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The Pacific region, also referred to as Oceania, is a geographically widespread region

populated by people of diverse cultures and ethnicities. Indigenous people in the region

(Melanesians, Polynesians, Micronesians, Papuans, and Indigenous Australians) are

over-represented on national, regional, and global scales for the burden of infectious

and non-communicable diseases. Although social and environmental factors such as

poverty, education, and access to health-care are assumed to be major drivers of this

disease burden, there is also developing evidence that genetic and microbiotic factors

should also be considered. To date, studies investigating genetic and/or microbiotic links

with vulnerabilities to infectious and non-communicable diseases havemostly focused on

populations in Europe, Asia, and USA, with uncertain associations for other populations

such as indigenous communities in Oceania. Recent developments in personalized

medicine have shown that identifying ethnicity-linked genetic vulnerabilities can be

important for medical management. Although our understanding of the impacts of the

gut microbiome on health is still in the early stages, it is likely that equivalent vulnerabilities

will also be identified through the interaction between gut microbiome composition and

function with pathogens and the host immune system. As rapid economic, dietary, and

cultural changes occur throughout Oceania it becomes increasingly important that further

research is conducted within indigenous populations to address the double burden of

high rates of infectious diseases and rapidly rising non-communicable diseases so that

comprehensive development goals can be planned. In this article, we review the current

knowledge on the impact of nutrition, genetics, and the gut microbiome on infectious

diseases in indigenous people of the Pacific region.
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INTRODUCTION

The Pacific region is a loosely defined group of countries
and territories that share a border with the Pacific Ocean.
The region, sometimes referred to as Oceania, is diverse in
its cultures, ethnicities, economic development, and living
standards. Reflecting this diversity, health indicators vary
considerably across the region, with life expectancy ∼20 years
higher and infant mortality up to 15 times lower in the best
performing countries (Australia—life expectancy: 82.8; infant
mortality: 4/1000 live births; and New Zealand—life expectancy:
81.6; infant mortality: 6/1000 live births) relative to the poorest
performing countries (Papua New Guinea—life expectancy: 62.9;
infant mortality: 57/1000 live births; and Solomon Islands—life
expectancy: 69.2; infant mortality: 28/1000 live births) (1).

Although indigenous populations in the Pacific have
developed complex stratagems and adapted highly effectively to
their sometimes extreme environment, Australian Aboriginal
& Torres Straits Islanders, Micronesian, Melanesian, and
Polynesian populations are overrepresented among severe cases
and deaths related to certain diseases, both communicable
and non-communicable (2–5). A partial explanation of this
over-representation is the challenges faced in many Pacific island
countries in the delivery and uptake of: health services, improved
water and sanitation, and education; problems faced in many
low-income countries globally. However, factors specific to the
region and its people, such as rapidly changing diets and the
historic isolation of these ethnic groups, need also be considered.

Studies conducted on the relationships between host genetics,
microbiome, and diseases are mainly carried out in Europe, Asia,
or USA, and include very few or no indigenous participants from
the Pacific despite the high burden of some diseases they face.
Conclusions drawn from studies conducted in other geographical
areas determine global trends, but have little specific application
to Pacific populations (6–8), leading to a dearth of knowledge
on how the microbiome may impact upon and/or interact with
susceptibility to disease and immunomodulation.

Despite current limitations, numerous studies have
investigated the ethnography and relatedness of the Pacific
people. Data exists on burden of diseases in Pacific nations,
and to a lesser extent in Pacific migrants living overseas. Using
these data and drawing on primarily international literature on
immunomodulation and the gut microbiome; we explored these
key factors and their role on health and disease in Pacific people.

HISTORICAL PEOPLING OF THE PACIFIC

Indigenous populations in the Pacific arose from the last
great human migration into an uninhabited continent, and
differ genetically from other populations present across the
Globe. The Pacific has two distinct regions in anthropology:
Near Oceania (Australia, New Guinea Island, and Solomon
Islands) and Remote Oceania (to the east of Solomon Islands,
including up to Easter Island and Hawaii Islands) (9) (Figure 1).
Archaeological evidence suggests human settlement in Near
Oceania around 47,500–55,000 years before present (10). Recent
sequence analysis of genomes from indigenous groups in the

Pacific has revealed that ∼3–6% of DNA from Melanesian and
Indigenous Australian people derive from an ancient human
lineage called the Denisovans (11, 12). This DNA was possibly
introduced during the early migration to Near Oceania, and
further illustrates the historic isolation and uniqueness of the
Pacific people.

Human settlement of Remote Oceania occurred only within
the past 3,100 years: New Caledonia 1,200 BC, Tonga 900 BC,
Samoa 800 BC, Hawaiian Islands 900 AD, and New Zealand
1,200 AD (13). The indigenous people of Remote Oceania
probably originated from the East Asian region, in particular
the Southern regions in China or Taiwan. This is supported
by linguistic evidence as indigenous populations in Taiwan
and Remote Oceania both speak Austronesian languages (14).
Genomic studies also suggest that there was admixture between
East Asian and Near Oceania ancestry. However, it is still debated
where the admixture occurred: at the northern coastal region of
the New Guinea Islands while East Asian ancestry moved toward
Remote Oceania (9); or in Remote Oceania, where Near Oceania
ancestry later arrived and mixed with East Asian ancestry (15).

