p <0.05 denoted in the graphs. (C)

Mann-Whitney U-test.

NK cells with IgG from two of the anti-KIR-positive patients in
this study induced detuning of NK cell function as measured by
decreased degranulation toward K562 cells. Following wash-out
of IgG, KIR surface expression gradually recovered concurrent
with the recovery of NK cell function. These data suggest that
antibody-mediated blockade of KIRs and the detuning of NK
cells may be one mechanism contributing to the decreased
cytotoxicity previously reported in NK cells from lupus patients
(9–11). The detuning of NK cells may also contribute to the fact
that the cytotoxicity of NK cells from lupus patients with poor
basal NK cell function is not enhanced by type I interferon (44).
Given that decreased killing of activated T cells by NK cells has
previously been proposed as a mechanism for the development
of autoimmunity in rheumatoid arthritis and multiple sclerosis
(45, 46), one could speculate that such mechanisms may also
operate in SLE.

The presence of autoantibodies reacting with >3 KIRs was
associated with a higher disease activity, elevated levels of

IFN-α, and an increased risk for fulfilling the nephritis and
the immunologic ACR criteria. The immunologic criterion
includes having anti-dsDNA and/or anti-Sm autoantibodies,
both of which presence have been associated with lupus nephritis
previously (47). In our study, the presence of autoantibodies
reacting with>3 KIRs was associated with anti-Sm and anti-RNP
antibodies, but not anti-dsDNA antibodies. Thus, these patients
resemble the subgroup of SLE patients with high IFN signature,
anti-Sm/RNP antibodies and nephritis previously described by
Kirou et al. (48). Importantly, the association with anti-KIR
autoantibodies and an increased frequency of nephritis, were not
driven by the presence of anti-Sm-autoantibodies as these were
not significantly associated with nephritis in our relatively small
cohort. It is notable that in our previous study, the presence of
autoantibodies to the CD94/NKG2A receptor was also associated
with an increased risk for nephritis (20). Thus, autoantibodies
targeting inhibitory NK cell receptors may be a common
phenomenon in patients with lupus nephritis. Regarding the pSS
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and SSc patients, the number of anti-KIR-positive patients was
too few to perform analysis of clinical association. However, it
is worth noting that the only pSS patient presenting with >3
KIR autoantibodies had interstitial nephritis, a manifestation that
only 1 out of 106 of the anti-KIR-negative pSS patients displayed.
At this point we do not know whether anti-KIR autoantibodies
have a causative role in the development of nephritis or whether
they represent an epiphenomenon, but it is interesting to note
that a study of 512 patients with end-stage renal disease (ESRD)
due to chronic glomerulonephritis, chronic interstitial nephritis,
hypertensive nephrosclerosis or diabetic nephropathy and 512
healthy controls found a larger proportion of individuals with less
educated NK cells in patients with ESRD (i.e., negative for either
KIR2DL1/HLA-C2, KIR2DL2/HLA-C1, or KIR3DL1/HLA-Bw4)
(49). Although further studies are warranted to examine the
connection between NK cell education and nephritis, this finding
raises the possibility that both a genetic and an antibody-
mediated interference with NK cell education may contribute
to the development of renal disease of both autoimmune and
non-autoimmune etiology.

One limitation of this study is that, even though this
is the most comprehensive screening for KIR autoantibodies
performed so far, we did not screen for autoantibodies to all
15 KIRs. Thus, we may have underestimated the prevalence of
patients harboring autoantibodies to KIRs. However, the large
homology between the extracellular domains of the inhibitory
and corresponding activating KIRs, as well as the large homology
among KIRs in general, suggest that this is not likely to have
a large impact on the results. Another limitation of the study
is that we did not have sufficient IgG to isolate the anti-KIR-
specific autoantibodies for detailed functional studies. However,
the fact that the effect of anti-KIR-containing IgG was observed
on isolatedNK cells, that IgG had opposite effects in educated and
tolerized subsets of NK cells and that NK cells retuned following
wash-out of IgG strongly suggest that the effect on NK cells
were at least in part the result of antibody-mediated blockade
of KIR/KIR-ligand interactions. This speculation is not unlikely
given the clear data on the effect on NK cells that are triggered
upon exposure to the anti-KIR2D antibody lirilumab (39).

In conclusion, our study demonstrates that autoantibodies
to KIRs are frequently found in SLE patients. The strong
association with increased disease activity and nephritis, and
their functional effect on NK cell cytotoxicity suggest that anti-
KIR autoantibodies may be clinically relevant.
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