Interestingly, in the context of this review and the impact of
gut microbiome on health (below), supporting evidence of the
two waves of migration in the region comes from phylogenetic
study of Helicobacter pylori; a pathogen associated with stomach
ulcers that was present in human populations during the human
migration out of Africa and has been previously used to provide
insights into humanmigrations (16, 17). Haplotyping ofH. pylori
in indigenous populations in the Pacific reflects the time since
divergence, with the H. pylori hpSahul haplotype associated with
indigenous people living in Near Oceania diverging from an
Asian haplotype some 20,000 to 25,000 years before the H. pylori
hspMaori haplotype isolated from indigenous people living in
Remote Oceania diverged (18).

Both populations in Near Oceania and Remote Oceania are
assumed to be historically isolated from other populations; as
highlighted by over 800 language groups in Papua New Guinea
(19), and also supported by H. pylori phylogenetics (18). The
populations in Near Oceania rarely interbred with neighboring
populations in the past. For example, the endogamy rate in the
1940-50s in both the Kombio-speaking group (Sepik, Papua New
Guinea) and the Gidra-speaking group (Oriomo Plateau, Papua
New Guinea) were >95% (20, 21). Indigenous populations in
Remote Oceania were geographically isolated on islands that
were separated by vast distances. However, genetic, linguistic,
and archaeological evidence suggests that the Polynesian people
of Remote Oceania maintained a complex trade network that
extended from Hawaii in the north, New Zealand in the
south, and Easter Island in the east (22, 23)—the so-called
“Polynesian triangle.”

DEMOGRAPHIC AND HEALTH
INDICATORS IN THE PACIFIC

The Oceanian territories (land mass) in the South Pacific total
about 8.5 million km² (adapted from Pocket Statistical Summary:
https://prism.spc.int/) over a total area of about 80 million
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FIGURE 1 | A map of the countries and territories of Oceania.

km² (estimated using GoogleEarth Pro: https://www.google.com/
earth/). It is populated by ∼41 million inhabitants, although
approximately two-thirds of those people live in Australia and
New Zealand, where European settlement accounts for the
majority of the population and has had major cultural and
socio-economic impacts. There are ∼12.3 million inhabitants
of the Pacific that have whole or partial indigenous Oceanian
origins [details of the demographics of indigenous people in the
Pacific are reviewed in (24)]; including the Indigenous Australian
(Aboriginal and Torres Strait Islanders) and New Zealand Maori
populations. This distinction between indigenous Oceanians and
descendants of immigrant ancestries (arrived within the past
230 years) is useful in a public health context, because health
indicators differ greatly, reflecting both the differing challenges
and vulnerabilities faced by population subgroups, and access to
healthcare and education.

The Pacific consists of many countries and territories that
are geographically small and isolated, with comparatively small
populations. This has consequences in terms of health delivery,
but also on the local impact on global health priorities and
the ability to attract international awareness and subsequent
funding. To this end, there is some value in considering the
total population of indigenousOceanians, which is comparable in
number to that of South Sudan, Rwanda, Somalia, or Chad. These
countries are located at or near the 67th percentile of populations
in countries/territories (25) and have health indicators that are
broadly comparable to Papua New Guinea (the most populated
Pacific country of primarily indigenous people), but appear to be
a higher priority in global health.

Importantly, while the collective population of the Pacific is
comparable to a moderately populated country, it is undergoing
rapid growth. According to United Nations projections, the total
population of Oceania (including Australia) will reach about

47 million in 2030 and 57 million in 2050 (25). Much of this
growth is predicted to come from countries such as Papua
New Guinea and other countries of predominantly indigenous
populations, and will put further pressure on already challenged
health systems.

A HIGH BURDEN OF DISEASE AMONG
INDIGENOUS POPULATIONS IN THE
PACIFIC

Indigenous Oceanians face many of the health challenges
identified in similar low-income settings, though cultural and
biological constructs associated with health and disease differ.
There is relatively abundant andwell-documented data to suggest
that certain health issues disproportionately affect Maoris in New
Zealand, Polynesians in Hawaii and the Aboriginal & Torres
Straits Islanders in Australia compared to their non-indigenous
counterparts in the same countries (2–4, 26). The incidence of
infectious diseases is strongly conditioned by social determinants
of health (food and nutrition, housing, sanitation, prenatal stress,
etc.), the less favorable of which are often concentrated among the
most marginalized populations (5, 27–33). The respective roles
of the social determinants of health (education, food, poverty,
etc.), genetics and microbiota in the incidence of these diseases
among indigenous populations in the Pacific, however, remain to
be determined.

In the age of personalized medicine, genetics becomes an
important consideration. The majority of known gene variations
that distinguish one human group from another are not
associated with diseases but display comparable functionality at
the clinical level and only illustrate human genetic diversity (34).
Identifying genetic vulnerabilities among populations can be very
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important for medical management (6, 35). For example, the
identification of a P2X7R polymorphism has been associated with
an increased risk of tuberculosis in mice (36) and later a Tibetan
Chinese population (37). Further studies have suggested new
therapeutic avenues through the use of natural agonists to P2X7R
that promote death ofMycobacterium tuberculosis and apoptosis
of infected monocytes and macrophages (38).

In addition to pre-existing immunity, vulnerability to a
particular disease is partly due to a population not having been
exposed for a long time to the pathogen that causes it. Specific
vulnerabilities can arise from genetic characteristics selected
for the advantage they confer in the face of another, more
prevalent or severe infectious risk (39, 40). Certain pathologies
linked to genetic characteristics may also be more frequent in
some subgroups, mainly because of the emergence of recessive
traits due to human reproduction in isolated settler populations;
whether these are isolated from a geographical or environmental
standpoint, or for cultural, linguistic or religious reasons. In the
global context an example of such a disease is Tay-Sachs disease
among Ashkenazi Jews, with the recessive carriage rate (1 in 30)
approximately 10 times higher in Ashkenazi Jews compared to
the general population in United States (39, 41).

Indigenous populations in the Pacific, however large and
geographically scattered, could derive from a very small number
of surviving individuals at some point in history (genetic
bottlenecks), because groups were small and/or possibly faced
with extreme conditions, including those encountered in central
Australia, Papua New Guinea or during long transoceanic
migrations (18, 42–44). This “perilous travels theory” is disputed
by some (45, 46); but is difficult to discount as being a factor in at
least some populations in the Pacific.

Global extrapolations supported by limited geographically
specific data suggest that genetic selection pressures could, in
part, explain the significantly higher burden of some diseases in
indigenous populations in the Pacific. The interactions between
genetics and burden/susceptibility for infectious and immune
mediated diseases such as influenza and rheumatic fever, and
non-infectious diseases such as obesity and type 2 diabetes, likely
contribute to the health of Pacific people. Selected infectious and
immune-mediated diseases are discussed below based on their
disproportionate burden in indigenous populations in the Pacific
and the emerging lines of research that may help to explain their
impact in these populations.

Influenza
Indigenous populations in the Pacific suffered a
disproportionately high mortality during the influenza pandemic
of 1918–1919 (47–52). While it is estimated that 3% of the world’s
population died of influenza during the 1918 pandemic, mortality
reached 22% in some Pacific nations such as Western Samoa
(50, 51), and 50% in some Australian Aboriginal communities
(53). The mortality rate in indigenous Hawaiians was also
four-times higher than their non-indigenous counterparts (54).
Although the factors that underlie these excess mortalities
remain debated (55–59), recent evidence suggests that modern
indigenous populations in Pacific Island countries (49, 60–71)
are overrepresented 2- to 5-fold among the severe forms of

influenza virus infection, such as during the 2009 influenza
pandemic in New Caledonia (62, 68). Furthermore, between
2002 and 2014 (excluding 2009) the rate of reported influenza
was up to 6.4 times higher among Australian Aboriginals
compared to non-Aboriginals; the hospitalization rate for
influenza was up to 3.5 times higher, and death rate up to 5.5
times higher (72). This is not only true for pandemic influenza:
in 2016, the incidence of seasonal influenza in New Zealand was
lower among Maori compared to “Europeans or others” (40 vs.
64 per 100,000). However, the incidence of hospital admissions
for severe influenza was 2.5 times higher in the Maori population
during that period (73).

The clearly documented vulnerability to severe influenza
among indigenous populations in the Pacific may be due to
the higher prevalence of identified comorbidities (e.g., diabetes,
obesity) (62). It may also be due to lower population immunity
or immunization coverage, a more adverse socio-economic
context, differential access to care, or other factors. However,
genetic and microbiotic factors have also been theorized to
play a major role (40, 47, 74, 75). For instance, following the
2009 H1N1 influenza pandemic, researchers identified multiple
genetic polymorphisms in diverse populations linked with an
increased risk to the H1N1 pandemic virus (76–79).

Rheumatic Heart Disease
Acute Rheumatic Fever (ARF) is an immune syndrome that
can occur following an infection with group A Streptococcus
(GAS). The related aberrant inflammatory response can lead to
permanent heart damage in about 60% of cases, resulting in the
development of a chronic Rheumatic Heart Disease (RHD) (80).
The occurrence of ARF and consequent RHD remain a major
public health problem in vulnerable populations (81, 82). In 2015,
it was estimated that RHD affected more than 30 million people
worldwide each year with more than 300,000 related deaths (81).

RHD is mainly diagnosed in children and adolescents. It is
seldom found in developed countries but remains common in
emerging countries, particularly in Asia, Africa, and Oceania
(80, 83–86), where nearly 84% of the global RHD cases are
documented (87–91).

Indigenous populations in the Pacific present some of the
highest rates of RHD in the world. In 1985, one study estimated
RHD prevalence at 800 per 100,000 in Polynesia, while in New
Zealand this risk was 650 per 100,000 amongMaori (compared to
90 among non-Maori) (92). In Australian Aborigines in remote
rural parts of Northern Territory the incidence was 651 per
100,000: at the time described as the highest incidence of RHD
in the world (93). Rheumatic heart disease is also frequently
described amongMelanesian and Polynesian populations in New
Caledonia (94–98).

Epidemiological studies have shown that socio-economic
and environmental conditions, including access to healthcare
systems, remain among the major determinants of ARF/RHD
prevention (98–100). Moreover, several GAS strains
identified as “rheumatogenic” were associated with ARF
and differentially influence host immune response (101, 102).
Genetic susceptibilities of the host should also be taken into
account when the immune response to an infectious agent
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is being characterized. Recently, a meta-analysis of several
published case-control studies showed a correlation between
polymorphisms on several genes encoding for cytokines
and predisposition for RHD (103–106). Studies in Europe
have associated RHD to particular HLA (107–109), however,
HLA results were inconsistent, and two recent genome-
wide association studies (GWAS) conducted in Oceanian
populations and European ancestry individuals showed
no significance with the risk of developing RHD or ARF,
respectively (110, 111). Interestingly, a novel susceptibility
signal was identified in the immunoglobulin heavy chain (IGH)
locus (110).

Dengue
Dengue is the most emergent vector-borne viral disease
worldwide (112). The behavior of mosquitoes and the
circulation of dengue viruses may be profoundly affected
by global climate change, to which territories in the Pacific are
particularly vulnerable.

Between 2001 and 2008, dengue epidemics in four Asian
countries (Cambodia, Malaysia, Philippines, and Vietnam)
caused >1 million reported dengue cases, of which nearly
5,000 (0.5%) died. During this same period, dengue epidemics
described in six Pacific territories (Polynesia, New Caledonia,
Cook Islands, American Samoa, Palau, and Federated States of
Micronesia) caused ∼50,000 cases, of which 34 (0.07%) died
(113). Other available data also suggest a comparatively lower
reported case-fatality rate for dengue in the Pacific (114–116),
despite genetically similar viruses circulating in Asia and the
Pacific (114).

The relatively lower frequency of deaths due to severe dengue
in the Pacific with a high proportion of indigenous populations
compared to Asian countries could be due to many biases,
including: (i) undefined differences in the virulence of strains
circulating in Asia and in the Pacific; (ii) underreporting of
dengue cases in Asia and the overrepresentation of severe cases
admitted to hospital; (iii) better health in general and better
hospital care in particular in the Pacific countries in which
these studies were conducted. Conversely, studies have correlated
dengue severity with obesity and diabetes (117), both of which
are highly prevalent in the Pacific and in indigenous populations
especially (118–120). Whether the associations are causative or
the result of confusion bias in lower socio-economic groups
vulnerable to both dengue and obesity/diabetes remains to
be determined.

Recent genome wide association and admixture mapping
studies have investigated the natural protection and susceptibility
for severe forms of dengue infection. Research teams have
identified at least seven single nucleotide polymorphisms that
are associated with the risk of severe outcomes during dengue
infection (121–123). Although, more detailed understanding
of the genetic mechanisms related to susceptibility of dengue
infection is needed, associations based on ethnicity have been
identified that reveal that people with African ancestry are best
protected against severe dengue, while Asian and European
populations are more susceptible (124, 125). To date, this has not
been investigated in the Pacific to our knowledge.

Leptospirosis
Leptospirosis is a zoonotic disease that most frequently
occurs following an environmental infection with pathogenic
Spirochaetes from the genus Leptospira. The infection can range
from asymptomatic in most cases (126) to severe life-threatening
disease with a high case-fatality rate (127).

Despite the large spectrum of clinical forms, very little
research has focused on the host genetic susceptibility to
Leptospira infection. Following an outbreak in triathletes in
Illinois, the first study on genetic susceptibility associated
with leptospirosis evidenced the HLA-class II HLA-DQ6 as
a significant risk factor (128). However, further studies in
independent populations did not confirm this finding but rather
identified HLA-class I and the ancestral HLA haplotype (A1,
B8, DR3) as well as several SNPs in innate immune genes as
conferring susceptibility to leptospirosis (129, 130). Globally,
there is still conjecture, reflecting a lack of studies with a
significant number of well-defined confirmed leptospirosis cases.
Notably, none of the few studies reported to date have included
people of Oceanian ancestry. Whether factors from skin or
mucosal microbiota contribute to the initial phase of Leptospira
infection remains to be determined but would deserve further
studies (131).

Leptospirosis mostly impacts tropical rural or suburban young
active males from vulnerable populations worldwide, imposing
a global burden similar to that of schistosomiasis, leishmaniasis,
or lymphatic filariasis (132). Of note, Pacific islanders pay the
highest toll to this neglected disease by far, with a morbidity rate
10 times higher than global figures (132, 133). Although social
and environmental determinants might contribute to this high
burden, more research attention should be paid to population-
specific genetic and microbiotic factors contributing to this
high burden.

INDIGENOUS DIETS IN THE PACIFIC AND
THE TRANSITION TO A WESTERN DIET

Indigenous diets in Near Oceania are contrasted between the
Papua New Guinea highlands and other regions. The Papua
New Guinea highlands is believed to be one of the global
origins of agriculture, with taro (Colocasia esculenta) and banana
(Musa spp.) domesticated in the area 10,000 and 7,000 years
before present, respectively (134). Banana and taro were the
staple foods in the Papua New Guinea highlands before the
introduction of sweet potato from Central America ∼300 years
ago. The intensified agricultural system has enabled continuous
cultivation of sweet potato production, which has supported high
population density in the region. Pigs pigs which are used as
bride price or for compensation of deaths during tribal fighting
(135), are reared by feeding sweet potatoes, but the nutritional
contribution of pig meat is scarce. Studies in Papua New Guinea
have reported that sweet potatoes accounted for over 70% of the
total energy intake and that only a limited amount of animal
protein was consumed (136).

In the non-Highlands regions of Papua New Guinea and
Solomon Islands, shifting cultivation of tubers (taro, yam),
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banana, sugarcane, and leafy vegetables has been conducted. This
type of agricultural system has been formulated on the basis
of the crops and agricultural technologies introduced by the
Austronesia people a few thousand years before, probably mixed
with crops domesticated in the Papua New Guinea Highlands.
In some parts of these regions, starch extracted from the stem
of the sago palm, which is naturally fermented using traditional
practices, is consumed as a staple food (137, 138). Since the
sago starch contains only small amounts of nutrients other than
carbohydrate, hunted animals, and gathered wild plants are also
consumed. In coastal areas, aquatic animals such as fish and
crustaceans are also commonly consumed.

The islands in remote Oceania can be mostly categorized
into two groups depending on how they were formed (139).
One group of islands were formed by volcanic activity (“volcano
islands”), while the other group of islands were formed when a
coral reef rose (“reef islands”). The volcano islands have relatively
larger space, higher mountains, and richer fauna/flora than reef
islands. This impacts on the abundance and availability of many
crop foods.

Protein deficiency has been confirmed by a number of studies
in the Pacific region (140). A recent study found that over 80%
of the population in a remote region of the Papua New Guinea
highlands had protein intakes below the estimated required
level (141). Individuals whose protein intakes are below the
required level are expected to show clinical signs of protein
deficiency, such as decreased muscle mass (142). Yet despite
their apparently deficient protein intake people in the Papua
New Guinea highlands rarely exhibit such clinical signs (143).
Some researchers have speculated that the Papua New Guinea
highlands people have biologically adapted to a low-protein
diet (144). Indeed, a recent study found evidence of nitrogen
fixation in the gut microbiota of Papua New Guinean people
(145). However, no evidence was found that nitrogen fixation
substantially contributed to the host nitrogen balance.

During the period before colonization, the people who
resided in Oceania were almost completely free from obesity
(146). The people consumed a low-energy-density diet and
engaged in relatively high physical activity for their subsistence,
which resulted in a balance between energy intake and energy
expenditure (147). Signs of a “nutritional transition” were first
observed in Remote Oceania, then in the coastal and islands
region of Near Oceania and finally in the Highlands region of
Near Oceania (148). During the period of nutritional transition,
the people came to consume energy-dense foods imported from
Australia and New Zealand (e.g., rice, canned fish, canned
meat, lamb/mutton flaps, vegetable oil, beef tallow, and instant
noodles). The nutritional transition occurred more rapidly in the
urban areas in each region.

According to the theory of epidemiological transition (149),
people in subsistence societies before the initial stage of
industrialization are faced with high burdens of communicable
diseases. As food security, public health, and medicine improve
due to industrialization, the burdens of communicable diseases
are replaced with those of non-communicable diseases. During
the period of epidemiological transition, mortality rates decrease
drastically followed by fertility decline. The South Pacific

FIGURE 2 | The double burden of infectious and non-communicable diseases

in Oceania: a scatter plot between infant mortality rates in 2010 and

age-adjusted prevalence of overweight adult females (>18 years of age)

in 2016.

countries have not shown typical patterns of epidemiological
transition. Figure 2 shows a scatter plot between infant mortality
rates in 2010 and age-adjusted prevalence of overweight adult
females (>18 years of age) in 2016 for 13 countries in the
South Pacific. A high infant mortality rate reflects the burdens
of communicable diseases, while the prevalence of overweight
individuals reflects the burdens of non-communicable diseases.
As shown in Figure 2, several South Pacific countries such as
Papua New Guinea, Kiribati, Micronesia, Nauru, and Tuvalu
have high burdens of communicable and non-communicable
diseases simultaneously. Such double burdens will provide
considerable challenges to the health sectors of these countries.

Oceanians are the most exposed, after the populations
of sub-Saharan Africa, to the loss of disability-adjusted life
years (DALYs) because of metabolic diseases. Indeed, Oceania
residents (all genders and all populations) had the largest
increase in BMI in the world for the period 1980–2008, the
average BMI in Nauru being the highest in the world in 2008
(118). The link between obesity/inflammatory status (150, 151)
and obesity/excess mortality (152, 153) is well-documented,
both among Pacific populations and on other continents. After
adjustment for age, the prevalence of type 2 diabetes mellitus
(T2DM) in the South Pacific was the highest in the world (15–
16%). This prevalence increased most strongly in the world
between 1980 and 2008 (154), and it is expected that this
prevalence will continue to increase in some areas of the Pacific
(155). The prevalence of age-adjusted or unadjusted T2DM is
highly variable among indigenous Oceanian populations, and
can reach 20–30% of the population in some studies (156). By
way of comparison, it was estimated in 2012 at about 5.5% of
the population in France, and at least 9.4% in the US in 2017
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(157, 158). In a New Zealand study, the prevalence of T2DM
in Polynesian participants was 2–2.5 times that of participants
of European origin (159). The incidence of T2DM was 4–8
times higher among Australian Aborigines than in the general
population or compared to the non-indigenous population
(160, 161). A review of T2DM in global aboriginal populations
found varying prevalence of T2DM between different indigenous
groups, which was hypothesized as at least partially due to
genetic susceptibility (162). Indeed, a genetic polymorphism in
the HNF1A gene (G319S mutation) has been identified in the
native CanadianOji-Cree population that was strongly associated
with an increased risk of T2DM (163).

THE HUMAN GUT MICROBIOME

Pacific Microbiome Relative to a Global
Microbiome
Great advances in our understanding of the human microbiome
have been made over the past two decades, though the field is
arguably still in its infancy. Much of the focus of the human
microbiome has been on intestinal microflora and its associated
genes; with the current and broadly accepted theories stating
that the gut microbiome has the potential to impact greatly on
human health and disease. Indeed, most of the microbiome data
reported to date are solely focused on bacterial species and their
interactions with the human host. Further insights will be gained
through elucidating the impact of commensal viruses, archaea,
fungi, and protozoans on human health.

The composition of the gut microbiota evolves from birth,
with the greatest change occurring at around the age of weaning.
By the age of 2 years the gut microbiota of a child resembles that
of an adult (164–166), though with some ongoing compositional
differences to adult microbiota throughout adolescence (167).
Once established, the adult gut microbiota is considered stable,
yet subject to perturbation.

Limited studies exist on the gut microbiota/microbiome in
the Pacific. The first culture independent study to characterize
the gut microbiota in the region used targeted reverse
transcription quantitative PCR (168). This approach is likely to be
adequately accurate in determining relative numbers (169), but is
considerably limited in scope of microbes detected. Nonetheless,
findings were indicative of broad similarities between the
microbial composition of the gut of PNG study participants
and those in other low-income countries, particularly those with
some traditional aspects of diet intact as found in a study into
the microbiome of people from a rural African village in Burkina
Faso (170, 171).

A subsequent study by Martinez et al. (172) used 16S
RNA sequencing to investigate the gut microbiota of people in
PNG (rural, traditional setting), and compared the composition
to study participants in USA (urban Nebraska). This study
supported the observation made previously by Greenhill et al.
(168) that the microbial composition of people in Papua New
Guinea had similarities to other subsistence dwellers (166, 170,
172). Specifically, the presence of a high ratio of Prevotella relative
to Bacteriodes, which is common in people consuming traditional

diets where there is a high dependence on fibrous, plant-derived
foods (170) found in the Pacific (above).

Microbiome studies conducted in the Pacific, albeit only
a small number to date, have helped inform theories of
global diversity and distribution of bacteria and mobile genetic
elements of the human digestive tract. Global microbiota studies
consistently support the notion of greater diversity, or at the very
least additional lineages, in populations living a traditional (non-
western) lifestyle relative to people in industrialized countries
(172, 173). Based on comparison of gut microbial composition of
people in Papua New Guinea to people living in USA, Martinez
and co-workers proposed that diversity could be explained by the
impact of lifestyle on ecological assembly processes. In particular,
aspects of traditional life such as diet and lack of sanitation and
hygiene likely impact microbial composition.

In addition to the extant lineages associated with people living
a traditional lifestyle (including those in the Pacific) and the
resulting diversity of the microbiota, one study has investigated
the distribution of mobile genes in a Pacific population and
compared it to a Western population. In some aspects, the
findings were similar to those for bacteria. Most mobile genes
were present in some (62%) samples, akin to a core microbiota.
Mobile genes for starch hydrolysis were higher in samples
from agrarian Fijians than from USA participants, akin to a
high Prevotella to Bacteriodes ratio. The presence of mobile
genetic elements was said to be largely independent of species
community composition (174).

To date, it has not been possible to elucidate the full composite
mechanism that determines gut microbial composition. Ethnicity
has some association with the gut microbiota, with Brooks
et al. (175) suggesting that 12 taxa of bacteria reproducibly vary
across four ethnicities. While conceivably a factor, heritability
(thus ethnicity) appears to be a relatively minor influence on
microbial composition (176). Indeed, immigration from a non-
Westernized country to a Westernized country results in loss of
diversity and associated function in the gut microbiome (177).
Diet is undeniably an important factor, with people consuming
a traditional diet consisting of starch-and fiber-rich foods having
bacterial species and mobile genetic elements that reflect those
dietary trends. Non-Westernized populations, including Pacific
people, are likely to be a niche for extant species that are no longer
detected in Western people (178).

Gut Microbiome, Genetics and
Non-communicable Diseases
The prevalence of non-communicable diseases affecting affluent
countries has prompted research efforts to focus on better
understanding the immunomodulatory role of the microbiome
(179, 180). Various studies have sought correlations between lost
lineages and “Western diseases” such as obesity, autoimmune,
and allergic diseases. However, this is likely an over-simplification
of both the etiology of non-communicable diseases and the global
burden of disease. Non-communicable diseases are an increasing
burden in low-income countries, with heart disease, diabetes, and
asthma among the leading 10 causes of all-age disability adjusted
life years in the Pacific region (181).
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One of the greatest health problems facing Pacific people
is obesity, and interventions are urgently needed. The genetic
selection of “thrifty genes” (182) has been theorized for
indigenous people of the Pacific as a mechanism to cope
with food shortages. Now, in the affluent sections of Pacific
communities where food shortages are rare, this adaptation
could contribute to obesity and type 2 diabetes. The thrifty gene
mechanism has been explored in Pima Indians (from the Gila
River Indian Community in south central Arizona), through
a community-wide longitudinal study running since 1965, and
found that the prevalence of T2DMdecreases in those who report
mixed ethnic ancestry (183–185). The thrifty gene theory remains
disputed and seems to insufficiently explain the few data available
on indigenous populations in the Pacific (45).

It may be that host genes play less of a role than the
collective genes of the microbiome. The notion of an obese
microbiome is well-established through both observational
studies and transplant studies in animal models (186–189).
Similarly, a role of microbiota in diabetes has been investigated,
and characterization of the digestive metagenome predicts the
presence of type 2 diabetes more robustly than body-mass
index (BMI) in women in Sweden and China (190). Further
research could help develop new and tailored approaches for
post-prandial glycemic control (35, 191).

Immunomodulation of the Microbiome and
Influence on Immune Health
In comparison to non-communicable diseases, much less is
known on how the microbiome may influence the course of
communicable diseases, or increase susceptibility to infection
(Figure 3). The delicate microbial ecosystem colonizing the
human host fosters cooperative interactions with the immune
system that is likely to influence how it responds to pathogenic

assaults (192). Indeed, microbes synthesize short-chain fatty
acids (SCFAs) and other metabolites, 95% of which are readily
absorbed by the host (193–195). They can directly alter
immunity, metabolism and reproductive functions, and even
induce epigenetic modifications (196–201). Animal studies have
facilitated the characterization of SCFAs, but the identification
of specific bacterial species composing the human host
responsible for similar activities has proven difficult (202). A
possible reason is that the microbiome composition differs
by geographic location due to differences in diet, lifestyle,
and environmental exposures. Interestingly, a recent study
highlighted the importance of considering the complex dynamics
of the microbiota to understand how it affects immunity
(166, 171, 203). Commensal viruses and fungi have a critical
role in modulating bacterial metabolic pathways and therefore
influence their release of specific SCFAs, which may provide a
key element in profiling the microbiome in health and disease
(204–207). In addition to categorizing the taxonomic diversity
of the bacterial communities by sequencing to correlate a
specific immune phenotype, the metabolomic signature of the
microbiome should be determined, as it best determines the
functional role of the microbial ecosystem and its influence
on immunity.

It is thought that the gut microbiota can have a negative
impact on immune function, thus leading to increases in immune
disorders. This led to the development of the hygiene hypothesis
(208), which has evolved into more nuanced theories such
as the old friends hypothesis and the microbiome depletion
hypothesis (209, 210). From an ecological perspective it seems
plausible that the loss of diversity, and in particular the loss of
certain linages of microbes, could have negative implications for
human health. This notion has the broad support of the World
Allergy Organization, who point to the “mounting evidence”

FIGURE 3 | Intersections between nutrition, microbiome, immunity, and susceptibility to infectious diseases.
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suggesting alterations in microbiota correlate with inflammatory
disease (211).

It should also be noted that the original hygiene hypothesis
was developed when we had a lesser appreciation of the
importance of non-communicable diseases in low-income (“less-
hygienic”) settings. Diseases such as asthma have likely been
overlooked in low-income settings for decades, in part because
the burden of asthma has been less than, for example, the
burden of acute respiratory infections. Illustrating this point is
that asthma was one of the top 10 contributors to death (for
both children and all-ages) in Papua New Guinea in both 2007
and 2017 (http://www.healthdata.org/papua-new-guinea).While
there was an apparent increase in the burden of asthma between
2007 and 2017, this probably reflects the decrease in burden of
diarrhoeal disease during the same period.While not discounting
the role of exposure and carriage of either commensal or
pathogenic microbes in the risk of non-communicable diseases in
the Pacific or elsewhere, further work is required to elucidate the
merit and mechanisms of such hypotheses. As raised previously,
such work should go beyond investigating the role of bacteria
to include other microorganisms as well, a point also raised by
World Allergy Organization (211). In brief, there is much to learn
from furthering our understanding of interactions between the
microbiota of Pacific people and immune diseases. Such studies
should derive benefit for Pacific people, for which asthma and
other immune diseases are a significant health problem; but may
also inform our global understanding of these diseases.

Probiotics have long been recognized as potentially beneficial
to human health, with a focus in recent decades on their role
as immunomodulatiors (212). This has also lead to a focus
on dietary components that support the growth of probiotics
and related, perceived beneficial taxa. The role of indigenous
fermented foods, generally a rich source of probiotics, varies
among the different Pacific cultures; but in summary their
traditional role appears less than in Asia and Europe. In lowland
and coastal PNG sago starch undergoes traditional fermentation
(137), and breadfruit fermentation has been documented in the
South Pacific (213); however, other fermentations in the region
are seldom documented. It is likely that the traditional diet
(section Indigenous Diets in the Pacific and the Transition to
a Western diet), which is rich in what are now referred to as
prebiotics, may impact on “gut health” and immunomodulation;
though no correlative or experimental studies have been
conducted specifically relating to Pacific people.

Gut Microbiome Interaction With
Gastrointestinal Pathogens
Much of the global focus of gut microbiome studies has been
on their interactions with non-communicable diseases. However,
given the ongoing high burden of infectious diseases in low-
income settings the interactions between the gut microbiome and
pathogens should not be overlooked. Soil-transmitted helminths
(STH) infect 2 billion people, and remain endemic in themajority
of developing countries (214, 215). The most predominant
organisms are the roundwormsAscaris lumbricoides, hookworms
such as Necator americanus and Ancylostoma duodenale, and

whipworms Trichuris trichiura, which heavily impact human
health, and children in particular, via impairing nutrition and
suppressing host immunity (215–217). Where data are available
it appears that the burden of STHs is high in Pacific countries
(218–221). It is estimated that 5.5million people are infected with
hookworm and 1.2 million people are infected with Ascaris sp. in
Oceania, comprising∼1% of the global burdens for both of these
infections (222–224).

Gastrointestinal protozoan infections are likely prevalent in
the Pacific, although data are scarce. A large-scale surveillance
of gastrointestinal protozoa in school children in Fiji sought to
detect gastrointestinal protozoa. When detection was by PCR,
the prevalence of Giardia was 22% and Entamoeba histolytica
was 2.3% (225). A small study in pregnant women in the
highlands of Papua New Guinea revealed high burdens of E.
histolytica (43%) and Giardia (39%) (221). E. histolytica has
also been detected in patients with hepatic abscesses in New
Caledonia (226). The lack of data may well misrepresent the
true burden of protozoan diseases in the Pacific. These parasites
are likely to have important direct health impacts on people
of the region, and may interact with the gut microbiome
and immunoregulation.

Parasites are largely reported for their immunomodulatory
properties to evade the host’s immune system, which may as
a consequence impact on the host’s ability to respond to other
pathogens (227). Chronic STH infection have been linked to
decreased vaccination efficacy and increased susceptibility
to co-infection (228, 229), suggesting that helminths—
microbiome interactions need to be taken into consideration
when envisaging immune-related intervention strategies in
endemic areas.

Although the causality between parasitic infection, the
microbiome and immune fitness has yet to be fully determined,
it may be that such infections have a positive impact on human
health. Iatrogenic infection with N. americanus was shown
to promote species richness and evenness, and increase the
production of fecal SCFAs (191, 224, 230). Similarly, it has been
hypothesized that gastrointestinal protozoa may have a positive
impact on the gut microbiome (231).

A potential role of the gut microbiome in susceptibility and/or
resistance to other gastrointestinal pathogens such as bacterial
and viral organisms has been raised, but is yet to be fully
elucidated. Basic ecological principles suggest that a healthy
and well-established gut microbiota will impede colonization
by transient gastrointestinal pathogens (232, 233). However,
the impacts are not limited to just the microbiota, and the
microbiome and associated metabolomics characteristics are
likely important factors in the probability of colonization, as
is the case with gastrointestinal parasites (above). Bacterial
gastrointestinal pathogens appear to be a major contributor to
diarrhea in PNG, with shigellosis being an ongoing problem
(234–236), and cholera being a sporadic problem (237). The
high asymptomatic carriage of bacterial and viral diarrhoeal
pathogens (238) in Papua New Guinea may be indicative
of low levels of sanitation and hygiene, but nonetheless
warrants further investigation in relation to immunity and gut
microbiome function.
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CONCLUSIONS

The indigenous people of Oceania currently face a variety
of health challenges including a high burden of infectious
and non-communicable diseases. Both of these are likely to
be exacerbated by the ongoing climate change crisis in the
region. The Pacific islands are among the most vulnerable to
the impacts of climate change and resulting sea-level rise and
changing weather patterns (239). Due to the limited health
and basic service capacities in many of these countries they
will be faced with considerable challenges to rapidly adapt
and manage these risks. Alongside social and environmental
determinants of health—genetic and microbiotic factors need
to be considered and further investigated to ensure improved
health outcomes for people in the region. Indeed, the inclusion
of indigenous people from that Pacific in studies investigating
conditions where indigenous populations may exhibit increased

vulnerability (e.g., influenza, obesity, T2DM), or conversely
increased resistance (e.g., severe dengue), may be important for
global populations.
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